для чего предназначен передаточный механизм
ПЕРЕДАТОЧНЫЙ МЕХАНИЗМ
служит для передачи движения от одной машины к другой или между ее рабочими частями. В первом случае наиболее часто встречается передача при помощи ремня от трактора к молотилке или силосорезке и от молотилки к соломоподъемнику и т. д. Реже встречается канатная передача, напр. в простейших конных приводах. Ременный П. м. широко распространен в сложных машинах: молотилках, сортировках. П. м. с зубчатыми колесами встречается почти во всех машинах: тракторах, косилках, комбайнах, соломорезках и т. д., где надо передать вращательное движение между валами, находящимися на близком расстоянии друг от друга. При значительном расстоянии между валами ставится цепной П. м.-в комбайнах, сноповязалках и т. д. П. м. требуют внимательного ухода и смазки. Всякий П. м. поглощает часть передаваемой мощности; потери происходят от скольжения ремня, жесткости каната или цепи, трения в зубцах и подшипниках и т. д. В самом тракторе П. м. состоит из целого ряда шестерен. П. м. у трактора передает мощность мотора на ходовую часть, шкив и силоотъемник.
Смотреть что такое «ПЕРЕДАТОЧНЫЙ МЕХАНИЗМ» в других словарях:
передаточный механизм — передаточный механизм; передача Механизм для воспроизведения заданной функциональной зависимости между перемещениями звеньев, образующих кинематические пары со стойкой … Политехнический терминологический толковый словарь
передаточный механизм — передача Механизм для воспроизведения заданной функциональной зависимости между перемещениями звеньев, образующих кинематические пары со стойкой. [Сборник рекомендуемых терминов. Выпуск 99. Теория механизмов и машин. Академия наук СССР. Комитет… … Справочник технического переводчика
ПЕРЕДАТОЧНЫЙ МЕХАНИЗМ — (transmission mechanism) Способы, с помощью которых изменения в доходе, ценах, процентных ставках и т.д. распространяются между секторами, регионами или странами. Это включает работу рынка капиталов и рынка товаров и отношения между ними. Бум в… … Экономический словарь
передаточный механизм — function generating mechanism Механизм, воспроизводящий требуемую функциональную зависимость меаду перемещениями входных и выходных звеньев. Шифр IFToMM: 1.3.21 Раздел: СТРУКТУРА МЕХАНИЗМОВ … Теория механизмов и машин
Передаточный механизм — TRANSMISSION MECHANISM Процесс достижения поставленной цели (например определенного уровня инфляции) с помощью инструментов государственной экономической политики (например регулирования процентной ставки). Процесс взаимодействия между целями и… … Словарь-справочник по экономике
передаточный механизм лебёдки — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN winch driving gear … Справочник технического переводчика
Передаточный механизм кейнсианской денежно- кредитной политики — играющая важную роль кейнсианская теория о том, как изменения денежной массы влияют на другие переменные в экономике. Постоянное увеличение номинальной денежной массы снижает номинальную процентную ставку вследствие эффекта ликвидности. Это… … Современные деньги и банковское дело: глоссарий
ПЕРЕДАТОЧНЫЙ — [шн], передаточная, передаточное (спец.). 1. прил. к передача; служащий для передачи, передающий что нибудь куда нибудь или кому нибудь. Передаточный пункт. Передаточная надпись на векселе. Передаточный механизм. Передаточный вал. Передаточные… … Толковый словарь Ушакова
МЕХАНИЗМ — 1. МЕХАНИЗМ1, механизма, муж. (от греч. mechane машина). 1. Внутреннее устройство машины или прибора, приводящее машину, прибор в действие (тех.). Механизм часов. Передаточный механизм. Заводной механизм. Механизм машины в порядке. 2. перен.… … Толковый словарь Ушакова
МЕХАНИЗМ — 1. МЕХАНИЗМ1, механизма, муж. (от греч. mechane машина). 1. Внутреннее устройство машины или прибора, приводящее машину, прибор в действие (тех.). Механизм часов. Передаточный механизм. Заводной механизм. Механизм машины в порядке. 2. перен.… … Толковый словарь Ушакова
Технология. 6 класс
Конспект урока
Технология, 6 класс
Урок 10. Механическая трансмиссия в технических системах
Перечень вопросов, рассматриваемых на уроке
Передаточный механизм (трансмиссия) – это устройство, позволяющее изменять скорость вращения валов, шкивов, деталей, устройств, направление вращения, устанавливать наиболее удобное расположение вращающихся валов, деталей и узлов механизмов.
