для чего применяется хроматография
Хроматографические методы анализа
Хроматография применяется для анализа сложных многокомпонентных смесей. Хроматографические методы определяют качественный и количественный состав органических веществ, включая летучие углеводороды и биологические жидкости. Фармацевтика, медицина, нефтеперерабатывающий комплекс, химическое производство и другие промышленные отрасли используют хроматографы для контроля качества сырья и готовой продукции, а также обеспечивают с их помощью соблюдение норм экологической безопасности.
Широкое распространение хроматографических методов анализа обусловлено их разнообразием и спецификой, которые раскрываются в данной статье:
Общие сведения о хроматографии
Хроматографические методы анализа основаны на цикличных актах сорбции‑десорбции, происходящих между подвижной фазой (элюентом) с растворенной пробой и неподвижным сорбентом. Компоненты сложных смесей имеют различную сорбируемость, и проходя вдоль неподвижной фазы, поглощаются с неодинаковой скоростью и в разном количестве. Последующее изучение результатов и их сравнение с эталоном позволяет установить точный состав реактива.
В традиционном методе в качестве неподвижной фазы используется материал с развитой поверхностью, а элюентом выступает поток инертного газа или жидкости. Фильтрация элюента через слой сорбента запускает многократное повторение сорбции и десорбции, что и отличает хроматографические методы анализа от других аналитических методик и обуславливает их эффективность.
Качественный и количественный анализ
Хроматографические методы анализа устанавливают качественный и количественный состав вещества. При качественных испытаниях пробу идентифицируют по ее хроматограмме, сравнивая полученные параметры с эталонными значениями, хранящимися в библиотеке данных.
Количественный метод анализа строится на измерении пиков, формирующихся в зависимости от концентрации примесей. Лаборант изучает хроматограмму одним из следующих методов:
Методы постоянно дорабатываются и совершенствуются, что позволяет получать более точные данные при анализе сложных смесей и нивелировать шумы на хроматограммах.
История возникновения метода
Впервые хроматография была описана русским ученым Михаилом Цветом, изучавшим строение хлорофилла. Ботаник предположил, что зеленый пигмент состоит из нескольких отдельных компонентов и нуждался в методе, который позволил бы разделить вещество на составляющие. Для этого он пропустил экстракт хлорофилла через стеклянную колонку, заполненную толченым мелом. Промыв сорбент эфиром, ученый получил несколько зон разного цвета, что позволило подтвердить многокомпонентный состав пробы. Разработанный метод был назван хроматографией.
Цвет описывал принцип хроматографии следующим образом: вещество в подвижной фазе постоянно реагирует с новыми участками адсорбента и частично впитывается, но при этом адсорбированные компоненты «вымываются» свежими порциями поступающего элюента. То есть, ученый открыл только один метод взаимодействия разделяемых компонентов: молекулярную адсорбцию.
Из‑за этого ботаник ошибочно предположил, что основным условием для осуществления хроматографического анализа является разница в адсорбируемости отдельных компонентов. Однако в современной хроматографии помимо молекулярной адсорбции для изучения сложных смесей используются и другие физико‑химические явления. В результате появилось множество хроматографических методов, и для их разграничения была разработана общепринятая классификация.
Классификация хроматографических методов анализа
Хроматографические методы разделяются на несколько групп в зависимости от сравниваемых параметров. По агрегатному состоянию фаз хроматографические методы анализа делятся на:
Вторая классификация касается конструкции хроматографического оборудования. В большинстве методов применяется колоночный хроматограф: адсорбция осуществляется в колонках, заполненных неподвижной фазой. Но иногда используется плоскостная хроматография, в которой используется тонкий срез сорбента или специальная бумага. Также в последнее время получили распространение капиллярный хроматографический метод, при котором разделение происходит в пленке жидкости, и хроматография в полях, требующая для проведения анализа создания дополнительных магнитных, центробежных или иных сил.
Хроматографические методы анализа отличаются особенностями взаимодействия элюента и адсорбента. По механизмам разделения хроматография делится на:
Следующая классификация разделяет хроматографические метода анализа на три группы по способам перемещения поглощаемых компонентов вдоль адсорбционного слоя. Выделяют проявительный (или элюентный), фронтальный и вытеснительный методы. Рассмотрим их подробнее.
