для чего скальпируют процессоры
ПРОЦЕССОРЫ
Скальпирование процессора: как и зачем это делать
Скальпирование процессора | Введение
Страшноватый термин, навевающий леденящие кровь воспоминания о практиках индейских племён, означает операцию, которая действительно может быть небезопасной в случае её неаккуратного выполнения человеком без опыта. Формально же всё просто: скальпирование процессора — это снятие теплораспределительной пластины (крышки) для замены термоинтерфейса между ней и кристаллом на более эффективный, а также для сокращения расстояния между ними.
Скальпирование процессора | Что скальпируем?
Возможно, вы удивитесь, но прежде всего процессоры Intel. Дело в том, что с определённого времени лидер рынка использует в качестве внутреннего термоинтерфейса не классические варианты припоя на основе металлов, а термопасту, которая, во-первых, обладает гораздо более посредственными теплопроводящими свойствами, чем припой, а во-вторых, со временем высыхает и вообще теряет эти свойства. А, между тем, тепловыделение мощных моделей за последние годы существенно выросло и может запросто превышать 100 Вт, с которыми справляется далеко не всякий кулер.
Отдельно оговоримся, что проблемы с теплоотводом возникают, в основном, у моделей с индексом K, то есть у чипов с разблокированным множителем. У обычных моделей относительно низкие частоты, и для их охлаждения хватает даже штатного кулера, но с пожилыми экземплярами тоже случаются неприятности.
Все десктопные чипы Ivy Bridge рассчитаны на установку в разъем LGA 1155. Практический смысл в скальпировании имеется для процессоров старших семейств Core i5 и Сore i7 — начиная примерно с i5 3450S и заканчивая i7 3770K. Эти кристаллы имеют довольно высокий термопакет по сравнению с младшими моделями, а поскольку они выпускались около восьми лет назад, внутренний термоинтерфейс давно потерял свои свойства.
Это же относится и к старшим сериям последующих поколений. В частности, к четвертому поколения Haswell для разъёма LGA 1150 начиная с Core i5 4430S и заканчивая Core i7 4790K (2013-2014 гг. выпуска), пятому Broadwell для LGA1150 с i5 5675С до i7 5775С (2015 г.в.), шестому Skylake для LGA 1151 с i5 6400 до i7 6700K (2015 г.в.), седьмому Kaby Lake для LGA 1151 с i5 7400 до i6 7700K (2017 г.в.) и восьмому Kaby Lake Refresh с i5 8305G до i7 8809G (2018 г.в.). Производившиеся в конце 2018 года чипы 9-го поколения Coffee Lake Refresh вроде i5-9600K или i9-9900K снабжались припоем, но из-за особенностей их конструкции замена припоя на жидкий металл существенно улучшает их тепловой режим. Для более свежих поколений скальпирование пока не актуально, если вы только не намерены заниматься экстремальным разгоном.
Что касается продукции AMD, то здесь ситуация принципиально иная: как у Ryzen, так и у FX под теплораспределительной крышкой находится припой, хотя некоторые энтузиасты также не против повысить характеристики теплоотвода. Но, повторим, даже если вы и получите какие-то улучшения, то совершенно незначительные.
Скальпирование процессора | Как скальпируем?
Но сегодня нет особой необходимости прибегать к дедовским способам: продаются специальные машинки для снятия теплораспределительной крышки, рассчитанные на разные семейства чипов. Пользоваться ими предельно просто: чип устанавливается в нишу, в машинку вставляется скользящий блок, конструкция зажимается болтами, после чего нужно медленно и аккуратно нажать на специальный поршень, и крышка отойдёт. Конструкция таких машинок похожа по принципу работы, но может отличаться деталями исполнения, в том числе зависящими от того, на какой тип процессора она рассчитана.
Тем не менее, всегда сохраняется риск того, что оторвётся один из элементов обвязки или сам кристалл от текстолитовой платы. Поэтому, если вы не уверены в своих навыках, лучше обратиться в одну из многочисленных контор, которые в массовом порядке занимаются скальпированием и знают обо всех «подводных камнях». К тому же эта услуга стоит обычно дешевле машинки — порядка 1500-2000 рублей, в то время как машинка обойдется уже в 2000-3000 рублей, а вы вряд ли будете пользоваться ею ежедневно.
После снятия крышки необходимо очистить её внутреннюю сторону от клея и остатков термопасты — обычно для этого применяется салфетка с изопропиловым спиртом, а клей можно удалить с помощью лезвия. Специалисты также рекомендуют очистить от следов клея текстолитовую плату, чтобы исключить возможность перекосов при установки на место теплораспределительной крышки — но это уже нужно делать с помощью растворителя или бензина и ни в коем случае не использовать острые предметы и лезвия, способные повредить многослойную плату.
