для чего предназначен индивидуальный дозиметр
Выбор индивидуального дозиметра радиационного фона
Портативный или индивидуальный дозиметр используют в бытовых и промышленных условиях для непрерывного или порогового измерения уровня ионного излучения окружающей среды или радиационного фона от различных объектов. Условно можно выделить несколько основных видов приборов, каждый из которых имеет свое узкопрофильное назначение.
Для чего нужен дозиметр
Бытовые портативные или индивидуальные дозиметры разработаны для повседневного использования, они эргономичны, отличаются компактными габаритами и простым управлением. Портативные измеряющие устройства выводят всю необходимую информацию на дисплей и не требуют дополнительных приборов для расшифровки данных. Индивидуальные модели менее функциональны, они используются только для информирования об изменении уровня ионного излучения в большую сторону.
Чаще всего их приобретают для контроля бета-частиц или гамма-излучений, особо опасных для человеческого здоровья.
Регистрация альфа-излучений осуществляется только с помощью профессионального оборудования. Причина в том, что альфа-излучение наносит серьезный вред только при прямом попадании в организм, для защиты от него достаточно простых средств, таких как закрытая одежда, респираторы.
Портативный или индивидуальный дозиметр необходим для людей, проживающих в неблагоприятной местности, где вблизи расположены искусственные источники радиоактивного загрязнения:
В случае аварий и распространения опасных электронов или фотонов человек своевременно будет проинформирован и сможет принять меры по защите.
Стоит отдельно отметить тот факт, что любой бытовой дозиметр предназначен для измерения уровня ионного излучения непосредственно в том месте, где он расположен (человек, грунт, комната, окружающее пространство). Он определяет мощность дозы, но едва ли способен точно определить его источник.
Есть модели бытовых приборов, предназначенных для измерения уровня зараженности продуктов питания или различных строительных материалов. Но они отображают только критичные показатели, превышающие норму в несколько раз. Для точного определения таких предметов необходимы иные методы и устройства, измеряющие не мощность излучения, а содержание радионуклидов.
Бытовой дозиметр
Прежде чем измерить ионизирующее излучение объекта, дозиметром замеряют природный радиоактивный фон.
Следует иметь в виду, что любое выводимое значение «фона» не является постоянным, как правило, производят несколько замеров и вычисляют среднее арифметическое значение.
После нескольких регистраций можно приступить к исследованию человека или грунта. Только постоянное превышение можно трактовать как обнаружение радиоактивного излучения. Пользователь дозиметра должен не только понимать интерфейс устройства, но и владеть минимальными знаниями нормы. Аппарат бытового назначения определяет два основных показателя: дозу и мощность дозы.
Показатель мощности дозы измеряется к мкЗв/ч. Говоря простым языком, он обозначает допустимое время пребывания в месте, где зафиксировано излучение. Чем выше показатель, тем быстрее накапливается доза, следовательно, сокращается время пребывания.
Измерение «дозы» – это измерение фонового излучения местности, ее регистрируют в незнакомых или удаленных местах пребывания. Для контроля скидывают накопленный показатель в дозиметре и носят его в кармане или сумке. Безопасное значение не превышает 0,2 мкЗв/ч, если прибор выводит больше, значит, нахождение в этом месте опасно для здоровья.
Измеритель рентгеновского излучения
Основная область применения дозиметра для контроля рентгеновского излучения – медицинские учреждения:
В бытовых условиях дозиметры рентгеновского излучения замеряют фон от видеомагнитофонов, телевизоров, СВЧ-приборов или иных источников, распространяющих рентгеновское излучение. В отличие от портативных устройств, рентгеновские не только фиксируют отклонение от нормы, но и контролируют количественную характеристику ионизирующего сцинтилляционного, химического, фотографического или иных эффектов радиоактивного фона объекта.
Радиометры делятся на два вида по назначению:
Индивидуальные бытовые дозиметры и комплекты
Индивидуальный дозиметр представляет собой небольшое устройство для персонального ношения в зоне с потенциально опасным радиоактивным фоном. Чаще всего эти приборы лишены дисплея и больше напоминают обычный брелок. Принцип работы у таких аппаратов пороговый: когда ионное гамма-излучение превышает норму, дозиметр издает звуковой сигнал. Эти самые простые и недорогие аппараты бытового назначения необходимы при нахождении в неизвестной, удаленной местности.
В комплект индивидуальных дозиметров входит несколько прямопоказывающих аппаратов для замера радиационного фона, блок питания, руководство.
Как выбрать дозиметр
Покупка такого специфического и узкопрофильного оборудования подразумевает выбор необходимых характеристик. Бытовые дозиметры стоят относительно недорого, но отличаются по техническим показателям. На что следует обратить внимание при выборе?
При выборе подходящей модели не стоит стремиться выбрать самый универсальный вариант. Не всегда покупка топовой позиции оправдана, пользователю необходимо четко определить, для каких целей приобретается данное устройство. Таким образом, не придется переплачивать за ненужные возможности.
Обзор лучших бытовых моделей
Существует несколько основных производителей дозиметров, чья продукция не имеет аналогов на российском рынке. Лучшие рекомендации направлены в адрес компании «Кварта-рад», которая занимается разработкой измерительных приборов радиоактивного фона с начала девяностых годов. Всемирно признанный бренд техники радиоактивного контроля «Radex» создан специалистами Московского инженерно-физического института (МИФИ).