Методы перемещения пробы в неподвижной фазе
К наиболее простым хроматографическим методам анализа относится фронтальный, при котором роль элюента сведена к минимуму. Предположим, что проба представляет собой растворитель Solv, в котором содержатся два компонента: A и B. Анализируемое вещество непрерывным потоком пропускается через сорбционную колонку. После прохождения через хроматографическое оборудование, измеряется концентрация A и B в выходном растворе и учитывается изначальный объем Solv. На основании полученных данных строится график зависимости, который и является выходной кривой (хроматограммой).
Из‑за поглощения неподвижной фазой компонентов A и B, из колонки сначала будет поступать растворитель, затем вещество с меньшим коэффициентом сорбции (допустим, A), и только потом B. В результате спустя некоторое время из хроматографического оборудования будет поступать раствор с неизменным составом (одинаковой пропорцией Solv, A и B). Данный хроматографический метод анализа применяется не только для изучения сложных веществ, но и для их очистки от примесей, при условии, что они поглощаются лучше, чем основные элементы реагента.
В лабораторных испытаниях чаще всего используется проявительный или элюентный хроматографический метод. Специалист добавляет в колонку пробу реагента Solv c растворенными в нем компонентами A и B, после чего под постоянным давлением подает подвижную фазу. Под воздействием физико‑механических сил происходит разделение состава. Вещество с лучшей сорбируемостью займет верхнюю часть колонки, с меньшей — нижнюю. На выходе из оборудования сначала появится компонент A, затем чистый Solv, потом — элемент B, что и отразится в хроматограмме. Количественный анализ проводится измерением высоты и площади пиков: чем они больше, тем выше концентрация изучаемого вещества в составе.
Главное преимущество элюентного хроматографического метода заключается в возможности разделения сложных многокомпонентных реактивов. Однако при изучении хроматограммы необходимо учитывать снижение концентрации выходящих растворов из‑за разбавления подвижной фазой.
Третий метод — вытеснительный. Он предполагает использование вытеснителя (препарата D), который постоянно воздействует на раствор Solv, введенный в хроматографическую колонку. Коэффициент сорбции D должен быть выше, чем у любых компонентов анализируемой пробы. Благодаря этому препарат постепенно вытесняет вещество с худшей сорбируемостью, что и фиксируется при выходе смеси из колонки. Вытеснительный метод не требует применения газа‑носителя, в результате чего сокращаются издержки на проведение исследований. Однако стоит помнить, что анализ полученных данных затрудняется из‑за наложения зон разных веществ друг на друга, поскольку они не разделяются зоной растворителя.
Метод газожидкостной хроматографии
В аналитической химии широко используется газожидкостный хроматографический метод. Благодаря разнообразию применяемых жидких неподвижных фаз, можно создать оптимальные условия для идентификации практически любого вещества, содержащегося в исследуемой пробе в незначительной концентрации. Это обуславливает универсальность метода. Для этого необходимо правильно настроить хроматографическое оборудование и подобрать неподвижную фазу, отвечающую следующим параметрам:
Также для реализации метода важна максимальная разделительная способность компонентов конкретной пробы.
Помимо выбора жидкой среды, в которой будет происходить разделение смеси на отдельные составляющие, во время подготовки хроматографического анализа необходимо подобрать носитель неподвижной фазы. В качестве носителя используется твердый и прочный материал, на котором жидкость образует тонкую однородную пленку. Чаще всего применяется силанизированный хромосорбат, фторуглеродные полимеры и гранулы из высококачественного стекла. Данные носители отличаются следующими преимуществами:
Хроматографические методы анализа, построенные по газожидкостному принципу, относятся к наиболее современным, и применяются в случае необходимости разделения веществ, относящихся к одному классу. Их активно используют в химической и нефтегазовой промышленности для контроля над качеством получаемой продукции. Среди ключевых преимуществ газожидкостного метода анализа можно выделить:
Для использования метода требуется подобрать не только жидкую среду и ее носитель, но и решить вопрос с непрерывной подачей элюента. Для минимизации расходов к хроматографу подключается генератор газа (например, водорода), который продуцирует нужное количество вещества и отвечает за его равномерную подачу в оборудование.
Жидкостно‑жидкостный хроматографический метод
По технологии выполнения жидкостно‑жидкостный хроматографический метод анализа похож на газожидкостную хроматографию. На твердый носитель наносится жидкая среда, выступающая в роли неподвижной фазы. Для подготовки пробы используется не инертный газ, а раствор.