На середину очищенного чипа наносим термопасту небольшой каплей и аккуратно размазываем тонким слоем. В случае с жидким металлом процедура усложняется, поскольку он проводит электричество. Если капнуть на кристалл слишком много, металл может легко стечь с него на окружающие компоненты и вывести процессор из строя, поэтому лучше подстраховаться и нанести электроизоляционный акриловый лак вроде Plastik-71.
Затем можно возвращать на место теплораспределительную крышку. Здесь возможны два способа: просто поместить чип в разъем на материнской плате, надеть на него крышку и зажать штатным зажимом сокета. Можно ограничиться тем, чтобы крышка держалась на термоинтерфейсе, особенно в случае с Intel, когда чип зажимается в разъеме. Но при желании можно дополнительно приклеить крышку по периметру силиконовым термостойким клеем.
Второй способ — воспользоваться зажимом в машинке для скальпирования, надеть на чип крышку и зажать до ощущения прижима. Сроки отвердевания клея могут достигать суток, но лучше всего свериться с инструкцией к вашему сорту.
Скальпирование процессора | Заключение
Скальпирование процессора — это всегда рискованный процесс: в результате неудачи вы получите бесполезный, но очень дорогой сувенир. Поэтому нужно всегда понимать, зачем вам это нужно. Нет принципиального смысла заниматься заменой термоинтерфейса с чипами производства AMD, потому что в лучшем случае вы выиграете ничтожные пару градусов. Что касается процессоров Intel, то, на наш взгляд, такая процедура вполне оправданна, если у вас шести-восьмилетняя модель старших серий с высоким TDP: к этому времени штатный термоинтерфейс уже точно потерял свои свойства, а это чревато перегревом и выходом чипа из строя. Но при этом нужно осознавать, что в случае неудачного исхода вы также получите неработоспособный кристалл. В качестве альтернативы можно попробовать установить более эффективную систему охлаждения или обратиться за услугой скальпирования к профессионалам.
Во все тяжкие. Разгон и скальпирование процессоров Intel Core i7-4770K и Intel Core i7-6700K
Как показало тестирование, новые процессоры Intel Skylake, выпущенные в конце этого лета, в сравнении с теперь уже устаревшим поколением Intel Haswell не могут предложить пользователю ощутимого роста производительности в большинстве задач. В лучшем случае 14-нм чипы опережают 22-нм «камни» на 10%. Но зачастую преимущество не достигает и 5%. При этом не вырос у решений Skylake и частотный потенциал. И все же платформа LGA1151 оказалась более функциональной, нежели LGA1150. Плюс сами чипы меньше греются, но лучше разгоняются. Так вышло, что модели Skylake получили в «наследство» далеко не самое полезное качество. В этом материале мы сравним возможности разгона современных процессоров Core i7-4770K и Core i7-6700K, а также воспользуемся одним нетривиальным способом получения более высоких результатов.
Во все тяжкие. Разгон и скальпирование процессоров Intel Core i7
О разгоне Intel Skylake подробно
Прежде чем перейти к практической части, предлагаю разобрать особенности разгона центральных процессоров Skylake, ведь в сравнении с поколением Haswell они получили некоторое количество нововведений. На данный момент выпущено две модели, обладающие разблокированным множителем: Core i5-6600K и Core i7-6700K. Больше для платформы LGA1151 оверклокерских «камней» не предусмотрено. С появлением линейки Haswell первоначально происходила точно такая же ситуация. Летом 2013 года были представлены чипы Core i5-4670K и Core i7-4790K, но впоследствии для платформы LGA1150 количество кристаллов с разблокированным множителем увеличилось до семи штук.
Пожалуй, самым главным «нововведением» (в кавычках, ибо все новое — это хорошо забытое старое) в чипах Skylake стал отказ от использования встроенного конвертера питания с последующим его возвращением на материнскую плату. Подобная схема работы не оправдала свои ожидания в предыдущих поколениях процессоров Intel. А именно десктопные кристаллы стали горячее, но в то же время менее податливыми к разгону. Теперь же качество подсистемы питания материнской платы вновь становится первостепенным параметром во время оверклока центрального процессора.
Особенности оверклокерских функций различных платформ Intel
Внешний конвертер теперь отвечает за подачу трех основных напряжений: VCore (вычислительные ядра), VGT (встроенная графика) и VSA (системный агент). Для сравнения: на процессоры Haswell и Broadwell подается единственное напряжение VCC _ IN. Такая система на практике оказалась менее гибкой. В Skylake уже от VCore задается параметр VRing (кольцевая шина).