Radex RD1503+
Классическая модель индивидуального портативного дозиметра с интуитивно понятным управлением оснащена газоразрядным счетчиком Гейгера-Мюллера и обрабатывает информацию алгоритмами встроенной программы. Звуковой сигнал информирует о регистрации каждой частицы и усиливается при увеличении ионного излучения.
Radex RD1008
Конструктивная особенность RD1008 в наличии двух газоразрядных счетчиков Гейгера-Мюллера. Такое решение позволило сократить цикл регистрации до 10 секунд, что переводит устройство в класс быстродействующих. По заверениям производителей, дозиметр измеряет уровень ионного излучения окружающей среды, а также степень зараженности пищевых продуктов. Если со своей основной задачей прибор справится на отлично, то замеры пищевых продуктов будут очень приблизительными.
Модель RD1008 – одна из последних разработок, прибор способен отслеживать уровень накопленной дозы по двум объектам одновременно. Два детектора Бета-2-1 и Бета-2М-1 определяют дозу гамма и бета излучений.
Компактный и эргономичный дозиметр беспрерывно работает до 950 часов, информация отображается на широком монохромном дисплее. RD1008 оснащен звуковым и вибрационным сигналом, автоматически перезагружается при резких изменениях мощности дозы радиоактивного фона.
Устройство обойдется пользователям дороже своего аналога RD1530+, но это объясняется его широким функционалом. Полезный прибор прост в использовании, рассчитан на эксплуатацию в различных условиях.
Radex RD1212-ВТ
Модель RD1212-BT одна из самых миниатюрных и функциональных. Первое, что привлекает внимание – встроенный модуль Bluetooth, беспроводная связь дает возможность сохранять показания измерений на любые девайсы, включая GPS-навигатор, смартфоны на базе Android или IOS.
Дополняет опцион встроенный датчик температуры и атмосферного давления, часы, фонарик. Современный дозиметр, адаптированный под все гаджеты, быстро и точно измеряет ионное излучение окружающей среды. Удобный и эргономичный, RD1212-BT с интуитивно понятным управлением насчитывает множество положительных отзывов от пользователей.
Что такое дозиметр
Дозиметр – прибор для измерения кермы фотонного излучения, экспозиционной и поглощенной дозы, эквивалента дозы нейтронного, фотонного излучений, мощности этих величин. Основная задача его использования – определение дозы ионизирующего излучения. Процесс измерения называется дозиметрией. Оборудование такого типа применяется, чтобы оперативно измерять уровень радиации вручную или выступать в качестве предупреждающих индикаторов радиоактивной опасности.
На основе показаний бытового дозиметра оценивается уровень тяжести лучевого поражения, которое было получено человеком во время пребывания в зоне облучения. Индивидуальные приборы регистрируют и сохраняют данные о полученной дозе обучения за продолжительные временные периоды.
Существует множество разновидностей дозиметров, которые различаются конструкционными особенностями, техническими характеристиками, количество измеряемых типов радиации (α, β, γ), нейронное, рентгеновское излучение. Универсальные в использовании приборы имеют сложную конструкцию, высокую стоимость, являются профессиональными. Индивидуальные модели рассчитаны на измерение β, γ-излучения, реже – α. Бытовые устройства имеют небольшой диапазон измеряемых величин.
Из чего состоит дозиметр?
Бытовые модели включают в себя несколько основных конструкционных элементов. Из чего состоит прибор?
Предназначение
Индивидуальные дозиметры – приборы, которые измеряют дозу ионизирующего излучения или ее мощность. Бытовые модели предназначены для измерения эквивалентной дозы или ее мощности, созданной гамма и рентгеновским излучением. Применение устройств такого типа актуально для зон с высоким радиационным фоном или возле объектов высокого риска выбросов радиоактивности в окружающую среду.
Работа любого дозиметра базируется на задействовании детектора ионизирующего излучения. Датчики такого типа могут быть различными:
Вне зависимости от типа детектора, суть функционирования прибора заключается в преобразовании импульса кванта изучения, который передается веществу датчика, в электросигнал и последующего его перерасчета в единицы эквивалентной дозы. Дозиметры, будучи средствами измерений ионизирующих излучений, разделяют на следующие категории:
При использовании бытовых дозиметров, вне зависимости от типа детектора, для точного измерения дозы ионизирующего излучения требуется определенное время.
Как работает радиационный дозиметр: принцип работы
Детектор прибора заполнен аргоном, к нему подано напряжение с двух электродов (в условиях устранения всех возможных скачков напряжения). В процессе прохождения бета-частиц через ионизационную камеру, которая заполнена газом под напряжением, он ионизируется, благодаря чему увеличиваются его токопроводящие характеристики. За счет этого формируется электроразряд, снижающий напряжение на электродах до нулевого уровня.
Затем ионизационная камера мгновенно восстанавливается, напряжение имеет номинальное значение, а детектор готов к обнаружению и приему новых бета-частиц. Скачки регистрируются микропроцессорной платой, которая преобразует их в цифровые показатели. Пользователь в современных устройствах может задать указанный временной промежуток, за который и будут высвечиваться полученные значения измерений.