Изучаемый реагент вместе с потоком жидкого растворителя движется через сорбент, на поверхности которого происходит разделение компонентов. Чаще всего неподвижной фазой заполняют колонку хроматографа, но для некоторых исследований прибегают к методу тонкослойной хроматографии, при котором адсорбентом смачивают специальную бумагу.
Разделение осуществляется за счет распределения веществ между несмешивающимися растворами. То есть, концентрация одного и того же вещества в подвижной и неподвижной фазах будет различаться и зависеть от коэффициента распределения. Значения коэффициента устанавливаются эмпирически для каждого компонента, в результате чего жидкостно‑жидкостные хроматографические методы анализа позволяют с высокой точностью идентифицировать отдельные элементы в сложном составе.
Для успешной реализации метода необходимо правильно выбрать несмешивающиеся фазы. Обычно они подбираются исходя из опыта прошлых анализов. Чаще всего применяются так называемые «тройные системы», в которые включены два несмешивающихся друг с другом растворителя и третья жидкость, растворимая в обеих фазах. Например, это может быть система из несмешивающихся гептанов и воды, в которую вводится хорошо растворимый в обеих средах этанол.
При выборе составов для подвижной и неподвижной фаз, следует учитывать, что их нерастворимость друг в друге относительна, и при проведении исследования вещества будут вступать во взаимодействие (пусть и в незначительном объеме), что сказывается на значениях, которые показывают хроматографические методы анализа. Для минимизации погрешности используется одна из двух технологий: предварительное насыщение подвижной фазы неподвижной или химическое закрепление жидкости на сорбенте.
Эффективность проведенного хроматографического анализа зависит также от выбора носителя для неподвижной фазы. Требования к нему следующие:
Чаще всего в жидкостно‑жидкостных хроматографических методах исследования в качестве носителя выбирается целлюлоза, фторопласт, силикатные гели или полимеры.
Метод распределительной бумажной хроматографии
Помимо вышеописанных носителей, заполняющих колонки, в распределительных хроматографических методах анализа может использоваться специальная бумага, на которой происходит разделение исследуемых компонентов. Данный метод редко применяется в промышленных масштабах (по сравнению с колоночной хроматографией), но достаточно часто используется в аналитической химии.
Технология проведения бумажного хроматографического анализа предполагает вычисление коэффициента Rf, представляющего собой отношение смещения зоны компонента к смещению фронта раствора. В теории коэффициент зависит только от исследуемого вещества, растворителя и параметров бумаги. Однако в действительности при реализации метода на коэффициент также влияют компоненты, присутствующие в пробе в микроконцентрации, и используемая техника. В результате возникает определенная погрешность, которую необходимо учитывать при расшифровке анализа.
Распределительные хроматографические методы анализа чувствительны к характеристикам используемой бумаги. Она должна соответствовать следующим критериям:
При подборе материала учитывается также ориентация волокон, качество целлюлозы, сорбируемость. Параметры определяют скорость движения раствора и осаждения обнаруживаемых молекул.
В бумажном методе есть еще один нюанс — некоторые вещества могут поменять свойства носителя с гидрофильных на гидрофобные, что полностью нарушит ход эксперимента. В таком случае хроматографическая бумага предварительно пропитывается парафином или растительными маслами.
Растворители в распределительном методе
Большое влияние на точность хроматографических методов анализа оказывает выбранный растворитель. В качестве подвижной фазы необходимо взять жидкость, которая в меньшей степени растворяет обнаруживаемые компоненты, чем неподвижная фаза. Если пренебречь данным условием, метод не сработает: при слишком высокой растворимости проба пройдет вместе с жидкостью, не адсорбируясь на поверхности, при слишком низкой — останется на начальной линии и не даст требуемую для расшифровки градацию.
Если с помощью распределительного метода анализируется водорастворимая смесь, в качестве неподвижной фазы берется очищенная вода, в качестве подвижной — любой удобный органический растворитель. Выбранные жидкости не должны смешиваться, менять свои свойства в процессе исследования, важна их доступность и нетоксичность для человека.
