для чего проводится отжиг латуни
Отжиг меди и латуни.Полезные советы.
Зарегистрирован: 22.06.2010
Сообщения: 20547
brx.jpg | |
Описание: | |
Размер файла: | 69.19 KB |
Последний раз редактировалось: ydarnik (Fri Nov 01, 2013 13:51:56), всего редактировалось 1 раз |
Профиль Профиль на аукционе |
Зарегистрирован: 22.06.2010
Сообщения: 20547
Профиль Профиль на аукционе |
Зарегистрирован: 12.01.2012
Сообщения: 932
Профиль Профиль на аукционе |
Зарегистрирован: 16.02.2010
Сообщения: 477
Зарегистрирован: 27.01.2011
Сообщения: 1991
Зарегистрирован: 27.01.2011
Сообщения: 1991
Зарегистрирован: 29.12.2017
Сообщения: 222
Для чего проводится отжиг латуни
1.Горелка должна позволять достичь температуры шейки между 750 и 800 градусами (F) в интервале 6-8 секунд. Как сказано, данная комбинация температуры и времени позволяет достичь необходимого цвета шейки ‘унылый жар в темной комнате’. Пламя, охватывающее шейку, должно иметь легкий синеватый цвет, заканчиваться в плече гильзы или немного ниже. Если гильза начинает пылать слабым оранжевым цветом, то это перегрев, и гильзу можно выбросить, т.к. будет слишком мягкой. Для правильной оценки цвета, гильзы предварительно чистятся (полируются). О перегреве говорит и отсутствие блеска шейки после отжига. Цвет шейки должен быть легкой синевы. При отсутствии изменения цвета температуру необходимо повысить путем регулирования горелки или направления пламени.
2.Не допускается перегрев нижней части гильзы.
3.Охлаждение нагретой части осуществляется помещением в воду или естественным путем, но во втором случае донце должно находиться в держателе, который исключает нагрев нижней части гильзы. Авторы не рекомендуют использовать воду по причине возможных ожогов нагретыми брызгами жидкости.
4.Отжиг выполняется перед первичной обработкой и последующими подготовками гильзы к очередному циклу. После отжига гильзы необходимо чистить (полировать) снова.
5.Гильзы перед отжигом обязательно проверяются на отсутствие снаряжения.
Недостатком является неравномерность и неоднородность нагревания гильз.
Наиболее популярный способ.
Заключается в отжиге по одной гильзе путем вращения их в факеле горелки. Используется как ручное, так и автоматическое вращение. Сами держатели предохраняют донце гильзы от перегрева. Вращение электродвигателем осуществляется со скоростью 60-100 оборотов в минуту.
Устройство Чарльза Баилея, IBS 1000-ярдового ‘Бенчрест стрелка года’ (2001г).
Может использоваться устройство на основе редуктора электродрели.
Или электроотвертка с держателем K&M.
Используется карусельное отжигающее устройство с регулируемой глубиной посадочных мест гильз различных калибров. Защита устройства от перегрева осуществляется водой, находящейся в центральной части. Вместе с вращением карусели вращаются и гильзы вокруг своей оси. Гильзы в гнезда вставляются вручную, а выпадают из них после прохода горелок.
Странно звучит совет студить водой быстро ИЛИ медленно на воздухе. А еще что-то подсказывает мне, что критерий величины групп или отрывы чрезвычайно расплывчатый. А вот появление трещин дульцев куда нагляднее.
Так же удерживать гильзу в пламени горелки можно с помощью палочек для еды. Как сказано, они не требуют дополнительной обработки для удержания гильзы капсюльным отверстием. Древесина не проводит высокую температуру к кончикам ваших пальцев и позволяет легко сниматься гильзам о край емкости с водой.
Температурные индикаторы 650 градусов (F) применяются при отсутствии опыта отжига. Используются: http://www.tempil.com/product.asp
В окне «Select a Product» выбрать «Tempilstik Temperature Indicators» и «Tempilaq G Temperature Indicating Liquids».
Выпускается в контролируемом диапазоне от 100 до 2500 градусов (F) с градацией в 100 градусов.
Выпускается для контроля 44-х температур в диапазоне от 175 до 2000 градусов (F).
Важным является температура пламени горелки и время отжига (оговаривалось ранее). При уменьшении времени отжига за счет повышения температуры, гильза может быть испорчена. Ближняя к горелке (к максимальной температуре факела) поверхность может быть перекалена. Если ориентироваться на ближнюю поверхность, то отжиг будет не полным.
Отжиг, закалка и термическая обработка латуни
Вас интересуют отжиг, закалка и термическая обработка латуни? Поставщик Авек Глобал предлагает купить латунь отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.
Отжиг
Холоднокатаную латунь нагревают до температуры рекристаллизации. Если необходимо максимальное снижение твёрдости, заготовку нагревают выше температуры рекристаллизации, чтобы вызвать рост зерна. Важными являются конструкция печи, атмосфера печи и форма заготовки, потому что они влияют на единообразие результатов, завершение и стоимость отжига. Для латунных сплавов размер зерна является стандартным средством оценки рекристаллизационного отжига. Наиболее эффективно на отжиг реагируют латунь, которая содержат в своём составе алюминий. Практикуется два варианта отжига — легкий, который выполняется при температуре, слегка превышающей температуру рекристаллизации, и мягкий отжиг, который выполняется на несколько сотен градусов выше, при температуре чуть ниже точки, в которой начинается быстрый рост зерна.
Гомогенизация
Гомогенизация применяется для растворения и поглощения сегрегаций и снижения коррозии, обнаруженной в некоторых литых и горячих обработанных латунных сплавах (в основном это касается латуней, легированных оловом и никелем). Поставщик Авек Глобал предлагает купить латунь отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.
Отпуск
Отпуск латунного проката направлен на уменьшение или устранение остаточных напряжений, возникающих при холодной пластической деформации. Тем самым уменьшается вероятность того, что латунная деталь не подвергнется самопроизвольному коррозиолнному растрескиванию или снизит предел своей усталостной прочности. Отпуск латуни проводят при температурах ниже нормального диапазона отжига.
Закалка и старение
Высокая прочность большинства латунных сплавов достигается за счет холодной обработки. Явление термического упрочнения применяется для усиления специальных типов латунных сплавов выше обычных уровней, получаемых вследствие холодной пластической деформации. Закалка латуни заключается в быстром нагреве до высоких температур, и последующем старении при более низкой температуре в течение времени, обычно не превышающего 3 часа. далее следует охлаждение на спокойном воздухе. Путем изменения времени и температуры старения получают различные сочетания свойств латунных сплавов — прочность, твердость, пластичность, проводимость, ударопрочность (усталостная прочность) и упругость.
Купить. Поставщик, цена
Вас интересуют отжиг, закалка и термическая обработка латуни? Поставщик Авек Глобал предлагает купить латунь отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная. Приглашаем к партнёрскому сотрудничеству.
Отжиг, закалка и термическая обработка бронзы
ОСНОВНЫЕ ТИПЫ ЛАТУНИ
На основании вышеперечисленного, латунь принято делить на два основных типа.
Двухкомпонентная
Ключевую лигирующую роль в сплаве играет цинк. Маркировка латуни в таких сплавах включает буквенное и цифровое, указывающее на процентное содержание меди обозначения: например, Л63.
Многокомпонентная латунь
Кроме основных составляющих, в таком сплаве присутствуют дополнительные добавки, призванные изменить цветовую гамму, или некоторые свойства материала. Чаще всего в качестве таких дополнений используют свинец, никель, алюминий, олово и марганец. В этом случае маркировка дополняется еще одним буквенно-цифровым обозначением, определяющим входящий в структуру компонент-усилитель и процент его содержания соответственно:ЛО63-3. Где Л-латунь, 63-ее процентное содержание, О-олово, 3- процент оловянного компонента. Оставшиеся 34% в этом случае приходятся на содержание цинка.
Обесцинкование латуни
Характеристики сплава доре
Латуни, кроме общей коррозии, подвержены также особым видам коррозии: обесцинкованию и «сезонному» растрескиванию. Обесцинкование — это особая форма коррозии, при которой сначала происходит растворение поверхности латунного изделия в реагенте. Раствор, в котором происходит обесцинкование латуни, содержит больше цинка, чем меди. В результате обменных реакций в катодных участках электрохимически осаждается медь в виде губчатой пленки. Быстрее обесцинкованию подвергаются латуни с повышенном содержанием цинка (Л60, Л63), так как в двухфазных латунях наблюдается преимущественное растворение β-фазы, являющейся анодом, а α-фаза — катодом. Процесс обесцинкования наблюдается при контакте латуни с электропроводящими средами (кислые и щелочные растворы). В результате латуни становится пористыми, на поверхности появляются красноватые пятна, ухудшаются механические свойства
СВОЙСТВА ЛАТУНИ
Отвечая на вопрос, как расплавить латунь в домашних условиях, следует изучить свойства латуни:
Особенности латунных труб
Латунные трубы разделяют на несколько разновидностей. Они бывают общего назначения, волноводными, тонкостенными, узкоспециализированными и др. Вне зависимости от предназначения трубы из латуни обладают достоинствами:
Трубы из латуни представлены широким ассортиментом, их изготавливают с разной формой сечений. Из-за эластичности материала обрабатывать трубы — резать, развальцовывать и гнуть — можно самостоятельно. То же касается и монтажа труб. Для их соединения используют методы пайки и сварки либо фитинги.