В процессе регистрации рентгеновских лучей, гамма-излучения принцип работы дозиметра примерно аналогичный. Отличие заключает в том, что формирование электроразряда в детекторе прибора возникает за счет выбивания электронов рентгеновскими или гамма-фотонами из специальной пленки, расположенной на поверхности датчика. Степень эффективной дозы, мощность излучения за определенный временной промежуток регистрируется и устанавливается благодаря последовательному подсчету подобных импульсов (соответственно, каждой частицы, которая проходит через детектор). Полученные сведения обрабатываются электронной схемой и преобразуются в цифровой сигнал, выводимый на дисплей прибора.
Что показывает?
Бытовые автоматические дозиметры могут иметь разные варианты подсчета радиации. Исчисление ведется в следующих показателях:
В современных устройствах чаще применяются сведения, которые зарегистрированы в микрозивертах, микрорентгенах (в зависимости от того, как работает прибор). При измерении радиации нормальное значение радиоактивного фона – около 0,2 мкЗв/ч (20 мкР/ч). Зиверты и рентгены находятся в соотношении 1 мкЗв = 100 мкР.
Виды ионизирующих излучений
Ионизирующее излучение – тип энергии, которая высвобождается атомами в виде электромагнитных частиц, волн. Радиоактивность – спонтанный распад атомов. Излишки энергии, которые возникают при этом – форма ионизирующего излучения. Нестабильные элементы, которые формируются при распаде и испускают ионизирующее излучение – радионуклиды. Выделяются следующие виды ионизирующего излучения:
Каждая разновидность ионизирующего излучения обладает персонализированными показателями проникающей способности и иными характеристиками, оказывающими воздействие на степень воздействия (соответственно, нуждающиеся в различных мерах по обеспечению безопасности здоровья людей).
Сферы применения
Дозиметр и радиометр – приборы, которые по-разному устроены и имеют различные принципы работы. Дозиметр применяется для определения дозы излучения, а радиометр используется для установления уровня активности радионуклида. Измерения могут проводиться в отношении различных веществ, независимо от их физического состояния. Поэтому контроль с помощью дозиметра выполняется над твердыми телами, жидкостями, газами, аэрозолями (независимо от того, какие формы принимает объект исследования)
Приборы имеют широкую область применения – их используют в любых местах и случаях, в которых нужно проконтролировать радиационную ситуацию. А также при наличии подозрений относительно того, что существует опасность радиационного заражения. Дозиметрами пользуются для исследования следующих объектов:
Виды дозиметров по методу измерения
Если говорить кратко и простыми словами, то основной рабочим элементом любого дозиметра является детектор радиации. От его технических характеристик и типа зависит скорость и точность получаемых сведений. При воздействии гамма-, бета-, альфа-излучения в детекторе происходят скачки напряжения, преобразующиеся в цифровые данные. По типу датчика бывают следующие виды дозиметров:
Как пользоваться индивидуальным дозиметром?
Чтобы замерить радиационный фон разных предметов и объектов, необходимо действовать в определенной последовательности. Работа с дозиметром включает в себя следующие этапы:
Своевременная проверка предметов личного пользования, грузов, продуктов питания и других веществ позволяет уберечь человека от невидимой угрозы и ее опасных последствий.
Тема №5: «Приборы радиационной, химической разведки и дозиметрического контроля»
При ликвидации последствий аварий и стихийных бедствий, пожарах в лабораториях и лечебных учреждениях, где используются источники ионизирующих излучений, на АЭС, а также различных предприятиях нефтеперерабатывающей, нефтехимической и химической промышленности, пожарах подвижного состава — возможны выбросы радиоактивных и аварийно-химически опасных веществ (РВ и АХОВ). По прежнему сохраняется опасность террактов с использованием отравляющих веществ, либо так называемых «грязных бомб», где к обычной взрывчатке подмешивается радиоактивное вещество и при подрыве боеприпаса распыляется на большой территории.
Для выявления и оценки степени опасности радиоактивных излучений для населения, войск и невоенизированных формирований гражданской обороны, в целях обеспечения целесообразных действий в различных условиях радиационной и химической обстановки необходимо использовать специальные приборы, получившие общее название приборов радиационной и химической разведки и дозиметрического контроля.
Приборы радиационной и химической разведки и дозиметрического контроля предназначены для обнаружения и измерения радиоактивного излучения, измерения степени зараженности различных объектов. Определяется необходимость и полнота проведения дезактивации и санитарной обработки людей, а также определение пригодности зараженных продуктов и воды к употреблению, измерение доз облучения, определение степени работоспособности и жизнеспособности населения и отдельных лиц в радиационном отношении, обнаружение отравляющих веществ в воздухе, на местности, технике и других объектах.
Приборы радиационной разведки и контроля
Излучение радиоактивных веществ способно ионизировать вещества среды, в которой они распространяются, ионизация в свою очередь является причиной ряда физических и химических изменений в веществах. Эти изменения во многих случаях могут быть сравнительно просто обнаружены и измерены, что и лежит в основе работы приборов радиационной разведки и контроля.