Распределительные хроматографические методы анализа основаны на использовании смешанных фаз: смесей спиртов друг с другом и органическими кислотами, аммиаком, водных растворов фенола или крезола и так далее. Меняя концентрацию, насыщенность и пропорции в растворе удается плавно менять коэффициент Rf, создавать оптимальные условия для анализа, и получать дополнительные данные при расшифровке хроматограммы.
Как и прочие хроматографические методы анализа, бумажная хроматография определяет и качественный, и количественный состав пробы. В первом случае изучается специфическая окраска пятен на хроматограмме и анализируется числовое значение Rf для каждого обнаруживаемого реактива.
Для определения количественного состава смеси исследуется площадь образовавшихся пятен, интенсивность их окраски. Также применяют метод вымывания, при котором каждое цветовое пятно обрабатывают экстрагентом и затем подсчитывают количество вымытого вещества.
Тонкослойный хроматографический метод
Хроматографические методы анализа отличаются информативностью, сложностью проведения и актуальностью для решения практических промышленных задач. Одним из самых распространенных является метод тонкослойной хроматографии (ТСХ), разработанный группой ученых в 1938 году.
Твердая фаза наносится тонким слоем на специально подготовленную стеклянную, металлическую или пластиковую пластину. Затем на ее край лаборант вносит анализируемую пробу и погружает пластинку в жидкий растворитель, выступающий в качестве подвижной фазы. Под действием капиллярных сил исследуемый состав начинает двигаться по сорбенту, разделяясь на свои компоненты. Диффузия в твердом неподвижном слое происходит в двух направлениях: продольном и поперечном, что дает дополнительные сведения для анализа.
Особенность хроматографического метода заключается в относительной простоте исполнения. Для проведения эксперимента требуются:
После окончания работы перед построением хроматографического графика пластинку опрыскивают проявляющим реактивом либо подвергают воздействию ультрафиолета. Затем приступают к определению компонентов пробы и их дальнейшему изучению любым удобным для лаборанта методом.
Качественные и количественные методы анализа в ТСХ
Для качественного исследования пробы одним из самых надежных и показательных является «метод свидетелей». Вместе с составом на линию старта наносятся индивидуальные вещества («свидетели») — предполагаемые компоненты смеси. На все жидкости влияют одинаковые силы, поэтому совпадение коэффициента Rf одного из «свидетелей» с компонентом реагента позволяет предположить наличие в пробе данного вещества.
Что касается количественных определений в данном методе, то они выполняются непосредственно на пластине либо уже после снятия с нее слоя сорбента. В первом случае измеряется площадь цветового пятна и с помощью заранее подготовленного графика вычисляется количество вещества.
Однако более показательным считается спектрофотометрический метод. Сорбент удаляется с пластинки и помещается в специальное оборудование, которое и показывает процентное содержание различных компонентов с высокой точностью.
Ионообменный хроматографический метод
Метод ионообменной хроматографии основан на замене элементарных частиц, входящих в реактив, на атомы, содержащиеся в ионообменнике. Поэтому результативность анализа зависит от параметров используемого оборудования. Современные ионообменники обладают важными преимуществами:
Для их производства чаще всего используются различные полимерные соединения: например, полистирол с разным набором функциональных групп, определяющим характерные свойства готового материала.
Ионообменный хроматографический метод применяется преимущественно для разделения элементарных частиц, после которого можно провести количественный подсчет анализируемых компонентов. Данная технология используется для обнаружения разнообразных анионов в питьевой и технической воде, продуктах переработки, пищевом, фармацевтическом и химическом сырье. Наиболее показателен метод для определения катионов щелочных и щелочноземельных металлов, и замещенных солей аммония.
Перспективы развития хроматографических методов
Хроматографические методы анализа постоянно совершенствуются и модифицируются. Появляются новые технологии, позволяющие определять компоненты смеси в наноконцентрациях. Благодаря этому удается повысить качество готовой продукции в различных отраслях промышленности, минимизировать экологические риски за счет установления жесткого контроля над составом сточных вод.
Однако возможности хроматографии ограничены не только применяющимися методами, но и используемым оборудованием. Важно, чтобы хроматографы отвечали следующим требованиям:
Дальнейшее совершенствование хроматографов позволит удешевить хроматографические методы анализа и расширить области их применения. Именно к этому и стремится компания ООО «НПФ Мета‑хром». Мы предлагаем высококлассное оборудование, соответствующее всем стандартам качества. Узнать подробную информацию о методах работы на хроматографах можно у менеджеров по контактному телефону компании или с помощью формы обратной связи в разделе «Контакты».