ВЛИЯНИЕ ДРУГИХ МЕТАЛЛОВ НА ЛАТУНЬ
Действие, оказываемое лигирующими добавками, следующее:
Значительно повышает антикоррозийные свойства. Содержание олова делает сплав невосприимчивым к воздействию морской водой и пригодным к использованию в кораблестроении.
Марганец способствует повышению показателей невосприимчивости к механическим нагрузкам, а также оказываемому на латунь воздействию негативными условиями и прочности на разрыв.
Нейтрализирует окислительные процессы и улучшает сопротивление к агрессивно-щелочным средам и соленой воде. Никель придает металлу специфический оттенок «белой латуни».
Улучшает антифрикционные показатели и свариваемость. При этом понижается стоимость сплава и показатели твердости.
Снижает прочность, пластичность и упругость сплава. При этом, обработка на станках автоматических значительно облегчается.
Обеспечивает образование защитного покрытия, которое затормаживает развитие всяческих окислительных процессов.
Отдельно стоит акцентировать внимание на условия расплавления латуни. Неверно созданные условия могут спровоцировать утрату свойств сплава и значительно усложнить ход процесса.
Коррозионные свойства
Латуни обладают хорошей коррозионной стойкостью в атмосфере городской и сельской местности, а также в условиях морского климата. Латуни, содержащие менее 15 % Zn, по коррозионной стойкости близки к меди промышленной чистоты. Скорость коррозии латуней в атмосферных условиях не превышает 0,001мм/год.
Скорость коррозии латуней в пресной воде незначительна, и при температуре 20°С она составляет 0,0025—0,025 мм/год. По отношению к почве латуни обладают хорошей коррозионной стойкостью, к пищевым продуктам — нейтральны.
Под воздействием минеральных кислот (азотная, соляная) латуни интенсивно корродируют. Серная кислота действует на латуни значительно медленнее, однако в присутствии окислителей K2Cr2O7, Fe2(S04)3 скорость коррозии увеличивается на два порядка. Латуни весьма устойчивы в растворах щелочей (за исключением аммиака) и в концентрированных растворах нейтральных солей.
ЧТО НУЖНО ЗНАТЬ ПЕРЕД ПЛАВЛЕНИЕМ ЛАТУНИ
Температурные показатели плавления латуни составляют 880-950 градусов. Показатели могут меняться соответственно химическим составляющим сплава. Стоит учитывать, что температурная кривая плавления латуни может не совпадать с температурными показателями литья. Ярким примером являются свинцовые латуни. В данном случае температура плавления и литья варьирует в разнице 145-185 градусов. Ярким примером является сплав ЛС 59-1, когда температура плавления составляет 885 градусов, а показатели литья 1030-1080 градусов. Причем подобное расхождение касается именно многокомпонентных сплавов, у двухкомпонентных эти показатели совпадают.
Показатели удельной теплоемкости латуни составляют 380 ДЖ. Иначе говоря, чтобы произвести нагревание 380кг до 1 градуса, необходимо потратить 1ДЖ.
Расшифровка марки сплава ЛС59-1 и его характеристики
Расшифровывается марка ЛС59-1 следующим образом: ЛС — латунь свинцовая, в которой процентное соотношение меди составляет до 60%. Также сплав содержит железо, фосфор, сурьму, висмут. Латунный химический состав регламентируется ГОСТ 15527-2004. Соблюдение установленных стандартов позволяет производить качественный и прочный сплав ЛС59-1, имеющий следующие технические характеристики:
Несмотря на стойкость к деформациям и отличные эксплуатационные качества, латунь ЛС59-1 является хрупким материалом. Повышенное давление на металлоизделие может стать причиной надломов в местах изгибов или надрезов. Именно поэтому данный сплав не рекомендуется использовать для несущих конструкций и изделий, которые будут подвергаться сильным нагрузкам.
Стоимость латунного проката не высокая, что позволяет использовать его для производства различных конструкций и запчастей.
СПОСОБЫ ПЛАВЛЕНИЯ ЛАТУНИ В ДОМАШНИХ УСЛОВИЯХ
Плавление латуни в домашних условиях может происходить в нескольких вариантах, в зависимости от используемого оборудования.
Плавка латуни газовой горелкой
Установка горелки производится в вертикальном положении под тиглем. Тигель может быть как готовым, изготовленным из керамики, или графита, с допустимо выдерживаемой температурой в 1300 градусов, так и изготовленный в бытовых условиях из кремнезема, жидкого стекла, или шамотной крошки. Нагреваемую зону экранируют листом железа, или иным огнеупорным материалом. Для крепления изделия создается прочная подставка.
Формы для деталей изготавливают из:
Плавка латуни в домашней печи
Чаще всего печи изготавливают из качественного огнеупорного кирпича. Нагревательный элемент создается из индукционных нагревательных приборов, представляющих собой керамические трубки с обмоткой из нихромовой проволоки. Температурные показатели таких нагревателей могут доходить до 1000 градусов и более. Электрическое питание должно быть не менее 25-30 кВТ.
Стандарты
Название | Код | Стандарты |
Проволока из цветных металлов и их сплавов | В74 | ГОСТ 1066-90, ГОСТ 1066-2015, ОСТ 4.021.105-92, ОСТ 4.021.112-92, ОСТ 4.021.116-92, TУ 48-21-409-79, TУ 48-21-493-75 |
Ленты | В54 | ГОСТ 15527-2004, ГОСТ 2208-2007, ОСТ 4.021.078-92, TУ 48-21-541-76 |
Цветные металлы, включая редкие, и их сплавы | В51 | ГОСТ 28873-90, ОСТ 4.021.009-92, TУ 48-21-642-79 |
Трубы из цветных металлов и сплавов | В64 | ГОСТ 494-90, ГОСТ 494-2014, ОСТ 4.021.123-92, ООП 5.9243-87, TУ 48-21-667-79, TУ 48-21-77-72, TУ 48-21-798-86 |
Прутки | В55 | ГОСТ 6688-91, ГОСТ 2060-2006, ГОСТ Р 52597-2006, ГОСТ 31366-2008, ОСТ 4.021.020-92, ОСТ 4.021.037-92, ОСТ 4.021.041-92, TУ 48-21-381-74, TУ 48-21-559-76, TУ 48-21-603-78, TУ 48-21-93-77, TУ 48-0810-119-86 |
Листы и полосы | В53 | ГОСТ 931-90, ОСТ 4.021.050-92, ОСТ 4.021.067-92, TУ 84-320-78, TУ 1845-069-07515308-98 |
Сортовой и фасонный прокат | В52 | TУ 48-21-434-84 |
КАК РАСПЛАВИТЬ ЛАТУНЬ В ДОМАШНИХ УСЛОВИЯХ: ПОШАГОВАЯ ИНСТРУКЦИЯ
Отвечая на вопрос: «как расплавить латунь в домашних условиях«, мы предлагаем вам ознакомиться со следующей инструкцией:
Загрузка сплава большими порциями нежелательна. Для достижения наилучших результатов, плавление производится порциями по 30-50 грамм. Необходимо учесть, что розливу подлежит только полностью расплавленный материал. Поверхностная пленка должна быть удалена.
ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ
Механические характеристики
Благодаря наличию свинца в составе латуни ЛС59-1 при обработке изделий из нее резанием образуется мелкая стружка, что позволяет выполнять такую обработку на высоких скоростях. Отличительной особенностью рассматриваемого сплава является и то, что свинец в его внутренней структуре составляет отдельную фазу. Это делает такой материал хорошо поддающимся и пластической деформации. Между тем, если сравнивать латунь марки ЛС59-1 с двухкомпонентными сплавами, то она значительно уступает им по своей пластичности, поэтому такой материал лучше обрабатывать резанием.
Ассортимент изделий, производимых из латуни ЛС59-1, включает:
Основные характеристики латуни марки Л59-1
Отличают латунь марки ЛС59-1 и хорошие антифрикционные характеристики, что позволяет использовать такой материл для изготовления изделий, эксплуатируемых в условиях повышенного трения. Из этого сплава, в частности, производятся подшипники скольжения, используемые для комплектации различных механизмов и машин. Кроме того, устойчивость к истиранию, которой отличается ЛС59-1, позволяет использовать эту латунь для изготовления направляющих станков различного назначения.