Для обнаружения и измерения радиоактивных излучений используются следующие методы:
В современных приборах обнаружения и измерения радиоактивных излучений наиболее широко используется ионизационный метод. Такие приборы называются дозиметрическими.
Все приборы радиационной разведки можно разделить по назначению:
Индикаторы
ДП-64 – индикатор-сигнализатор для постоянного радиационного наблюдения и оповещения о радиоактивном заражении местности; работает в следящем режиме; обеспечивает световую и звуковую сигнализацию при Р > — 0,2 Р/ч;
СПСС-02 (в комплекте с блоками детектирования ВДМГ-41, ВДМГ-41-01, ВДМГ-4-03) – индикатор-сигнализатор о превышении и снижении рентгеновского, гамма-излучения относительно установленных пороговых значений (от 1,0 мР/ч до 1000 Р/ч);
РМГЗ-01 – сигнализатор радиометрический, носимый, для сигнализации о превышении радиоактивного загрязнения сыпучих материалов по гамма-излучению (диапазон определяемых уровней от 5 мР/ч до 400мР/ч).
Рентгенметры-радиометры
ДП-5В – для измерения уровней гамма-излучения и радиоактивной зараженности поверхностей; обнаруживает зараженность по бета-излучению (0,05 мР/ч – 200 Р/ч) после 1 минуты самопрогрева; обнаруживает бета-излучение; погрешность ±30%
ИМД-5 – измеритель мощности поглощенной дозы (0,05мР/ч – 200 Р/ч) после 1 минуты самопрогрева; обнаруживает бета-излучение; погрешность ±30%
ИМД-1 – измеритель экспозиционной дозы гамма-излучения и обнаружения бета-излучения; диапазон измерений для ИМД-1 (10мР/ч – 999 Р/ч); погрешность ±25%, время измерения 1 минута;
СРП-68-01 – сцинтилляционный геологоразведочный прибор для измерения уровня гамма-излучения в диапазоне 0-3000 мкР/ч; погрешность ±10%;
СРП-88Н – сцинтилляционный геологоразведочный прибор может быть использован как радиометр для контроля внешней среды и ведения разведки. Модификация прибора СРП-88Н-М специально предназначена для радиационного контроля сельскохозяйственных животных. Вывод показаний осуществляется 4-х значным цифровым жидкокристалическим дисплеем и стрелочным прибором. Питание батарейное. Диапазон 0-3000 мкР/ч; погрешность ±2,5%;
ИМД-21 – измеритель мощности экспозиционной дозы гамма-излучения, выдачи светового сигнала о превышении порогового значения; диапазон 1 – 10000 Р/ч.
Дозиметры
ДП-22В (ДП-24) – комплект индивидуальных дозиметров, состоящий из 50(5) прямопоказывающих дозиметров ДКП-50А и зарядного устройства ЗД-5 (ЗД-6), диапазон от 2 до 50 Р;
ДКП-50А – дозиметр прямопоказывающий, обеспечивает измерение индивидуальных экспозиционных доз гамма-излучения в диапазоне от 2 до 50 Р;
ИД-1 – комплект индивидуальных дозиметров для измерения поглощенной дозы гамма- и нейтронных излучений; в состав комплекта входят 10 индикаторных дозиметров ИД-1 (диапазон измерений – 20 – 500 рад).
ИД-11 – комплект индивидуальных дозиметров для индивидуального контроля облучения; 500 индивидуальных измерителей дозы ИД-11, обеспечивающих измерение дозы гамма- и нейтронного излучения от 10 до 1500 рад; измерение сохраняется в течение 12 месяцев, погрешность ± 15% после 14 часов работы.
КДТ-02М комплект дозиметров термолюминесцентных. Предназначен для измерения экспозиционной дозы и индикации радиоактивного излучения. Принцип работы такой же, как и у ИД-11. Диапазон 0,1 – 1000 Р. Погрешность ± 10%
Бытовые дозиметры
Белла – индикатор внешнего гамма-излучения; звуковая сигнализация, цифровое табло; диапазон 20 мкР/ч – 10 мР/ч; вес 350 г.
Мастер-1 – измеряет уровень гамма-излучения; диапазон 10 – 999 мкР/ч; вес прибора 80 г.;
ДКГ-РМ-12-03 – микропроцессорный дозиметр; измеряет мощность эквивалентной дозы (10 мкР/ч – 50 мР/ч), эквивалентную дозу гамма-излучения и время ее накопления.
ИРД-02 – дозиметр-радиометр. Измеряет эффективную дозу γ-излучения, плотность потока β-частиц и α-частиц. Относительно дорог. Измеряемый диапазон мощности эффективной дозы 0,01-20 мкЗв/ч. Погрешность ± 25%; вес прибора 500 г.
Измерители мощности дозы (рентгенметры)
ДП –5А, ДП –5Б, ДП –5В
В системе ГО одним из приборов радиационной разведки является измеритель мощности дозы ДП – 5(А, Б, В) (рис 1.).
Измеритель мощности дозы ДП – 5(А, Б, В) предназначен для измерения уровней гамма – радиации и радиоактивной зараженности различных предметов по гамма – излучению. Мощность экспозиционной дозы гаммы – излучения определяется в миллирентгенах или рентгенах в час (мРч, Р/ч) для той точки пространства, в которой помещен при измерениях зонд прибора. Кроме этого, имеется возможность обнаружения бета – излучения. Диапазон измерения радиометра – рентгенметра от 0,05 м Р/ч до 200 Р/ч.