Как проводится хроматография
18.03.2021
Хроматографический анализ представляет собой один из важнейших типов современного анализа. Метод заключается в разделении смеси, компоненты которой имеют разные свойства, и, как следствие, различную скорость прохождения через среды. Он применяется как для качественного анализа смесей, так и для выделения чистых веществ. Будучи открытым в начале прошлого века, метод до сих пор активно развивается, на его основе проводилось и проводится масса исследований в биохимии.
Как проводиться хроматография?
При хроматографии нанесенная на неподвижную фазу смесь разделяется на группы веществ под действием подвижной фазы, элюента. Происходит это вследствие различных скоростей движения веществ.
Самый важный этап хроматографического анализа – подготовка условий, ведь каждая смесь обладает уникальными свойствами. Так, при неправильно подобранных условиях, разделения может не произойти, отдельные вещества не выделятся. Однако, самоцелью анализа может быть выделение только одного компонента. Например, для оценки концентрации гемоглобина в крови не требуются данные о всех других ее составляющих.
Под каждую цель подбираются специфичные смеси, позволяющие выделить искомые вещества. В зависимости от условий, степень разделения может быть разная. Библиотечные данные предоставляют информацию о поведении веществ в определенных средах в форме константы Rf (фактор удерживания). Он представляет собой отношение расстояния пройденных веществом и растворителем соответственно.
Для упрощения результатов могут менять как неподвижную, так и подвижную фазы. Неподвижная представляет собой бумагу, пластинку с силикагелем или другие сорбирующие материалы. На неё наносится анализируемая смесь, которая захватывается при движении элюента. Элюент в свою очередь движется по материалу за счет капиллярных сил.
Стандартными материалами для твердо жидкостной хроматографии являются либо бумага, либо пластинки с силикагелем. При необходимости бумага может модифицироваться, например, ацетилироваться. Это делает материал хиральным, что позволяет разделять смесь энантиомеров.
Полученные пики интенсивности называются сигналами. Соотнеся полученные сигналы с библиотечными значениями или с внутренним стандартом, сигналы соотносятся с веществами. По интенсивности сигналов делается вывод о концентрации компонентов.
Бумажная хроматография
Бумажная хроматография представляет собой один из видов ТЖХ. От других методов ее отличает материал неподвижной фазы – целлюлоза. Стандартная или модифицированная, она служит сорбентом.
Ход бумажной хроматографии похож на ТСХ: На бумагу наносится проба смеси, затем лист помещается в закрытый сосуд, одним концом погружается в растворитель. За счет капиллярных сил, проба со стартовой точки захватывается подвижным растворителем и движется. По достижению раствором конца листа, последний вынимается и сушится. Для проявления полученных пиков интенсивности могут потребоваться дополнительные операции, например, обмакивание в фосфорную кислоту. Соотнеся расстояние пройденные веществами и растворителем, получают значние фактора удержания Rf. Параметр зависит от бумаги, раствора и самих веществ.
Высокая чувствительность метода делает его востребованным в биохимии, где навески пробы измеряются в микрограммах. Бумажная хроматография используется для идентификации искомых белков, проверки на наличие мутаций в них. После разложения протеиназой, из белков получаются пептиды, хроматограммы которых специфичны для различных белков.
Метод позволяет уловить различие белков в одну аминокислоту, что делает метод востребованным при поиске мутаций. Также, он позволяет указать на родство белков со сходными хроматограммами. Это полезно при доказательстве путей метаболизма. Так, например, указав на сходный состав двух белков, можно предположить, что один из них получен из другого путем добавления или отщепления структурных единиц.
Примеры хроматографии
Тонкослойная хроматография применяется при анализе лекарственных препаратов на предмет наличия в них нежелательных примесей, оценке качества выпускаемой продукции. Отклонения от стандартов могут указывать на ошибки производства.
Она применяется и при изучении окружающей среды, атмосферы, позволяя установить факт наличия в них вредных веществ, канцерогенов, превышение норм концентраций тех или иных газов.
Также, она широко распространена в научной деятельности, ведь предоставляет быстрые и точные анализы сложных смесей. Первичная оценка пробы помогает назначить эффективные пути дальнейшего разделения и подобрать необходимые условия для последующих реакций.