Технологические свойства сплава Л59-1
Поскольку латунь данной марки обладает многофазовой структурой, изделия из нее отличаются повышенной хрупкостью. Детали из ЛС59-1, на которых выполнены поверхностные надрезы, нельзя использовать в качестве несущих элементов, так как при значительном давлении они могут сломаться. Кроме того, повышенная хрупкость этой латуни приводит к тому, что при воздействии ударных нагрузок поверхность изделий из этого материала может покрываться трещинами, что не позволяет выполнять их обработку при помощи такой технологической операции, как ковка.
ТЕХНИКА БЕЗОПАСНОСТИ ВО ВРЕМЯ ПЛАВКИ ЛАТУНИ
Во время процесса плавки латуни в домашних условиях, или же на промышленных предприятиях, необходимо соблюдать меры осторожности.
Время плавления сплава напрямую зависит от его состава, а конечный результат от соблюдения всех необходимых условий. По завершении процесса и полного остывания заготовки, ей придается надлежащий вид. Достигается это путем очистки и шлифовки.
Пруток
Латунный пруток Мы предлагаем Вам купить латунный пруток в широком ассортименте. Свойства латунного прутка зависят от способа производства, материала и химического состава. Изготовлять его можно из любой марки латуни, но наиболее широкое массовое применение нашли прессованные твердые и полутвердые круги из недорогих латуней Л63 и ЛС59-1, изготавливаются по ГОСТ 2060-2006 диаметром от 5 до 160 мм. Применение Латунные прутки обрели широкое применение в автомобильной промышленности, авиакосмической промышленности, в производстве, часов, приборов, судостроении и в создании систем жизнеобеспечения. Из латуни производится всевозможный крепёж, фурнитура, арматура, детали электротехнических приборов. Благодаря хорошим антикоррозионным качествам, ковкости, лёгкости и эстетичности изделий из различных сплавов латуни, прутки из латуни поступают в продажу в широком ассортименте, чтобы удовлетворять самые узкоспециализированные нужды той или иной отрасли производства. Технические указания • Производство латунных прутков из сплавов латуни марок ЛС59-1, ЛО62-1, Л63, ЛЖС58-1-1, ЛЖМц59-1-1, ЛМц58-2, ЛО62-1, ЛС63-3ЛАЖ, 60-1-1 регламентируется согласно ГОСТам. Основным документом, регулирующим производство прутков из латуни квадратного сечения, круглого и в виде шестигранников, является ГОСТ 2060-2006. • Для других марок сплавов применяются различного рода Технические Указания
Для сплава ЛС58-2, например, принимается во внимание ТУ 48-21-5010-77, а для МцСКА58-2-2-1-1 стандартизация проходит по ТУ 48-21-356-74. Словом, ассортимент различных прутков из латуни чрезвычайно широк, и в этой области постоянно имеются пополнения
У нас Вы можете узнать цены на латунный пруток из интересующего сплава, или купить латунные прутки, нужного Вам класса. Классификация латунных прутков Латунные прутки изготавливаются по разным технологиям. Они бывают: • Тянутыми • Прессованными Латунные изделия отличаются широким выбором различных сечений: • Круглые • Квадратные • Шестигранные • Прямоугольные Латунные прутки изготавливаются из сплавов различной твёрдости: • Мягкие (отожженные) • Полутвёрдые • Твёрдые. Различают: Латунные прутки для обработки на автомате. Можно купить латунные прутки с антимагнитными свойствами. Маркировка Исходя из представленной классификации, маркировка соответствует следующей форме: • Наименование товара: Пруток • Технология изготовления: Д – тянутые и холоднодеформированные, Г – прессованные и горячедеформированные. • Форма сечения: КВ, КР, ШГ, ПР • Требования к точности: нормальной точности – или Н, П – повышенной, В – высокой. • Твёрдость: М, ПТ, Т. • Диаметр: указывается в мм. • Длина с указанием мерности: немерная – НД, кратная величине – КД, в бухте – БТ. • Сплав: один из перечисленных выше. • Область применения: АВ – автоматные, АМ – антимагнитные. Стандарт: ГОСТ 52597-2006, ГОСТ 2060-2006 или ТУ. Заявку, можно отправить по электронной почте или обратившись по телефону;
Физические свойства латуни, ее плотность и применение
Отжиг стальных деталей
Чтобы облегчить механическую или пластическую обработку стальной детали, уменьшают ее твердость путем отжига. Так называемый полный отжиг заключается в том, что деталь или заготовку нагревают до температуры 900°С, выдерживают при этой температуре некоторое время, необходимое для прогрева ее по всему объему, а затем медленно (обычно вместе с печью) охлаждают до комнатной температуры.
Внутренние напряжения, возникшие в детали при механической обработке, снимают низкотемпературным отжигом, при котором деталь нагревают до температуры 500—600°С, а затем охлаждают вместе с печью. Для снятия внутренних напряжений и некоторого уменьшения твердости стали применяют неполный отжиг — нагрев до 750—760°С и последующее медленное (также вместе с печью) охлаждение.
Отжиг используется также при неудачной закалке или при необходимости перекаливания инструмента для обработки другого металла (например, если сверло для меди нужно перекалить для сверления чугуна). При отжиге деталь нагревают до температуры несколько ниже температуры, необходимой для закалки, и затем постепенно охлаждают на воздухе. В результате закаленная деталь вновь становится мягкой, поддающейся механической обработке.
Отжиг меди
Термической обработке подвергают и медь. При этом медь можно сделать либо более мягкой, либо более твердой. Однако в отличие от стали закалка меди происходит при медленном остывании на воздухе, а мягкость медь приобретает при быстром охлаждении в воде. Если медную проволоку или трубку нагреть докрасна (600° С) на огне и затем быстро погрузить в воду, то медь станет очень мягкой. После придания нужной формы изделие вновь можно нагреть на огне до 400° С и дать ему остыть на воздухе. Проволока или трубка после этого станет твердой. Если необходимо выгнуть трубку, ее плотно заполняют песком, чтобы избежать сплющивания и образования трещин.
Отжиг латуни позволяет повысить ее пластичность. После отжига латунь становится мягкой, легко гнется, выколачивается и хорошо вытягивается. Для отжига ее нагревают до 600° С и дают, остыть на воздухе при комнатной температуре.
Отжиг и закаливание дюралюминия
Отжиг дюралюминия производят для снижения его твердости. Деталь или заготовку нагревают примерно до 360°С, как и при закалке, выдерживают некоторое время, после чего охлаждают на воздухе. Твердость отожженного дюралюминия почти вдвое ниже, чем закаленного.
Приближенно температуру нагрева дюралюминиевой детали можно определить так: При температуре 350—360°С деревянная лучина, которой проводят по раскаленной поверхности детали, обугливается и оставляет темный след. Достаточно точно температуру детали можно определить с помощью небольшого (со спичечную головку) кусочка медной фольги, который кладут на ее поверхность. При температуре 400°С над фольгой появляется небольшое зеленоватое пламя.
Отожженный дюралюминий обладает небольшой твердостью, его можно штамповать и изгибать вдвое, не опасаясь появления трещин.
Закаливание. Дюралюминий можно подвергать закаливанию. При закаливании детали из этого металла нагревают до 360—400°С, выдерживают некоторое время, затем погружают в воду комнатной температуры и оставляют там до полного охлаждения. Сразу после этого дюралюминий становится мягким и пластичным, легко гнется и куется. Повышенную же твердость он приобретает спустя три-четыре дня. Его твердость (и одновременно хрупкость) увеличивается настолько, что он не выдерживает изгиба на небольшой угол.
Наивысшую прочность дюралюминий приобретает после старения. Старение при комнатных температурах называют естественным, а при повышенных температурах — искусственным. Прочность и твердость свежезакаленного дюралюминия, оставленного при комнатной температуре, с течением времени повышается, достигая наивысшего уровня через пять — семь суток. Этот процесс называется старением дюралюминия.
Пайка труб из меди
Медь применяется человечеством с глубокой древности, хотя использование для прокладки труб отопления и водоснабжения в широких масштабах официально принято считать начало прошлого века.
Одним из основных процессов стыковки медных труб является пайка, при которой выполняется нагревание трубных концов и соединительных муфт, приводящее к расплавлению припоя с образованием герметичности соединения.
В данной статье рассмотрим, как паять медные трубы, их разновидности, достоинства и недостатки.
Разновидности трубных материалов
Промышленностью выпускаются трубные изделия двух видов: труба медная отожжённая и неотожжённая, в чем отличия? Процесс изготовления обоих разновидностей состоит в обработке медной руды. Из полученной черновой меди удаляются все нежелательные примеси путём продувки через неё кислорода. В результате получаются слитки металла высокой чистоты. Далее технология производства каждого из видов резко отличается.