Зонд прибора герметичен и может быть погружен при необходимости в воду на глубину не более 50 см. Прибор имеет слуховую индикацию на всех поддиапазонах, кроме первого.
Питание осуществляется от трех элементов типа КБ-1, один комплект питания обеспечивает непрерывную работу прибора в течение 40 часов. В укладке имеется переходная колодка для питания от аккумуляторов напряжением 3,6 и 12 В. Масса прибора с элементами питания не более 2,8 кг.
При измерении мощностей доз гамма излучения и суммарного бета – и гамма – излучения в пределах от 0,05 мР/ч до 5000 мР/ч отсчет ведется по верхней шкале (0-5) с последующим умножением на соответствующий коэффициент поддиапазонов, а отсчет величины мощностей доз от 5 до 200 Р/ч по нижней шкале (5 –200). На 2 – 6 поддиапазонах прибор имеет звуковую индикацию с помощью головных телефонов. При обнаружении радиактивного заражения в телефонах прослушиваются щелчки, причем их частота увеличивается с увеличением мощности дозы гамма – излучения. Погрешность измерений не превышает 30% от измеряемой величины. Для повышения чувствительности прибора диапазон разбит на 6 поддиапазонов.
Рис. 1. Измеритель мощности дозы ДП-5Б:
1 — измерительный пульт; 2 — соединительный кабель; 3 — кнопка сброса показаний: 4 — переключатель поддиапазонов; 5 — микроамперметр; 6 — крышка футляра прибора; 7 — таблица допустимых значений заражения объектов; 8 — блок детектирования; 9 — поворотный экран; 10 — контрольный источник; 11 — тумблер подсвета шкалы микроамперметра; 12 — удлинительная штанга; 13 — головные телефоны; 14 – футляр
Таблица 1
Поддиапазоны измерений радиометра – рентгенметра
ДП – 5 (А, Б, В)
Поддиапазоны | Положение ручки переключателя | Шкала | Единицы | Пределы измерений |
1 | 200 | 0 – 200 | Р/ч | 5 – 200 |
2 | х 1000 | 0 – 5 | мР/ч | 500 – 5000 |
3 | х 100 | 0 – 5 | мр/ч | 50 – 500 |
4 | х 10 | 0 – 5 | мр/ч | 5 – 50 |
5 | х 1 | 0 – 5 | мр/ч | 0,5 – 5 |
6 | х 0,1 | 0 – 5 | мр/ч | 0,05 – 0,5 |
Подготовка прибора к работе ДП-5Б
Извлечь измерительный пульт и зонд из футляра, осмотреть их, подключить телефоны, ручку переключателя поддиапазонов поставить в положение «Выкл», а ручку «Реж» (режим) повернуть против часовой стрелки до упора; вывернуть пробку корректора и установить стрелку на нуль.
Вскрыть отсек питания и подсоединить источники питания, закрыть и закрепить винтами крышку.
Включить прибор, для чего поставить переключатель поддиапазонов в положение «Реж», и плавно вращая ручку «Реж» по часовой стрелке, установить стрелку микроамперметра на метку. Если стрелка не доходит до метки, необходимо проверить годность источников питания.
Проверить работоспособность прибора с помощью радиоактивного источника, укрепленного на крышке футляра. Для этого необходимо: открыть радиоактивный источник, повернуть экран зонда в положение «Б», установить окно зонда против радиоактивного источника; подключить телефоны. Затем, переводя последовательно переключатель поддиапазонов в положение «х 1000» «х 10», «х 1», «х 0,1», наблюдать за показаниями прибора и прослушивать щелчки в телефонах. Стрелка микроамперметра в положениях «х 1000» и «х 100» может не отклоняться (из-за недостаточной активности радиоактивного источника), в положении «х 10» отклоняться, а в положении «х 1» и «х 0,1» – зашкаливать. Ручку переключателя поддиапазонов поставить в положение «Реж». Прибор готов к работе.
Измерение уровней радиации
Для измерения уровней радиации на местности зонд держат на вытянутой руке упорами вниз на высоте 0,7 – 1,0 м от поверхности земли. Для определения мощности дозы гамма-излучений (уровня радиации) поставить экран зонда в положение «Г», измерения проводятся последовательно в положениях 200, х 1000, х 100 и далее пока стрелка микроамперметра не отклонится и не остановится в пределах шкалы. Показания прибора умножаются на соответствующий коэффициент поддиапазона (кроме поддиапазона «200»).
Для определения степени заражения кожных покровов людей их одежды, техники, транспорта, продовольствия, воды и т.д. работу проводят на поддиапазонах «х 1000», «х 100», «х 10», «х 1», «х 0,1» снимая показания в миллирентген-часах и умножая на коэффициент, соответствующий положению переключателя поддиапазонов.