В нефтяной промышленности также востребована хроматорафия, необходимая для разделения и описания выделяемого топлива. Это позволяет классифицировать бензин по октановому числу, узнать о наличии в нем нежелательных примесей. Развитие жидкостной хроматографии позволило нефтепромыслу достичь новых высот в качестве выделяемой нефти, что привело к росту промышленности в целом.
Хроматографический анализ используется при маркировке продуктов питания: содержание белков, жиров, витаминов, углеводов и аминокислот. Точная оценка состава продукции является обязательным условием для торговли. Информация о потребляемой продукции позволяет людям формировать подходящую им диету, избегать непереносимой пищи.
В медицинской практике также повсеместно используется хроматография: диагностика состава крови и мочи позволяет не только установить факт заболевания, но и указать на его причину, помочь подобрать курс лечения и диету. По отклонению от нормы концентрации аминокислот можно судить о нарушении обмена веществ, о сбое в работе внутренних органов. Он также позволяет установить факт наличия ядов, что востребовано в криминалистике.
Выводы
Несмотря на то, что метод был открыт более ста лет назад, он до сих пор является широко востребованным. Проходя через постоянные усовершенствования, он позволяет разделять и анализировать необходимые смеси. Применение во всех областях человеческой жизнедеятельности является его простоты, скорости и дешевизны.
Для проведения анализа могут использоваться автоматизированные хроматографы, которые позволяют с высокой точностью изучать смеси за считанные часы. Автоматизация также удешевила сложнейшие на первый взгляд анализы в медицине.
Однако ручная хроматография при должных навыках не менее информативна и полезна. Колоночная хроматография позволяет разделить смеси, узнать ее состав.
ГХ или ВЭЖХ? Что выбрать?
При появлении новой аналитической задачи…
16.11.2021
Хроматография. Простыми словами.
О хроматографии написано много. Мы…
10.11.2021
Как проводится хроматография
Хроматографический анализ представляет собой один…
18.03.2021
Абсорбционная спектрометрия уже больше века…
18.03.2021
Основные Параметры Хроматографических Пиков
Ключевую для хроматографии информацию получают…
21.01.2021
Результатом хроматографии является хроматограмма, дающая…
21.01.2021
Распространённые причины поломки хроматографов
Использование любых сложных видов оборудования…
02.10.2020
Как Хроматография Применяется в Парфюмерии?
Методику хроматографии активно используют в…
02.10.2020
Хроматография: история открытия и развития
Хроматография сегодня активно используется в…
06.09.2020
Как правильно выбрать хроматограф?
Хроматография – метод анализа жидкостных…
05.09.2020
Работа любого сложного устройства сопровождается…
28.07.2020
Сегодня хроматография остается самым используемым…
28.07.2020
Предшественником всех современных спектрометров считается…
06.07.2020
Разделение сложных смесей на единичные…
06.07.2020
Хроматографические методы в криминалистике
Криминалистические экспертизы играют важную роль…
06.07.2020
Хроматография в фармацевтической промышленности
В настоящее время можно выделить…
27.05.2020
Принципы работы спектрометра
Спектрометр – прибор, работающий на…
08.05.2020
Хромато-масс-спектрометры: принцип действия
Командой Хроматограф.ру в Печорской центральной…
08.05.2020
Порядок технического обслуживания оборудования производства «НПО СПЕКТРОН»
При поставке приборы снабжаются всем…
17.04.2020
Хроматография в контроле качества продовольственного сырья и пищевых продуктов
Безопасность и качество продуктов питания…
17.04.2020
Телемедицина для хроматографов
Что такое телемедицина? Это консультация…
15.04.2020
Основные производители хроматографов в мире, в России
Хроматографы используются в аналитических исследованиях,…
02.12.2019
Области применения газовых и жидкостных хроматографов
Хроматография – способ разделения многокомпонентных…
02.12.2019
Хроматографические Методы Анализа
Хроматографические методы анализа базируются на…
02.12.2019
Хроматограф — принцип действия, виды хроматографов
Одним из самых популярных методов…
23.02.2019
Обучение с выдачей удостоверения
С июня 2017 года наши…
28.11.2018
Скидка на Хромато-масс-спектрометр с МСД Хроматэк 12% до 31 октября 2017 года
Руководством предприятия принято решение предоставить…
28.11.2018