Передаточное отношение – это отношение числа зубьев на колесе ведомого вала к числу зубьев ведущего колеса вала.
Редуктор – это устройство, способное обеспечивать необходимую частоту вращения ведомого вала.
Основная и дополнительная литература по теме урока
Теоретический материал для самостоятельного изучения
Для работы сложных технических устройств требуется передать механическую энергию от двигателя к какому-либо рабочему органу. Для этого инженеры используют специальное устройство, называемое трансмиссией. Сам термин «трансмиссия» произошёл от латинского слова transmission, которое означает «передача», «переход. По способу передачи энергии от мотора к рабочему органу трансмиссии делятся на механические, электрические, гидравлические и пневматические. На этом уроке вы узнаете о механической трансмиссии.
В технических системах для изменения скорости и направления движения некоторых рабочих органов используется трансмиссия. Кроме изменения направления движения и скорости трансмиссия позволяет управлять формой движения и величиной передаваемого на рабочей орган усилия. Механическая трансмиссия является передаточным механизмом. Если устройство передаёт движение, то оно называется ведущим, а если принимает, то приёмным.
Движение передается от одного органа системы к другом в результате сцепления движущихся деталей. Передачи могут разных видов: фрикционные, зубчатые, цепные и ременно – зубчатые. Последние три передачи могут передавать на рабочий орган устройства больше усилия, чем фрикционные передачи. Для обеспечение необходимой частоты вращения ведомого вала применяют редукторы (например, в механических часах).
Примеры и разбор решения заданий тренировочного модуля
Задание 1. Каким типом устройств может осуществляться передача энергии от мотора к рабочему органу в технических системах? Выберите несколько вариантов ответа.
Правильный вариант ответа:
Задание 2. Заполните пропуски в тексте, выбрав правильные варианты ответа из выпадающего меню.
Механизм (сцепления/трансмиссии) в автомобиле предназначен для кратковременного отсоединения (сцепления/трансмиссии) (коробки передач) от двигателя при передаче механической энергии.
Механизм сцепления в автомобиле предназначен для кратковременного отсоединения трансмиссии (коробки передач) от двигателя при передаче механической энергии.
Виды механизмов передачи движения
Передачей называют техническое приспособление для передачи того или иного вида движения от одной части механизма к другой. Передача происходит от источника энергии к месту ее потребления или преобразования. Первые передаточные механизмы были разработаны в античном мире и использовались в системах орошения Древнего Египта, Междуречья и Китая. Средневековые механики значительно усовершенствовали устройства, передающие движение, и разработали множество новых видов, используя и в прялках и гончарном деле. Подлинный же расцвет начался в Новое время, с внедрением технологий производства и точной обработки стальных сплавов.
Виды передачи движения
В различных станках, бытовых приборах, транспортных средствах и других механизмах используют разнообразные виды передач.
Обычно различают следующие виды передачи:
Самым широко применяемым типом механических передач являются вращательные.
Особенности зубчатого механизма
Такие механизмы предназначены для того, чтобы передавать вращение от одного зубчатого колеса к другому, используя зацепление зубцов. У них относительно малые потери на трение по сравнению с фрикционами, поскольку плотный прижим колесной пары друг к другу не нужен.
Пара шестерен преобразует скорость вращения вала обратно пропорционально соотношению числа зубцов. Это соотношение называют передаточным числом. Так, колесо с пятью зубьями будет вращаться в 4 раза быстрее, чем состоящее с ним в зацеплении 20-зубое колесо. Крутящий момент в такой паре уменьшится также в 4 раза. Это свойство используют для создания редукторов, понижающих скорость вращения с возрастанием крутящего момента (или наоборот).
Если необходимо получить большое передаточное число, то одной пары шестерен может быть недостаточно: редуктор получится очень больших размеров. Тогда применяют несколько последовательных пар шестерен, каждую с относительно небольшим передаточным числом. Характерным примером такого вида является автомобильная коробка передач или механические часы.
Зубчатый механизм способен также изменять направление вращения приводного вала. Если оси лежат в одной плоскости — применяют конические шестерни, если в разных- то передачу червячного или планетарного вида.