Возможное их удлинение достигает 60-ти %, что позволяет сгиб при необходимости в холодном состоянии при соблюдении определённого соотношения между радиусом, под которым производится изгиб и диаметром трубы (R= 3…8d).
Отожжённые изделия отличаются высокой стойкостью при эксплуатации в условиях повышенной влажности и к резким температурным перепадам.
Трубные материалы с толстыми стенками успешно выдерживают высокое давление, при нанесении на поверхность полимерного слоя значительно снижаются тепловые потери и при этом в водопроводах с холодной водой не возникает образование конденсата. Такая продукция особенно популярна при обустройстве систем отопления и водоводов горячей воды.
Твёрдые неотожжённые трубы в холодном состоянии допускается сгибать при помощи трубогиба только диаметрами до 18-ти мм, при необходимости сгибать большие размеры необходимо предварительное смягчение изделий нагревом до 500 градусов.
Преимущества и недостатки обработки
Неоспоримым свойством меди выступает высокая электропроводность. Она применяется в строительстве и изготовлении электротехники. Механические параметры у металла достаточно низкие, поэтому в качестве чистого конструкционного материала используется не часто.
Недостатков значительно меньше, но все же они есть:
В чем разница между не отожженными и отожженными медными трубами
В последнее время для создания систем водопровода все чаще используется альтернативных материалом. Стальные трубы стали не актуальными. Итак, поговорим о системе водопровода, который выполнен из медных труб. Не один десяток лет специалисты используют в сантехнике медь.
Сегодня медь стала предметом роскоши. Ее количество на земле снизилось. Медь является дорогим материалом для производства труб. Поэтому престижно иметь у себя дома водопровод или систему отопления, выполненную из медных труб.
Металл является довольно качественным для абсолютно всех коммуникаций. Используется медь во всех отраслях промышленности. Чаще всего для систем коммуникаций используют медные отожженные трубы. Они обладают значительной прочностью и лучшими техническими показателями.
Преимущества медных труб
Разберемся, какими характеристиками обладают медные трубы, что позволяет сделать их наилучшими?
Какое оборудование применяют
Медь подвергается двум типам термообработки:
Температурный режим рекристаллизации бескислородной меди — 200–240°С, а электролитической —180–230°С. Металл, содержащий кислород, обрабатывают в нейтральной среде, чтобы снизить потери после окисления.
Для термообработки отжигом используется конвекционная печь шахтного типа. Кроме того, оборудование востребовано для отжига проволоки, каната, стержней, сталей, металлических шаров.
Печь имеет следующие достоинства:
В крышке печи предусмотрено специальное пневматическое устройство, которое отвечает за открывание и запирание в процессе отжига. Аварийный клапан функционирует в автоматическом режиме, когда давление поднимается до высоких или опускается до низких показателей.
Области применения
Использование латуни охватывает самые разнообразные сферы человеческой деятельности. Так, золотистый цвет сплава обусловил его использование в бижутерии и в различных декоративных элементах. Также его используют в котельном деле, при производстве военного снаряжения и амуниции, при изготовлении проволок и труб конденсаторов, электрических терминалов и денежных монет.
Благодаря устойчивости к разрушению в соленой воде металл используется при изготовлении снаряжения различных морских судов, а его акустические свойства позволяют делать духовые инструменты: трубы и аккордеоны. Благодаря бактерицидным свойствам, сплав используется для изготовления дверных ручек в больницах и госпиталях.
Если говорить о применении в качестве декора, то следует выделить производство ламп, светильников, карнизов и некоторых ювелирных изделий. Такого рода вещи производятся в основном в странах восточной Европы, на территории стран СНГ, а также во многих арабских и некоторых государствах Азии.
Одно из интересных свойств латуни, которое является необычным для металлов, заключается в отсутствии искр при механическом воздействии на изделие. Эта уникальная характеристика дает возможность использовать материал в качестве сосудов для хранения и транспортировки легковоспламеняющихся жидкостей.
Благодаря легкости механической обработки, высокой износостойкости и невысокой цене, материал используется для изготовления разнообразных вентилей. Из-за высокой сопротивляемости коррозии и кавитации используется латунь для изготовления винтов судов. Также материал использует при производстве некоторых деталей современных компьютеров.
Принцип проведения обработки
Отжиг — процедура термообработки меди, при которой получается стойкая, прочная структура металла, свободная от остаточных напряжений. Технология отжига проходит несколько стадий:
Последняя стадия технологии осуществляется вдвое медленнее.
Обработка заканчивается, когда температура отжига меди достигает величины, при которой она может находиться на воздухе без окисления. Выдавать заготовки на воздух с высокой температурой запрещено. Продолжительность — 1–2 часа.
Сайт, Милена Драгомирова
Процесс закалки стали позволяет повысить твердость изделия примерно в раза. Многие производители проводят подобный процесс на момент производства продукции, однако в некоторых случаях ее следует повторить, так как твердость стали или другого сплава имеет малый уровень. Именно поэтому многие задаются вопросом, как закалить металл в домашних условиях? Закалка металла в домашних условиях. Для того чтобы провести работу по закалке стали нужно учитывать то, как выполняется подобный процесс правильно.
Термическая обработка металлов. Отжиг
Отжиг меди
Термической обработке подвергают и медь. При этом медь можно сделать либо более мягкой, либо более твердой. Однако в отличие от стали закалка меди происходит при медленном остывании на воздухе, а мягкость медь приобретает при быстром охлаждении в воде. Если медную проволоку или трубку нагреть докрасна (600° С) на огне и затем быстро погрузить в воду, то медь станет очень мягкой. После придания нужной формы изделие вновь можно нагреть на огне до 400° С и дать ему остыть на воздухе. Проволока или трубка после этого станет твердой. Если необходимо выгнуть трубку, ее плотно заполняют песком, чтобы избежать сплющивания и образования трещин.
Error 503 Service Unavailable
Сварочная проволока МСр1 содержит 0,8—1,2% серебра. Диаметр присадочной проволоки выбирают в зависимости от толщины свариваемого металла и берут равным 0,5—0,75 8, где 5 — толщина металла, мм, но не более 8 мм.
Сварочная проволока должна плавиться спокойно, без разбрызгивания. Желательно, чтобы температура плавления присадочной проволоки была ниже температуры плавления основного металла. Для предохранения Си от окисления, а также для раскисления и удаления в шлак образующихся оксидов сварку осуществляют с флюсом. Флюсы изготовляют из оксидов и солей бора и натрия. Флюсы для сварки Си применяют в виде порошка, пасты и в газообразной форме Флюсы № 5 и 6, содержащие соли фосфорной кислоты, необходимо применять при сварке проволокой, не содержащей раскислителей фосфора и кремния.
Сварку Си можно выполнять и с применением газообразного флюса БМ-1, в этом случае наконечник горелки надо увеличить на один номер, чтобы снизить скорость нагрева и увеличить мощность сварочного пламени. При использовании газообразного флюса применяют установку КГФ-2-66. Порошкообразный флюс посыпают на место сварки на 40—50 мм по обе стороны от оси шва. Флюс в виде пасты наносят на кромки свариваемого металла и на присадочный пруток. Остатки флюса удаляют промывкой шва 2%-ным раствором азотной или серной кислоты.
Для улучшения механических свойств наплавленного металла и повышения плотности и.
пластичности шва после сварки металл шва рекомендуется проковывать. Детали толщиной до 4 мм проковьшают в холодном состоянии, а при большей толщине — при нагреве до температуры 550— 600°С.
Дополнительное улучшение шва после проковки дает термическая обработка — нагрев до 550—600°С и охлаждение в воде. Свариваемые изделия нагревают сварочной горелкой или в печи. После отжига металл шва становится вязким.
Дата публикования: 2015-01-26; Прочитано: 455 | Нарушение авторского права страницы
studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…
Главная>>Сварка цветных металлов>>Сварки меди со сталью
Преимущества и недостатки обработки
Неоспоримым свойством меди выступает высокая электропроводность. Она применяется в строительстве и изготовлении электротехники. Механические параметры у металла достаточно низкие, поэтому в качестве чистого конструкционного материала используется не часто.
Недостатков значительно меньше, но все же они есть:
Состав и свойства сплава
Пропорции металлов в сплаве могу широко варьироваться, что влияет на создание материала с нужными свойствами. В индустриальных сплавах процентное содержание цинка всегда ниже 50%. Состав определяет следующие свойства материала:
При низких температурах из латуни можно делать листы различной толщины либо вытягивать проволоку. Плотность латуни и температура плавления также зависят от состава. В общем случае удельный вес латуни меняется от 8,4 г/см3 до 8,7 г/см3, а точка плавления находится между температурами 900 °C и 940 °C.