Для обнаружения бета-излучения необходимо установить экран зонда в положение «Б», поднести зонд к обследуемой поверхности на удалении 1 — 1,5 см, и последовательно устанавливать ручку переключателя поддиапазонов в положении «х 0,1», «х 1», «х 10» до получения отклонения стрелки микроамперметра, прочитать показания в пределах шкалы (0 – 5). Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с показанием по гамма/излучению (экран зонда в положении «Г») свидетельствует о наличии бета – излучения.
При определении истинной степени зараженности радиоактивными веществами поверхностей – следует учитывать естественный гамма – фон данной местности.
Основные различия в модификациях измерителей мощности дозы типов ДП-5А, ДП-5Б, ДП-5В.
Назначение и принцип действия всех модификаций измерителя мощности дозы (рентгенометра) ДП-5 одни и те же, различие между ними состоит в основном в конструктивном исполнении и частично в электрической схеме. ДП-5А конструктивно отличается от ДП-5В следующим:
Прибор ДП-5Б сходен с ДП-5А, отличаясь от него креплением крышки отсека питания, фиксацией удлинительной штанги к зонду и данными в табличке величин допустимого загрязнения объектов контроля, которые аналогичны прибору ДП-5В. Приборы ДП-5А, ДП-5Б изготовлены из более хрупкого материала, чем ДП-5В и требуют более осторожного обращения.
Комплект индивидуальных дозиметров ДП – 22В (ДП – 24)
Комплект ДП-24 является более поздней модификацией приборов данной серии и отличается от ДП-22В количеством индивидуальных дозиметров ДКП – 50 А (5 и 50 шт.) и зарядным устройством (ЗД-5 и ЗД-6).
Комплект индивидуальных дозиметров ДП-22В (ДП-24) предназначен для измерения индивидуальных доз гамма – излучения с помощью карманных прямопоказывающих дозиметров ДКП-50А. В комплект ДП-22В (ДП-24) входят 50(5) шт. индивидуальных дозиметров ДКП-50А, зарядное устройство ЗД-5 (рис. 2). Дозиметр ДКП – 50А обеспечивает измерение индивидуальных доз гамма – излучения в диапазоне от 2 до 50 Р по шкале встроенной в дозиметр и проградуированной в рентгенах. Погрешность измерений не превышает ± 10 % от измеряемой дозы. Поскольку дозиметр работает на разряд, то возможен и саморазряд измерителя, который не превышает 2 делений за сутки. Заряд дозиметра ДКП – 50А производится от зарядного устройства ЗД-5. Питание ЗД-5 осуществляется от двух источников 1,6 ПМЦ-У-8, которые обеспечивают непрерывную работу прибора в течении 30 часов. Вес комплекта 5,6 кг, вес одного дозиметра 40 г.
В комплекте ДП-22В доза измеряется в рентгенах, а в комплекте ИД-1 – в радах (в диапазоне от 20 до 500).
Рис 2. Сверху дозиметр ДКП-50А, внизу комплект индивидуальных дозиметров ДП-22В
Дозиметр ДКП-50А: а) – общий вид, б) шкала. Комплект индивидуальных дозиметров ДП-22В: 1 – укладочный ящик, 2 – дозиметры ДКП-50А, 3 – зарядное устройство ЗД-5
Порядок зарядки дозиметра ДКП – 50А
Отвинтить защитную оправу дозиметра и поместить его в гнездо зарядного устройства, ручку потенциометра повернуть влево до отказа.
Наблюдая в окуляр, слегка нажать на дозиметр и поворачивать ручку потенциометра до тех пор, пока изображение нити на шкале дозиметра не перейдет на «0», после чего вынуть дозиметр.
Проверить положение нити при дневном свете; при вертикальном положении нити ее изображение должно быть на «0». Завернуть защитную оправу дозиметра и колпачок зарядного гнезда.
В основу принципа работы зарядного устройства ЗД-6 положен принцип создания разности потенциалов за счет вращения ручки рычажного механизма по часовой стрелке и возникновения давления на пьезоэлементы, которые при деформации создают на торцах разность потенциалов, необходимую для зарядки ионизационной камеры дозиметра.
Определение дозы облучения. Дозиметр во время работы в поле действия гамма – излучения носится в кармане одежды.
Периодически наблюдая в окуляр дозиметра, определить по положению нити на шкале величину дозы облучения, полученную во время работы. Отсчет необходимо производить при вертикальном положении изображения нити.
Комплект индивидуальных дозиметров ИД-1
Индивидуальные дозиметры ИД-1 предназначены для измерения поглощенных доз гамма- и нейтронного излучения. Состоит из 10 прямопоказывающих дозиметров ИД-1 ионизационного типа и зарядного устройства. Диапазон измерений доз от 20 до 500 Рад, погрешность ±20%, масса дозиметра 4 г, зарядного устройства 540 г. Масса комплекта около 2кг. При воздействии гамма- и нейтронного излучения напряжение на ионизационной камере падает. Полученную дозу определяют по шкале электроскопа.
Сцинтилляционный радиометр полевой – СРП-68-01
СРП-68-01 позволяет определять мощность дозы излучения от 0 до 3000 мкР/ч. Он имеет 5 поддиапазонов: 0-30; 0-100; 0-300; 0-1000; 0-3000 мкР/ч.
В то же время при переводе переключателя в верхнее положение прибор измеряет активность в беккерелях в диапазоне: 0-100; 0-300; 0-1000; 0-3000; 0-10000 Бк.