Планетарный зубчатый механизм
Для реализации движение с определенным периодом на одной из шестерен оставляют один (или несколько) зубец. Тогда вторичный вал будет перемещаться на заданный угол только каждый полный оборот ведущего вала.
Если развернуть одну из шестерен на плоскость – получится зубчатая рейка. Такая пара может преобразовывать вращательное движение в прямолинейное.
Параметры зубчатой передачи
Для того чтобы шестерни входили в зацепление и эффективно передавали движение, необходимо, чтобы зубья точно совпадали между собой по профилю. Регламентированы основные параметры, используемые при расчете:
Параметры зубчатого движения
Важными параметрами также являются высота головки и основания зуба, диаметр окружности выступов, угол контура и другие.
Преимущества
Передачи зубчатого вида обладают рядом очевидных достоинств. Это:
Классификация зубчатых передач
Недостатки
Зубчатым механизмам свойственны и определенные минусы:
При выборе вида передачи конструктор сопоставляет преимущества и недостатки для каждого конкретного случая.
Механические передачи
Механические передачи служит для того, чтобы передать вращение от ведущего вала к ведомому, от места генерации механической энергии (обычно — двигатель того или иного типа) к месту ее потребления или преобразования.
Как правило, двигатели вращают свой вал с ограниченным пределом изменения числа оборотов и крутящего момента. Потребителям же требуются более широкие диапазоны.
По методу передачи механической энергии среди передач различают следующие виды:
Виды механических передач
Зубчатые передающие механизмы, в свою очередь, подразделяются на такие виды, как:
По соотношению скорости вращения ведущего и ведомого валов различают редукторы (снижающие обороты) и мультипликаторы (увеличивающие обороты). Современная механическая коробка передач для автомобиля объединяет в себе оба вида, являясь одновременно и редуктором, и мультипликатором.
Функции механических передач
Главная функция механических передач — это предать кинетическую энергию от ее источника к потребителям, рабочим органам. Помимо главной, передаточные механизмы выполняют и дополнительные функции:
Механические передачи выполняют и другие вспомогательные функции.
Классификация механических передач
Машиностроителями принято несколько классификаций в зависимости от классифицирующего фактора.
По принципу действия различают следующие виды механических передач:
По направлению изменения числа оборотов выделяют редукторы (снижение) и мультипликаторы (повышение). Каждый из них соответственно изменяет и крутящий момент (в обратную сторону).
По числу потребителей передаваемой энергии вращения вид может быть:
Классификация механических передач
По числу этапов преобразования – одноступенчатые и многоступенчатые.
По признаку преобразования видов движения выделяют такие типы механических передач, как
Для обеспечения движения по сложным заданным траекториям используют системы рычагов, кулачков и клапанов.
Основные показатели для выбора механических передач
Выбор типа передачи — сложная конструкторская задача. Нужно подобрать вид и спроектировать механизм, наиболее полно удовлетворяющий техническим требованиям, сформулированным для данного узла.
При выборе конструктор сопоставляет следующие основные факторы:
При высоких передаваемых мощностях обычно выбирают многопоточный зубчатый вид. При необходимости регулировки числа оборотов в широком диапазоне разумно будет выбрать клиноременной вариатор. Конечное решение остается за конструктором.
Цилиндрические передачи
Механизмы такого вида выполняют с внутренним или с внешним зацеплением. Если зубья расположены под углом к продольной оси, шестерню называют косозубой. По мере увеличения угла наклона зубцов прочность пары повышается. Зацепление косозубого вида также отличается лучшей износостойкостью, плавностью хода и низким уровнем шума и вибраций.
Недостатком этого типа является возникновение паразитной силы, действующей вдоль оси колеса. Это создает лишнюю нагрузку на опорные подшипники.
Коническая передача
Если необходимо изменить направление вращения, а оси валов лежат в одной плоскости, применяют конический тип передачи. Наиболее распространенный угол изменения – 90°.
Такой тип механизма более сложен в изготовлении и монтаже и, также как и косозубый, требует укрепления опорных конструкций.
Конический механизм может передать до 80% мощности по сравнению с цилиндрическим.
Реечная и ременная зубчатая передача
Реечная передача преобразует вращательное движение в поступательное. Одно из зубчатых колес пары как бы развернуто в линию и представляет собой зубчатую рейку. Такой способ используется в рулевом управлений автомобиля, в других исполнительных механизмах.