Чистая медь имеет плотность 8,96 г/см3 и температуру плавления 1084 °C, а чистый цинк обладает плотностью 7,14 г/см3 и температурой плавления 420 °C, то есть эти два свойства латуни близки к свойствам меди, ввиду ее большего относительного количества в сплаве в сравнении с цинком.
Главным образом изделия из латуни используются в качестве декоративных украшений благодаря их внешнему виду и блеску, похожему на золото. Также используют этот сплав в устройствах, в которых требуется небольшое трение между рабочими деталями, например, в замках и различных вентилях. Находит сплав и свое применение в электрических приборах, а также благодаря своим акустическим свойствам он применяется в изготовлении некоторых музыкальных инструментов таких, как трубы и колокольчики.
Человечество знакомо с латунью с доисторических времен, еще до открытия самого цинка. Изначально этот сплав получали путем смешивания меди и минерала гемиморфита, который является естественным источником цинка. Шахта по добыче гемиморфита была открыта в одной из деревень современной Германии. Эта шахта функционировала во времена Римской империи. В процессе смешивания меди и гемиморфита при высокой температуре цинк выделяется из этого минерала и сплавляется с медью.
Физические свойства латуни включают в себя следующие характеристики:
Какое оборудование применяют
Медь подвергается двум типам термообработки:
Температурный режим рекристаллизации бескислородной меди — 200–240°С, а электролитической —180–230°С. Металл, содержащий кислород, обрабатывают в нейтральной среде, чтобы снизить потери после окисления.
Для термообработки отжигом используется конвекционная печь шахтного типа. Кроме того, оборудование востребовано для отжига проволоки, каната, стержней, сталей, металлических шаров.
Печь имеет следующие достоинства:
В крышке печи предусмотрено специальное пневматическое устройство, которое отвечает за открывание и запирание в процессе отжига. Аварийный клапан функционирует в автоматическом режиме, когда давление поднимается до высоких или опускается до низких показателей.
Принцип проведения обработки
Отжиг — процедура термообработки меди, при которой получается стойкая, прочная структура металла, свободная от остаточных напряжений. Технология отжига проходит несколько стадий:
Последняя стадия технологии осуществляется вдвое медленнее.
Принципы закалки металла в домашних условиях
Отбеливание и отбеливающие растворы. Отбеливание – это помещение изделия в кислоту. Выпускаемые промышленностью растворы отбелов “Спарекс” Sparex 2. Они работают медленнее кислот, но менее коррозионно-активны и менее опасны в работе.
Раствор не следует кипятить, так как выделяются опасные пары. Активное вещество в этих отбелах – бисульфат натрия. Эти растворы эффективны для серебряных и золотых сплавов, латуни, бронзы и меди. Его не следует применять для отбеливания стерлингового серебра. Можно использовать холодным или подогретым до. Никелевый отбел при кипении выделяет опасные вещества. Если оставить в нем металл надолго, возможно значительное травление изделий.
Холодная обработка: медь, свинец и алюминий
Обычные металлы весьма сильно различаются по своей степени и скорости деформационного упрочнения — наклепа или нагартовки. Медь довольно быстро наклепывается в результате холодной ковки, а, значит, быстро снижает свою ковкость и пластичность. Поэтому медь требует частого отжига, чтобы ее можно было дальше обрабатывать без риска разрушения.
С другой стороны, свинец можно обрабатывать ударами молотка почти в любую форму без отжига и без риска его разрушения. Свинец обладает таким запасом пластичности, который позволяет ему получать большую пластическую деформацию с очень малой степенью деформационного наклепа. Однако, медь хотя и тверже свинца, обладает в целом большей ковкостью.
История и происхождение названия
Несмотря на то, что цинк был открыт только в XVI веке, латунь была известна ещё до нашей эры[1][2]. Моссинойки получали её, сплавляя медь с галмеем[3], то есть с цинковой рудой. В Англии латунь была впервые получена путём сплавления меди с металлическим цинком, этот метод 13 июля 1781 года запатентовал Джеймс Эмерсон (британский патент № 1297)[4][5]. В XIX веке в Западной Европе и России латунь использовали в качестве поддельного золота.
Во времена Августа в Риме латунь называлась орихалк (лат. aurichalcum — буквально «златомедь»), из неё чеканились сестерции и дупондии. Орихалк получил название от цвета сплава, похожего на цвет золота. Однако в самой Римской империи до завоевания Британии в I веке н. э. латунь не производилась, поскольку у римлян не было доступа к источникам цинка (которые появились и стали разрабатываться только после образования провинции Британия в составе империи), до этого цинк мог только ввозиться эллинскими и римскими торговцами, собственной его добычи в континентальной Европе и Средиземноморье не было[6].
Холодная обработка железа и стали
Промышленное чистое железо можно подвергать холодной обработке до больших степеней деформации, прежде чем оно станет слишком твердым для дальнейшей обработки. Примеси в железе или стали ухудшают способность металла к холодной обработке до такой степени, что большинство сталей нельзя подвергать холодной пластической обработке, кроме конечно, специальных низкоуглеродистых сталей для автомобильной промышленности. Вместе с тем, почти все стали можно успешно пластически обрабатывать в раскаленном докрасна состоянии.
Зачем нужен отжиг металлов
Точная природа процесса отжига, которому подвергают металл, в значительной степени зависит от назначения отожженного металла. Существует значительное различие отжига по методам его выполнения между отжигом на заводах, где производят огромное количество листовой стали, и отжигом в небольшой автомастерской, когда всего лишь одна деталь требует такой обработки.
Если кратко, то холодная обработка – это пластическая деформация путем разрушения или искажения зеренной структуры металла. При отжиге металл или сплав нагревают до температуры, при которой происходит рекристаллизация — образование вместо старых — деформированных и удлиненных — зерен новых зерен — не деформируемых и круглых. Затем металл охлаждают с заданною скоростью. Другими словами, кристаллам или зернам внутри металла, которые были смещены или деформированы в ходе холодной пластической обработки, дают возможность перестроиться и восстановиться в свое естественное состояние, но уже при повышенной температуре отжига.
Сварка меди и её сплавов со сталью. Как сваривать медь и сталь?
На практике сварка меди и стали, чаще всего, осуществляется в стыковых соединениях. В зависимости от характера конструкции, швы в таком соединении могут быть наружными и внутренними.
Для сварки латуни со сталью лучше всего подходит газовая сварка, а для сварки красной меди со сталью — электродуговая сварка металлическими электродами.
Хорошие результаты также получаются при сварке угольными электродами под слоем флюса и газовая сварка под флюсом БМ-1. Часто на практике выполняют газовую сварку латуни со сталью, используя медь в качестве присадочного материала.
Подготовку сварных кромок при одинаковой толщине цветного металла и стали выполняют так же, как и при сварке чёрных металлов.
Сварку листов, толщиной менее 3мм выполняют без разделки, а листов, начиная с 3мм — со скосом кромок.
При недостаточном скосе кромок, или при наличии загрязнений на торцах свариваемых деталей, хорошего провара добиться невозможно. Исходя из этого, при сварке деталей больших толщин, в которых выполнена Х-образная разделка, притупление делать не следует.
Сварка меди со сталью — задача сложная, но вполне выполнимая для наплавочных работ и сварки, например, деталей химической аппаратуры, медного провода со стальной колодкой.
Качество сварки таких соединений удовлетворяет требованиям, предъявляемым к ним. Прочность меди можно повысить путём введения в её состав до 2% железа. При большем количестве железа прочность начинает падать.
При сварке угольным электродом необходимо применять постоянный ток прямой полярности.
Напряжение электрической дуги равно 40-55В, а её длина, примерно, 14-20мм. Сварочный ток выбирается в соответствии с диаметром и качеством электрода (угольный или графитовый) и составляет в пределах 300-550А. Флюс используют такой же, как и для сварки меди, состав этих флюсов дан на этой странице.
Вводят флюс в зону сварки, засыпая его в разделку.
Способ сварки применяют «левый».
Наилучшие результаты при сварке медных шин со стальными получаются при сварке «в лодочку». Схема такой сварки показана на рисунке. Вначале выполняется подогрев медных кромок угольным электродом, а затем сварка с определённым положением электрода и присадочного прутка (см. рисунок). Скорость сварки составляет 0,25м/ч. Сварка меди с чугуном производится с помощью таких же технологических приёмов.
Приварку низколегированной бронзы малой толщины (до 1,5мм) к стали толщиной до 2,5мм можно осуществить внахлёст неплавящимся вольфрамовым электродом в среде аргона на автомате с подачей присадочной проволоки диаметром 1,8мм со стороны.
При этом очень важно направить дугу на нахлёстку со стороны меди. Режимы такой сварки: сила тока 190А, напряжение дуги 11,5В, скорость сварки 28,5м/ч, скорость подачи проволоки 70м/ч.