Прибор допускает непрерывную работу в течение 8 часов, отклонения показателей не более ±10%.
Рис 3. Прибор СРП-68-01
Подготовка прибора к работе
Пульт и блок детектирования освободить от упаковки. Осмотреть пульт и блок детектирования (БД) и убедиться в отсутствии повреждений и неисправностей.
Перевести выключатель режима работы в положение «Выкл».
Проверить, находится ли стрелка измерительного прибора (ИП) на нуле, в противном случае произвести коррекцию нуля. Для этого: отвернуть заглушку и винтом коррекции нуля установить стрелку на «0».
Отвернуть 4 винта крышки отсека питания, снять крышку, вставить комплект элементов питания (9 элементов типа 343), соблюдая полярность, согласно маркировке на дне кожуха, закрыть отсек питания и затянуть винты. Внимание: Нарушение полярности подключения элементов питания может привести к выходу из строя прибора!
Подготовка к измерениям
Исходное положение переключателя в нижнем положении поддиапазонов измерения в положении «30» мкР/ч, переключатель режима работы в положение «Выкл».
Включить прибор, для чего переключатель режима работы установить в положение «БАТ». По показанию стрелочки прибора определяем напряжение элементов питания, которое должно быть в пределах от 6,5 до 15 В (предел измерения 15 В). Если напряжение меньше 6,5 В, то необходимо заменить элементы питания. Измерения производить после прогрева прибора через 1 минуту.
Перевести переключатель режима работы в положение «5». При этом показания прибора будут соответствовать мощности экспозиционной дозы или потоку гамма излучения в месте расположения блок детектирования (БД) в зависимости от положения переключателя поддиапазонов.
Снять крышку контрольного источника. Поднести к контрольному источнику, предварительно сняв резиновый колпачок с блока детектирования. С помощью переключателя поддиапазонов пределов измерений установить поддиапазон соответствующий максимальному значению активности контрольного источника в пределах шкалы отклонения стрелки измерительного прибора и через 10 секунд зафиксировать показания прибора от контрольного источника.
В соответствии с п.3 зафиксировать показания от контрольного источника и переведя переключатель рода работы в положение «контр», вновь через 10 сек, зафиксировать показания. При этом показания прибора не должны изменяться более чем на ±10%, относительно показания контрольного источника.
Производство замеров: Р ист= 540мкР/ч 540 – 520 = 20 мкР/ч Р контр= 520 мкР/ч Расчет погрешности: 540 — 100% 20 — х 20 х 100 Х = 540 = 3,7% |
Погрешность прибора 3,7%. Замеры производить можно. После проведения измерений контрольный источник закрыть.
Примечание: При изучении работы прибора необходимо произвести замеры, определить погрешность прибора и дать заключение о возможности измерений.
Установить порог срабатывания сигнализации порогового значения контролируемой величины, для чего:
Вращая ручку «УРОВ» добиться срабатывания звуковой сигнализации. Не изменяя положения ручки «УРОВ», звуковой сигнал будет срабатывать при достижении стрелкой значений, превышающих заданный уровень.
Для отключения звуковой сигнализации ручку «УРОВ» необходимо перевести в крайнее правое положение.
Производство измерений
Определение фонового излучения в аудитории:
Переключатель рода работы установить в положение «БАТ» и прогреть прибор в течение 1 минуты.
После прогрева переключатель рода работ установить в положение «5».
Переключатель поддиапазонов измерений установить на поддиапазон I (0 – 30 мкР/ч).
Снять пять показаний прибора, и вычислить фоновое облучение за год в аудитории.
Пример: Рф1= 12 мкР/ч; Рф2= 13 мкР/ч, Рф3= 12,5 мкР/ч, Рф4= 13,5 мкР/ч; Рф5= 14,5 мкР/ч Среднее значение экспозиционной мощности дозы излучения в аудитории будет: Рф1+ Рф2+ Рф3+ Рф4+ Рф5 12+13+12,5+13,5+14,5 Рфср. = 5 = 5 = 13 мкР/ч Фоновое облучение за год в аудитории составит: Дф= Рср.ф х 24 х 365 = 13 х 24 х 365 = 112880 мкР Дф ср= 112880 мкР или Дф ср= 113мР. |
Примечание: по пункту 4 производится снятие показаний, расчет среднего уровня радиации и фонового облучения за год.
Определение радиоактивности пищевых продуктов
Пример: Определить радиоактивность молока прибором СРП-68-01
На щуп прибора надевают полиэтиленовый мешочек и опускают его в 1-литровую банку: определяют фоновую мощность дозы в мкР/ч. Затем туда наливают 700 мл молока, помещают в него защищенный щуп прибора и снимают показания 2-3 раза. Для расчета берут среднюю величину.
Расчет: А= (Робразец – Рфон) К, где: Робразца – мощность экспозиционной дозы исследуемого образца в мкР/ч Рфон – фоновая мощность дозы в мкР/ч К = 3 х 10‾ 8 — коэффициент для пересчета активности от мкР/ч в единицы Кюри. А = (Робразца — Рфон) К = (20 мкР/ч – 16 мкР/ч) х 3 х 10‾ 8 = 12 х 10‾ 8 = = 1,2 х 10‾ 7 Кu/кг (л). |
Таблица 2
Временные допустимые уровни содержания РВ в продуктах питания, питьевой воде (суммарная β-активность).