Ременная передача была изобретена в доисторические времена и с тех пор заметно видоизменилась и усовершенствовалась.
Она состоит из двух закрепленных на входном и выходном валу колес-шкивов, охваченных кольцевым приводным ремнем. Вращение передается за счет сил трения, возникающих на шкивах.
Плоские и круглые ремни используются при небольших нагрузках. Широкое распространение получил ремень в форме клина, шкив при этом выполняется со щечками, и зацепление осуществляется одной нижней и двумя боковыми поверхностями ремня.
Ремни также снабжаются зубчатыми фрагментами. Поликлиновые передачи широко применяются в современных автомобильных и мотоциклетных вариаторах. Они позволяют передавать значительный крутящий момент и плавно регулировать скорость вращения ведомого вала.
Достоинства и недостатки ременных передач
Чтобы обеспечить тяговую способность, ремень приходится подвергать большому предварительному натяжению. Это ускоряет износ подшипников и валов шкивов.
Применение
Из всех типов передач наиболее широко применяются зубчатые. Практически любой механизм, бытовой прибор, станок, механические часы, транспортное средство включает в себя зубчатые пары.
В последнее время, с прогрессом электротехники, разработкой новых материалов и отходом двигателей внутреннего сгорания на второй план, использование зубчатых механизмов приобрело тенденцию к сокращению.
Все чаще вместо редуктора используют электронную схему регулировки момента и числа оборотов электродвигателя. В электромобиле из нескольких тысяч движущихся частей, 30% из которых составляли разного вида шестерни, осталось несколько сотен.
Тяговые электродвигатели размещены непосредственно в колесе, необходимость в сложной трансмиссии отпадает.
Похожие тенденции намечаются и в бытовой технике.
Свои позиции зубчатые редукторы и трансмиссии сохраняют там, где требуется передача очень больших мощностей и крутящих моментов. Это промышленные установки, горная техника, некоторые виды транспортных систем.
Обслуживание
Своевременное обслуживание любой техники в соответствии с рекомендациями ее производителя обеспечит ее нормальное функционирование, паспортную производительность и выработку планового ресурса.
Обслуживание разбивается на несколько видов
При условии проведения текущего обслуживания и планово-предупредительных ремонтов в соответствии с графиками удается значительно снизить риски выхода оборудования из строя.
Диагностика проводится с заданной периодичностью и призвана выявить негативные изменения в работе оборудования на ранней стадии и минимизировать потери времени и средств на внеплановые ремонты.
Обслуживание зубчатых передач заключается в их своевременной смазке.
Для ременных необходимо периодическое восстановление силы натяжения ремня.
Диагностика проводится как методом визуального осмотра, таки измерением температуры, уровня шума и вибрации, ультразвуковым и рентгеновским просвечиванием механизма без его разборки.
Обслуживание зубчатого механизма
Стандарты
Основные параметры различных видов передач нормируются соответствующими ГОСТами:
Дополнительные параметры, методы расчета и особенности эксплуатации описаны в других государственных стандартах.
Передачи вращательного движения
Механическая энергия, используемая для приведения в движение машины-орудия, представляет собой энергию вращательного движения вала двигателя. Вращательное движение получило наибольшее распространение в механизмах и машинах, так как обладает следующими достоинствами : обеспечивает непрерывное и равномерное движение при небольших потерях на трение; позволяет иметь простую и компактную конструкцию передаточного механизма.
Все современные двигатели для уменьшения габаритов и стоимости выполняют быстроходными с весьма узким диапазоном изменения угловых скоростей. Непосредственно быстроходный вал двигателя соединяют с валом машины редко (вентиляторы и т. п.). В абсолютном большинстве случаев режим работы машины-орудия не совпадает с режимом работы двигателя, поэтому передача механической энергии от двигателя к рабочему органу машины осуществляется с помощью различных передач.
Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.
В современном машиностроении в зависимости от вида передаваемой энергии применяют механические, пневматические, гидравлические и электрические передачи. В курсе «Детали машин» рассматривают только наиболее распространенные механические передачи.
Механическими передачами, или просто передачами, называют механизмы для передачи энергии от машины-двигателя к машине-орудию, как правило, с преобразованием скоростей, моментов, а иногда — с преобразованием видов (например, вращательное в поступательное) и законов движения.
Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение. Грамотная эксплуатация механических передач требует знания основ и особенностей их проектирования и методов расчетов.