Медь и латунь хорошо свариваются со сталью стыковой сваркой с оплавлением.
При таком способе сварки стальные кромки оплавляются достаточно сильно, а кромки цветного металла незначительно. Учитывая это обстоятельство, и принимая в расчёт разность удельных сопротивлений этих металлов, принимают вылет для стали, равный 3,5d, для латуни 1,5d, для меди 1,0d, где d — диаметры свариваемых стержней.
Для стыковой сварки таких стержней методом сопротивления рекомендуют вылет, равный 2,5d для стали, 1,0d для латуни и 1,5d для меди. Удельное сопротивление осадки принимается в пределах 1,0-1,5 кг/мм2.
На практике часто возникает необходимость приварки шпилек диаметром 8-12мм из меди и её сплавов к стали, или стальных шпилек к медным изделиям.
Такую сварку осуществляют на постоянном токе обратной полярности под мелким флюсом марки ОСЦ-45 без предварительного подогрева.
Хорошо привариваются к стали или чугуну медные шпильки диаметром до 12мм или шпильки из латуни марки Л62, диаметром до 10мм при силе тока 400А.
А шпильки из латуни марки ЛС 59-1 для приварки не используют.
Стальные шпильки к медным и латунным изделиям привариваются плохо.
Отжиг железа и стали
Железо и низкоуглеродистые стали необходимо нагревать до температуры около 900 градусов Цельсия, а затем давать возможность медленно охлаждаться для обеспечения максимально возможной «мягкости». При этом принимают меры, чтобы предотвратить контакт металла с воздухом во избежание окисления его поверхности. Когда это делают в небольшой автомастерской, то для этого применяют теплый песок.
Высокоуглеродистые стали требуют аналогичной обработки за исключением того, что температура отжига для них ниже и составляет около 800 градусов Цельсия.
Латуни являются самыми распространенными сплавами на основе меди. Сводный перечень стандартных латуней по ГОСТ 15527 и их зарубежных аналогов приведен в табл. 1.
Диаграмма состояния сплава системы медь-цинк приведена на рис. 1
Изменения температуры испарения, плавления и литья медно-цинковых сплавов в зависимости от содержания цинка — на рис. 2.
Изменение модуля нормальной упругости медноцинковых сплавов в зависимости от содержания цинка — рис. 3.
Основные параметры интерметаллических фаз сплавов системы Cu-Zn приведены в табл. 2.
При переходе из неупорядоченной β-фазы в упорядоченную β-фазу в указанном интервале температур происходит уменьшение коэффициента взаимной диффузии и скорости роста фазы. Энергия активации взаимной диффузии β-фазе возрастает, а в β-фазе уменьшается с ростом концентрации цинка, при этом она примерно в 1,5 раза больше в β-фазе, чем в β-фазе. Парциальные коэффициенты диффузии атомов Zn в 2 раза больше, чем атомов Cu в разупорядоченной β-фазе, и почти совпадают с упорядоченной β-фазой.
Практическое применение имеют простые латуни, имеющие фазовый состав α, α + β, β и β + γ.
Химический состав латуней, обрабатываемых давлением, по отечественным приведен в прил. 1.
Простые латуни в зависимости от фазового состава делятся на два типа: однофазные α (до 33 % Zn) и двухфазные α + β (свыше 33% Zn).
В однофазных латунях, содержание цинка в которых близко к пределу насыщения, иногда присутствуют небольшие количества β-фазы в результате медленно протекающих диффузионных процессов. Однако включения /3-фазы, наблюдаемые в очень малых количествах, не оказывают заметного влияния на свойства α-латуней. Таким образом, хотя у этих латуней структура и является двухфазной, но по своим физико-механическим и технологическим свойствам их целесообразно отнести к однофазным латуням.
Обработка давлением простых латуней
Однофазные (а) латуни при горячем деформировании очень чувствительны к содержанию примесей, особенно легкоплавких (Bi, Pb). Висмут в сплаве может сегрегировать по границам, поэтому даже одноатомный слой его может вызвать красноломкость в однофазных латунях с высоким содержанием цинка. Обрабатываемость α-латуней в горячем состоянии с повышением содержания цинка ухудшается. В холодном состоянии однофазные латуни обрабатываются хорошо.
Двухфазные α+β-латуни обрабатываются в горячем состоянии лучше однофазных благодаря наличию высокопластичной при повышенных температурах β-фазы и менее чувствительны к примесям. Однако они чувствительны к температурно-скоростным режимам охлаждения. По этой причине в горячепрессованных полуфабрикатах часто наблюдается неоднородная структура. Например, передний конец прутка (полосы или трубы) имеет преимущественно мелкую игольчатую структуру и высокие механические свойства, у заднего конца прутка в результате захолаживания структура зернистая и пониженные механические свойства.
В холодном состоянии двухфазные латуни обрабатываются хуже однофазных. Пластичность их в холодном состоянии зависит от структуры. Если α-фаза расположена на основном фоне кристаллов β-фазы в виде тонких игл, то обрабатываемость двухфазных латуней в холодном состоянии улучшается.
Влияние содержания цинка в латунях на температурный интервал горячей обработки давлением приведено на рис. 4.
У латуней в температурном интервале 200- 600С в зависимости от фазового состава и содержания цинка наблюдается зона пониженной пластичности.
При холодной прокатке, волочении и глубокой штамповке латуней независимо от их фазового состава предпочтительна структура с величиной зерна не более 0,05 мм.
Суммарная степень холодной деформации простых латуней обусловлена определенным пределом, выше которого пластичность резко падает. Этот предел допустимой суммарной холодной деформации, который уменьшается с повышением содержания цинка, устанавливают для каждой марки латуни.
Если принять наивысшую пластичность в горячем состоянии в гомогенной области β-фазы, а при комнатной температуре в области α-фазы за 100%, то обрабатываемость латуней давлением можно оценить количественно (табл. 3).
Такие оценки обрабатываемости металлов и сплавов давлением и других технологических характеристик часто применяются в зарубежной практике.
Термообработка простых латуней
. Основным видом термической обработки простых латуней являются рекристаллизационный отжиг и отжиг для снятия внутренних напряжений. Процесс рекристаллизации латуней определяется содержанием цинка и фазовым составом.
Температура начала рекристаллизации α-латуней с увеличением содержания цинка снижается. Рекристаллизация α-фазы в сильнодеформированной двухфазной латуни начинается при 300С. В этих условиях β-фаза остается неизменной и ее рекристаллизация начинается при более высокой температуре. Поэтому при выборе температуры отжига для получения оптимальной структуры необходимо учитывать эту особенность двухфазных латуней.
Размеры зерна однофазных латуней определяют по эталонам микроструктур (ГОСТ 5362).
При отжиге латунных полуфабрикатов в воздушной или окислительной атмосфере на поверхности их образуются пятна — продукты окисления, трудноудаляемые при травлении. Уменьшение парциального давления кислорода (отжиг в вакууме) предотвращает образование пятен, но вызывает опасность обесцинкования. Поэтому рекомендуется проводить отжиг при минимальной температуре и в защитной атмосфере. В условиях производства труднее всего избежать пятен в латунях, содержащих 37-40% цинка.
Обрабатываемость простых латуней резанием. Обрабатываемость латуней резанием (точение, фрезерование, строгание, шлифование) зависит от фазового состава латуней. При обработке резанием однофазных латуней стружка получается длинной. Двухфазные (а + β) латуни обрабатываются лучше однофазных α-латуней. С увеличением содержания /3-фазы стружка становится более хрупкой и короткой. Количественная оценка обрабатываемости резанием простых латуней определяется сравнением с латунью ЛС63-3, обрабатываемость которой принята за 100%. Однофазные α-латуни отлично полируются, двухфазные — несколько хуже. Обрабатываемость латуней резанием и полируемость приведены в табл. 4.
Пайка и сварка простых латуней.
Простые латуни очень легко соединяются мягкими припоями. Перед пайкой мягким припоем зачистку поверхности производят либо шлифовкой, либо травлением в кислоте. В качестве припоя предпочтительно применять сплавы, содержащие 60% олова. Содержание сурьмы в припое из-за ее сильного сродства к цинку должно быть не более 0,25-0,5%. Пайку мягким припоем предпочтительно выполнять с хлоридными флюсами.
Однофазные α-латуни также легко соединяются пайкой твердыми припоями, в том числе серебряными, двухфазные а + β — несколько хуже.
Медно-фосфористые припои являются самофлюсующимися, поэтому пайку латуней этими припоями производят без флюсов. При пайке другими твердыми припоями необходимо применять соответствующие флюсы.
Содержание свинца в твердых припоях ограничивается 0,5%.