Наименование продукта | Допустимое содержание радиоактивных веществ | |
Кu/кг, Кu/л | Бк/кг, Бк/л | |
Вода питьевая, молоко, зерно, крупа, зерно-продукты, хлеб, хлебопродукты | 1 х 10 ‾8 | 370 |
Сахар | 5 х 10 ‾8 | 1850 |
Сухое молоко, творог, сметана, мясопродукты, птица, рыба, овощи, зелень, картофель, фрукты, соки. | 1 х 10 ‾7 | 3700 |
Сыр, масло сливочное, жиры, маргарин | 2 х 10 ‾7 | 7400 |
Грибы | 5 х 10 ‾7 | 18500 |
По таблице 2 допустимое содержание РВ в молоке равно 1 х 10 ‾8 Кu/л. Следовательно, употреблять молоко в пищу нельзя, оно подлежит промышленной переработке или дезактивации.
Для определения радиоактивности прибором СРП-68-01 в литровую стеклянную банку помещают следующее количество продукта: молоко, творог, мытые овощи, фрукты, ягоды, крупа – 0,7 кг, измельченные мясопродукты – 0,6 кг, яйца битые –10 шт.
Основные приборы химической разведки и контроля
Основными приборами химической разведки и химического контроля по отравляющим веществам (ОВ) являются ВПХР (войсковой прибор химической разведки), ППХР (полуавтоматический прибор химической разведки) и ПГО-11 (полуавтоматический газоопределитель).
Обнаружение отравляющих веществ (ОВ) в воздухе, в других объектах окружающей среды на местности, защитной и обычной одежде, транспорте и т.д. производится с помощью приборов химической разведки, газоанализаторов, индикаторных пленок или путем взятия проб с последующим анализом их в химических лабораториях.
Обнаружение и количественное определение ОВ в полевых условиях (т.е. непосредственно на местности) осуществляется химическим методом, основанным на способности отравляющих веществ при взаимодействии с другими химическими веществами (реактивами) давать цветные химические реакции. Появление определенной окраски свидетельствует о наличии отравляющего вещества в обследуемом объекте. Количественное определение можно осуществить при сравнении полученной окраски со специальной цветной шкалой – эталоном. Для удобства пользования реактивы, применяемые в приборах химической разведки, помещаются в индикаторные трубки (ИТ). На каждый тип ОВ имеется определенная индикаторная трубка.
Для увеличения площади взаимодействия реактива с ОВ в индикаторную трубку помещается силикагель (наполнитель). Нестойкий реактив помещают в ампулу, которая разбивается специальным штырем непосредственно перед исследованием. Трубка содержащая ампулы и силикагель, запаивается с двух сторон и помещается в специальную кассету. Индикаторные трубки имеют маркировку в виде цветных колец.
В качестве приборов химической разведки могут использоваться:
Войсковой прибор химической разведки ВПХР
На снабжении формирований ГО, состоит войсковой прибор химической разведки – ВПХР.
ВПХР предназначен для обнаружения ОВ в воздухе, на местности и технике. Он состоит из корпуса с крышкой и ремней для переноски. В корпусе размещаются ручной насос, насадка к насосу, три бумажные кассеты с индикаторными трубками (рис. 4), противодымные фильтры, защитные колпачки, электрический фонарь, химическая грелка и патроны к ней, техническая документация. Снаружи корпуса крепится лопатка для отбора проб. Вес прибора 2,3 кг.
Принцип работы ВПХР заключается в следующем: при прокачивании через индикаторные трубки (ИТ) анализируемого воздуха в случае наличия ОВ происходит изменение окраски наполнителя трубок, по которому приблизительно определяют концентрацию ОВ.
На ИТ нанесена условная маркировка, показывающая для обнаружения какого ОВ они предназначены: красное кольцо и красная точка – для определения зарина, зомана и Vx; три зеленых кольца – для определения фосгена, дифосгена, синильной кислоты и хлорциана; одно желтое кольцо – для определения иприта. ИТ помещены в кассеты, на каждой кассете имеются краткие указания по пользованию трубкой и шкала цветности для количественного определения ОВ.
Ручной – насос предназначен для прокачивания воздуха через ИТ.
Насадка к насосу предназначена для работы с приборами в дыму, при определении ОВ на почве, технике и в сыпучих материалах.
Противодымные фильтры используются для определения ОВ в дыму или в воздухе содержащем пары веществ кислого характера, а также при определении ОВ в почве или сыпучих материалах.
Защитные колпачки для предохранения насадки от заражения ОВ изготовляются из полиэтилена и имеют отверстия для прохождения воздуха. Грелка служит для подогрева ИТ при пониженной температуре воздуха.
Определение в воздухе Vх – газов, зарина, зомана:
Определение в воздухе фосгена, хлорциана, синильной кислоты:
Определение в воздухе отравляющих веществ типа иприт:
Порядок подогрева индикаторных трубок при низких температурах.
в) определить наличие ОВ по описанному выше способу.
Определение ОВ на местности, технике, одежде и СИЗ.