При проектировании к механическим передачам предъявляются следующие требования:
— высокие нагрузочные способности при ограниченных габаритных размерах, весе, стоимости;
— постоянство передаточного отношения или закона его изменения;
— обеспечение определенного взаимного расположения осей ведущего и ведомого валов, в частности, межосевого расстояния a w ;
— малые потери при передаче мощности (высокий кпд) и, как следствие, ограниченный нагрев и износ;
— плавная и бесшумная работа;
— прочность, долговечность, надёжность.
Передачи имеют широкое распространение в машиностроении по следующим причинам:
1) энергию целесообразно передавать при больших частотах вращения;
2) требуемые скорости движения рабочих органов машин, как правило, не совпадают с оптимальными скоростями двигателя; обычно ниже, а создание тихоходных двигателей вызывает увеличение габаритов и стоимости;
3) скорость исполнительного органа в процессе работы машины-орудия необходимо изменять (например, у автомобиля, грузоподъемного крана, токарного станка), а скорость машины-двигателя чаще постоянна (например, у электродвигателей);
4) нередко от одного двигателя необходимо приводить в движение несколько механизмов с различными скоростями;
5) в отдельные периоды работы исполнительному органу машины требуется передать вращающие моменты, превышающие моменты на валу машины-двигателя, а это возможно выполнить за счет уменьшения угловой скорости вала машины-орудия;
6) двигатели обычно выполняют для равномерного вращательного движения, а в машинах часто оказывается необходимым поступательное движение с определенным законом;
7) двигатели не всегда могут быть непосредственно соединены с исполнительными механизмами из-за габаритов машины, условий техники безопасности и удобства обслуживания;
8) распределять работу двигателя между несколькими исполнительными органами машины.
Как правило, угловые скорости валов большинства используемых в настоящее время в технике двигателей (поршневых двигателей внутреннего сгорания, газотурбинных, электрических, гидравлических и пневматических двигателей) значительно превышают угловые скорости валов исполнительных или рабочих органов машин, порой на 2-3 порядка. Поэтому доставка (передача) энергии двигателя с помощью передачи любого типа, в том числе и механической, происходит, как правило, совместно с одновременным преобразованием моментов и угловых скоростей (в сторону повышения первых и понижения последних).
При этом необходимо отметить, что конструктивное обеспечение функции транспортного характера – чисто передачи энергии иной раз вступает в логическое противоречие с направлением задачи конечного преобразования силовых и скоростных параметров этой энергии. Например, в трансмиссиях многих транспортных машин (особенно высокой проходимости) входной редуктор сначала повышает частоту вращения, понижение ее до требуемых пределов производят бортовые или колесные редукторы.
Этот прием позволяет снизить габаритно-весовые показатели промежуточных элементов трансмиссии (коробок перемены передач, карданных валов) – размеры валов и шестерен пропорциональны величине передаваемого крутящего момента в степени 1/3.
Аналогичный принцип используется при передаче электроэнергии – повышение напряжения перед ЛЭП позволяет значительно снизить тепловые потери, определяемые в основном силой тока в проводах, а заодно уменьшить сечение этих проводов.
Иногда передача механической энергии двигателя сопровождается также преобразованием вида движения (например, поступательного движения во вращательное или наоборот) или законов движения (например, равномерного движения в неравномерное).
Широко известными образцами таких передач являются кривошипно-шатунный механизм и кулачковый привод механизма газораспределения.
Классификация механических передач
Механические передачи, применяемые в машиностроении, классифицируют (рис.1 и 2):
по энергетической характеристике механические передачи делятся на:
— кинематические (передаваемая мощность Р
— силовые (передаваемая мощность Р ≥0,1 кВт).
по принципу передачи движения:
Фрикционные передачи подразделяют на:
— фрикционные передачи с жесткими звеньями (с различного рода катками, дисками);
— фрикционные передачи с гибким звеном (ременные, канатные).
Передачи зацеплением делятся на:
— передачи зацеплением с непосредственным контактом жестких звеньев (цилиндрические, конические, червячные);
— волновые передачи зацеплением;
— передачи зацеплением с гибким звеном (зубчато-ременные, цепные).
Как фрикционные, так и зубчатые передачи могут быть выполнены с непосредственным контактом ведущего и ведомого звеньев или посредством гибкой связи – ремня, цепи.