Латунь с содержанием 20% Zn плохо поддается электрической контактной сварке, легче — латунь с 40% Zn. Высокое содержание цинка в двухфазных латунях затрудняет дуговую сварку из-за его испарения. Поэтому присадочные материалы, применяемые при дуговой сварке, должны содержать относительно небольшое количество цинка. Латуни, содержащие более 0,5% РЬ, обычно плохо поддаются сварке. Для улучшения смачиваемости металла в процессе сварки необходим предварительный нагрев до температуры 260С, особенно для латуней с высоким содержанием меди. Сварка угольным электродом латуней, содержащих 15-30%, Zn, лучше всего ведется с помощью присадочных прутков (проволоки) из сплава Си + 3% Si. Для однопроходных швов можно применять прутки (проволоку) медные, легированные небольшим количеством олова; для многопроходных швов лучше применять прутки из сплава Cu + 3 % Si.
Дуговая сварка латуней вольфрамовым электродом в среде инертного газа осложняется выделением паров оксида цинка, которые подавляют действие дуги. Поэтому сварку следует вести при больших скоростях.
Хорошие результаты дает кислородно-ацетиленовая сварка. Для сварки латуней с содержанием 15-30% Zn необходимо пользоваться присадочными прутками (проволокой) из сплава Cu + 1,5% Si. Если условия эксплуатации готовых изделий не вызывают локальной коррозии (обесцинкования), можно использовать латунь с 40% Zn (Л60). Для сварки латуней, содержащих более 30% Zn в качестве присадочного материала применяют сплав Cu + 3% Si.
Влияние примесей на свойства простых латуней. Примеси не оказывают существенного влияния на механические, физические (за исключением железа, которое при содержании > 3,0% изменяет магнитные свойства латуней) и химические свойства простых латуней, но заметно влияют на их технологические характеристики. При горячей обработке давлением однофазные латуни особенно чувствительны к легкоплавким примесям.
Качество изделий, получаемых из латуней глубокой штамповкой, зависит от чистоты сплава, поэтому в простых латунях, предназначенных для глубокой штамповки, содержание примесей должно быть минимальным.
Влияние примесей на качество полуфабрикатов из латуней:
ухудшает качество литья, вызывая пенистость в отливках; висмут вызывает горячеломкость латуней, особенно однофазных; железо затрудняет процесс рекристаллизации;
кремний улучшает процессы пайки и сварки, повышает коррозионную стойкость; никель повышает температуру начала рекристаллизации;
свинец вызывает горячеломкость латуней, особенно однофазных, содержащих цинк в пределах 30-33 %;
сурьма отрицательно влияет на обрабатываемость латуней давлением. Микродобавки сурьмы ( 0,1%). Добавки мышьяка в малых количествах ( 0,05%.
Модифицирование латуней осуществляется введением в расплав:
добавок элементов, образующих тугоплавкие соединения, которые при структурном соответствии будут служить центрами кристаллизации;
поверхностно активных металлов, которые, концентрируясь на гранях зарождающихся кристаллов, замедляют их рост.
В качестве модификаторов в латунях применяют такие элементы, как железо, никель, марганец, олово, иттрий, кальций, бор, а также мишметалл.
Коррозионные свойства латуней. Латуни обладают удовлетворительной устойчивостью против воздействия промышленной, морской и сельской атмосфер. На воздухе они тускнеют. Корродирующее воздействие на латуни, содержащие >15% цинка, оказывают углекислый газ и галогены.
Латуни, содержащие 70%; сероводород значительно действует на латуни при всех условиях, однако латуни с содержанием Zn > 30% более устойчивы, чем латуни с небольшим содержанием цинка.
Фторированные органические соединения, например, фреон, на латуни практически не действуют.
Во влажном насыщенном паре при больших скоростях (около 1000 м3/c) наблюдается питтинговая коррозия, поэтому для перегретого пара латуни не применяют.
Коррозионная стойкость латуней в различных средах приведена в табл. 5.
В рудничных водах, особенно при наличии Fe2(SO4)3 латуни сильно корродируют. Присутствующие в воде фтористые соли действуют на латуни слабо, хлористые — сильнее, иодистые — очень сильно.
Латуни, кроме общей коррозии, подвержены также особым видам коррозии: ооесцинкованию и «сезонному» растрескиванию.
Обесцинкование — особая форма коррозии, при которой растворяется твердый раствор цинка в меди и в катодных местах электрохимически осаждается медь. Продукты коррозии цинка могут отводиться или задерживаться в виде оксидной пленки. Раствор, в котором латунь подвергается обесцинкованию, обычно содержит больше цинка, чем меди.
В результате обесцинкования латуни становятся пористыми, на поверхности появляются красноватые пятна, ухудшаются механические свойства. Обесцинкование наблюдается при контакте латуни с электропроводящими средами (кислые и щелочные растворы) и проявляется в двух формах: сплошной и локальной. Процесс обесцинкования усиливается с увеличением содержания цинка, а также с повышением температуры и аэрации. Однофазные латуни, содержащие >15% Zn, подвергаются обесцинкованию в кислых растворах (нитраты, сульфаты, хлориды, соли аммония и цианиды). В двухфазных латунях процесс обесцинкования заметно усиливается и может происходить даже в водных средах. Наиболее уязвимой является β-фаза.
Малые добавки мышьяка, фосфора и сурьмы частично локализуют коррозию, связанную с обесцинкованием. Мышьяк и сурьма защищают от обесцинкования главным образом α-фазу.
«Сезонное» или межкристаллитное растрескивание наблюдается в латунях в результате воздействия коррозионных агентов при наличии растягивающих напряжений. К коррозионным агентам относятся: пары или растворы аммиака, конденсаты с сернистыми газами, влажный серный ангидрид, растворы солей ртути, различные амины, компоненты травильных растворов, влажный диоксид углерода. Если в атмосфере содержатся следы аммиака, влажного диоксида углерода, сернистого газа и др. коррозионных агентов, то «сезонное» растрескивание проявляется при колебаниях температуры, в результате которых на поверхности деталей происходит конденсация коррозионных агентов.
Латуни, содержащие до 7% цинка, мало чувствительны к «сезонному растрескиванию. В латунях, содержащих от 10 до 20% цинка, межкристаллитное растрескивание не наблюдается, если внутренние растягивающие напряжения не превышают 60 МПа. Латуни, содержащие 20-30% Zn, подвергаются коррозионному растрескиванию только в холоднодеформированном состоянии в водном растворе аммиака. Наиболее склонны к коррозионному растрескиванию однофазные латуни с концентрацией цинка, близкой к пределу насыщения, и двухфазные. Они устойчивы против «сезонного» растрескивания только при наличии растягивающих напряжений 1, увеличивается количество β-фазы).
Свинцовые латуни — медно-цинковые сплавы, легированные свинцом. Диаграмма состояния системы Cu-Zn-Pb представлена на рис. 10.
Растворимость свинца в сплавах в твердом состоянии ничтожно мала. В двухфазных медно-цинковых сплавах (с содержанием Zn 40 %) растворимость свинца при 750С в β-фазе немногим более 0,2%; при комнатной температуре свинец практически не растворим. В двухфазных латунях (в равновесном состоянии) свинец располагается внутри α и β-фаз и частично на границах этих фаз. Свинец при выделении его по границам фаз или зерен заметно ухудшает деформируемость латуней в горячем состоянии.
Свинец в сплавах а + βвыполняет двоякую роль: с одной стороны он используется в качестве фазы, способствующей измельчению стружки, с другой — как смазка, снижающая коэффициент трения при обработке резанием. Эффективность добавок свинца определяется его количеством и структурой сплава, величиной и характером распределения частиц свинца, величиной зерна a-фазы, количеством и распределением β-фазы.
Улучшая обрабатываемость резанием свинец заметно снижает ударную вязкость латуней, ухудшает обрабатываемость давлением, пайку и сварку, полируемость и усложняет гальваническую обработку поверхности изделий.
Прочностные характеристики свинцовых латуней с повышением температуры уменьшаются более интенсивно по сравнению с простыми латунями. Временное сопротивление разрыву латуней, содержащих около 2% свинца, при температуре 600С составляет 10 МПа, при температуре 800С — практически равно нулю.
В зависимости от обработки готовых деформированных полуфабрикатов свинцовые латуни классифицируют на три основных типа: для холодной обработки давлением, для горячей штамповки, для обработки на токарных автоматах.
Структура свинцовистых латуней. обрабатываемых давлением в холодном состоянии, состоит из α-фазы и свинца, содержание которого должно быть в таких пределах, чтобы обеспечить высокую обрабатываемость резанием. К таким сплавам относятся латуни марок ЛС74-3, ЛС64-2, JIC63-3 и ЛС63-2.
Расчетное содержание β-фазы составляет около 20%. Содержание свинца от 1 до 3%. К таким латуням относятся свинцовые латуни марок ЛС60-1, ЛС59-1 и ЛС59-3. Свинцовые латуни. применяемые для обработки на токарных автоматах и в микротехнике (т.е. для изготовления деталей, которые очень малы по размерам, порядка 1 мм) — двухфазные, с высоким содержанием свинца; ЛС63-3 (с малым содержанием/3-фазы) и ЛС58-3 (с высоким содержанием β-фазы).
К латуням, применяемым в микротехнике, предъявляются особые требования по однородности химического состава, допускам по основным компонентам и микроструктуре (размер и распределение частиц свинца, количество и распределение β-фазы, величина зерна α-фазы). Однородность химического состава (гомогенность сплава) необходимо обеспечивать на небольших участках.
Границы оптимизации микроструктуры свинцовых латуней для «микродеталей» определяются содержанием β-фазы от 10 до 30%, величиной зерна α-фазы — от 10 до 50 мк при среднем диаметре частиц свинца 1-5 мк.
Обработка свинцовых латуней. Оксиды различных элементов ухудшают обрабатываемость свинцовых латуней резанием, поэтому при их плавке и литье необходим тщательный контроль за их содержанием. Из элементов-примесей наиболее отрицательное влияние на обрабатываемость резанием оказывает железо, поэтому на его содержание установлены особые ограничения. Литье осуществляется двумя способами: в изложницы и полунепрерывным (непрерывным) способом. Для достижения стабильности химического состава предпочтительно отливать свинцовые латуни непрерывным (полунепрерывным) способом.
Свинец не оказывает влияния на температуру и процесс кристаллизации медно-цинковых сплавов, он затвердевает при 326С и в случае выделения по границам зерен (фаз) ухудшает деформируемость в горячем состоянии двухфазных сплавов.
Области составов стандартных свинцовых латуней, обрабатываемых в горячем и холодном состояниях, показаны на рис. 11.
При горячей штамповке свинцовых латуней, содержащих 56-60% Cu (ЛС59-1), склонность к образованию трещин определяется главным образом температурой деформации. Оптимальный интервал температур, при котором не образуются трещины, доволно узок и находится в области температур, составляющих линии на диаграмме состояния Cu-Zn, разграничивающих двухфазную α+β и однофазную β-области.
Содержание свинца, а также легкоплавких примесей (висмута, сурьмы и других) не оказывает влияния на склонность к образованию трещин при горячей штамповке двухфазных свинцовистых латуней (α+β).
Влияние химического состава на обрабатываемость резанием и давлением свинцовых латуней показано в табл. 7.
Свинцовые α-латуни обрабатывают в холодном состоянии, однако при определенных режимах возможно и горячее прессование.
Основными видами термической обработки свинцовых латуней являются полный рекристаллизационный отжиг и низкотемпературный отжиг для снятия внутренних напряжений.
Свинцовые латуни хуже, чем простые латуни, соединяются припоями, свариваются и полируются. Для соединения свинцовых латуней не рекомендуется применять кислородно-ацетиленовую сварку, дуговую в среде защитного газа и дуговую с расходуемым электродом.
Коррозионная стойкость свинцовых латуней. Свинцовые латуни обладают: отличной устойчивостью против воздействия чистых гидрокарбонатов, фреона, фторированных гидрокарбо- натовых охладителей и лаков; хорошей устойчивостью против воздействия промышленной, морской, сельской атмосфер, спиртов, дизельного топлива и сухого диоксида углерода; средней устойчивостью против воздействия сырой нефти и водяного диоксида углерода; плохой устойчивостью против воздействия гидроксида аммония, хлористоводородной и серной кислот.
Олово незначительно влияет на изменение границ фазовых превращений, однако заметно изменяет природу β-фазы. Диаграмма состояния системы Cu-Zn-Sn приведена на рис. 12.
Двухфазные оловянные латуни обладают высокой коррозионной стойкостью во многих средах. При повышенном содержании олова в латунях появляется новая фаза γ. Фаза γ — хрупкая составляющая, которая заметно ухудшает обрабатываемость латуни давлением в холодном состоянии. Появление γ-фазы в двухфазной латуни (а + /3) наблюдается при содержании олова свыше 0,5% (если содержание олова превышает этот предел, то при превращении β выделяется δ-фаза, обволакивающая α-фазу. Появление хрупких фаз ограничивает легирование латуней оловом. Содержание олова более 2% в латунях ухудшает их обрабатываемость в горячем состоянии. Стандартные оловянные латуни можно разделить на два типа: однофазные (α — твердый раствор) и трехфазные (α + β + γ).
Алюминиевые латуни — медно-цинковые сплавы, в которых основной легирующей добавкой является алюминий.
Алюминий благодаря высокому коэффициенту Гинье (Кэ = 6) и значительной растворимости в твердом состоянии по сравнению с другими элементами (кроме кремния) оказывает даже в небольших количествах заметное влияние на свойства латуни. Добавки алюминия повышают механические свойства и коррозионную стойкость латуней, но несколько ухудшают их пластичность. Количество вводимого алюминия ограничивается пределами, выше которых появляется хрупкая γ-фаза (рис. 13).
При содержании меди, % (по массе): 70; >/J65; 60 предельные содержания алюминия, % (по массе): 6; 5 и 3 соответственно. В латунях, обрабатываемых давлением, содержание алюминия не превышает 4%, в литейных высокопрочных латунях 7%.
Легирование латуней производят одним алюминием или в определенных соотношениях с другими элементами (железо, никель, марганец и др.).
Одним алюминием, как правило, легируют однофазные латуни (ЛА85-0,5, ЛА77-2). Для локализации обесцинкования и предотвращения коррозионного растрескивания при контакте с морской водой в однофазные алюминиевые латуни, содержащие более 15% Zn, вводят 0,02-0,04 As (ЛАМш77-2-0,05).
Избыток мышьяка (> 0,062%) ухудшает пластичность латуней. Алюминий совместно с железом (ЛАЖ60-1-1) и никелем (ЛАН59-3-2) вводят преимущественно в двухфазные латуни.
Железо улучшает пластичность латуней, содержащих свинец, в горячем состоянии измельчает структуру и повышает их механические свойства; никель повышает коррозионную стойкость. Железо и никель несколько снижают пластичность латуней в холодном состоянии.
Легирование латуней алюминием, никелем и небольшими добавками марганца и кремния (ЛАНКМц75-2-2,5-0,5-0,5) делает их дисперсионно-твердеющими и существенно улучшает механические свойства, особенно упругие характеристики.
Однофазные алюминиевые латуни удовлетворительно обрабатываются давлением в горячем состоянии и хорошо — в холодном; двухфазные — хорошо в горячем состоянии и удовлетворительно в холодном. Обрабатываемость резанием колеблется от 30 до 50% (по сравнению с латунью ЛС63-3).
Алюминиевые латуни по сравнению со свинцовыми хуже соединился припоями, но несколько лучше свариваются; по полируемости они близки к двухфазный простым латуням (табл. 8).
Добавки железа значительно измельчают структуру латуней, благодаря чему улучшаются механические свойства и технологические характеристики. Однако’ сплавы системы Cu-Zn-Fe применяются редко. Распространение получили многокомпонентные латуни.
Легирование латуней марганцем заметно повышает их коррозионную стойкость при контакте с морской водой, хлоридами и перегретым паром.
Диаграмма состояния сплава системы Cu-Zn-Mn приведена на рис. 14.
Добавки марганца оказывают незначительное влияние на структуру латуней. Однако марганец уменьшает стабильность упорядоченной решетки фазы β. При содержании Мп > 4,7% (ат.) в сплаве наблюдается частично неупорядоченное состояние при температуре закалки от 520С.
Наиболее благоприятное влияние на свойства и технологические характеристики латуни марганец оказывает в сочетании с другими легирующими элементами (алюминий, железо, олово, никель).
Кремний в твердом состоянии растворим в латунях в значительных количествах, однако растворимость его понижается с увеличением содержания цинка. Область твердого раствора а под влиянием кремния и цинка резко сдвигается в сторону медного угла (рис. 15)
С увеличением содержания кремния в структуре сплавов Cu-Zn-Si появляется новая фаза к гексагональной сингинии, которая при повышенных температурах пластичная и в отличие от β-фазы поляризуется. С понижением температуры (ниже 545С) происходит эвтектоидный распад к-фазы в α + γ’.
Кремнистые латуни, содержащие 20% Zn и 4% Si для обработки давлением не пригодны из-за малой пластичности. Для получения деформированных полуфабрикатов применяются кремнистые латуни, содержащие
Чистая медь не обладает достаточно хорошей текучестью для изготовления сложных изделий. Для подобных целей лучше пользоваться латунью, причем следует иметь в виду — чем светлее сплав, тем ниже температура его плавления.
- для чего проводится отдаленная гибридизация
- для чего проводится оценка недвижимости