Блок-схема распределения основных напряжений процессоров Intel Skylake
Еще одно нововведение, касающееся исключительно моделей Core i5-6600K и Core i7-6700K, заключается в отвязке скорости работы тактового генератора от частоты шин DMI и PCI Express. Именно из-за наличия этой привязки разгон Haswell и Broadwell возможен только при помощи переключения делителей CPU Strap в два положения: 125 МГц или 166 МГц. Так что отныне модели Core i5-6600K и Core i7-6700K можно спокойно разгонять не только по множителю, но и по частоте BCLK. Сделано это в том числе и для того, чтобы беспрепятственно увеличивать частоту оперативной памяти стандарта DDR4.
ВАЖНО! Процессоры Intel Skylake без разблокированного множителя по BCLK не разгоняются. В них, как и раньше, шины PCI Express и DMI жестко привязаны к частоте тактового генератора
В целом оверклокерские модели Intel Skylake в плане разгона выглядят предпочтительнее процессоров Haswell. Это утверждение мы еще проверим на практике.
Работа процессоров Intel Skylake с тактовым генератором
Зачем необходимо скальпировать процессор?
В статьях, в той или иной мере затрагивающих тему разгона процессоров Intel, я неоднократно использовал достаточно харизматичный и популярный в Сети комментарий в стиле: «жду следующее поколение, продолжаю сидеть на своем Sandy Bridge.» Действительно, за четыре года особой разницы в производительности между современными процессорными архитектурами не наблюдается. И все же есть у Sandy Bridge по сравнению с Ivy Bridge, Haswell, Broadwell и даже Skylake одно очень весомое преимущество — в них в качестве термоинтерфейса между кристаллом и теплораспределительной крышкой использовался припой на основе индия. В более прогрессивных решениях Intel начала применять обычную термопасту весьма посредственного качества, получившую название TIM (Thermal Interface Material). Особенно это «новшество» пагубно сказалось на решениях, построенных на базе архитектуры Haswell. Дополнительно на плохой отвод тепла сказались прямоугольная форма кристалла, а также неравномерное тепловыделение трехмерных транзисторов, впервые задействованных в процессорах Ivy Bridge. «Камни» поколения Sandy Bridge, оснащенные разблокированным множителем, зачастую разгонялись до стабильных 5 ГГц на воздухе. Все более современные чипы Intel подобной оверклокерской прытью похвастать не могут, а используемая в конструкции термопаста оказывает самый настоящий эффект бутылочного горлышка.
Пример разгона Intel Core i5-2500K до абсолютно стабильных 5 ГГц. За охлаждение отвечал Noctua NH-D14
Решение этой проблемы лежит на поверхности — необходимо заменить TIM на что-нибудь более эффективное. Однако для этого потребуется демонтировать с чипа теплораспределительную крышку, что, в свою очередь, приведет к потере гарантии на устройство. К тому же подобная операция, именуемая скальпированием, сопряжена с риском повреждения процессора. Но, как известно, кто не рискует, — тот мирится с троттлингом.
«Скальпирование» — имя нарицательное. Как «ксерокс» или «памперс». Действительно, есть способ, при котором крышку процессора буквально срезают острым лезвием. Однако существуют и другие методы
Использование термопасты посредственного качества вместо припоя стало настоящей притчей во языцех. От энтузиастов вылилось немало критики в адрес Intel. Однако вот уже третье поколение подряд процессорный гигант выпускает чипы с TIM. Можно и дальше продолжать костерить чипмейкера в «интернетах», но вряд ли это занятие повлияет на дальнейшие инженерные свершения Intel. К тому же поколение «камней» Skylake уже вышло, а первые 10-нм решения появятся не раньше 2017 года.
Я уже несколько раз акцентировал внимание на том, что из-за низкокачественного TIM процессоры семейства Haswell обладают крайне низким разгонным потенциалом. Сами по себе чипы отзывчивы к подаче напряжения и увеличению тактовой частоты, но вот для эффективного отвода тепла необходимо установить очень мощное охлаждение. Здесь понадобится серьезная СВО или даже «фреонка». Тем не менее, приобретение подобного оборудования влетит потенциальному покупателю в копеечку. Скальпировать процессор выгоднее!
Noctua NH-D15 — один из самых производительных воздушных кулеров современности
Для экспериментов с разгоном современных процессоров Intel я взял два чипа: Core i7-4770K и Core i7-6700K. Для их охлаждения в тестовый стенд был интегрирован кулер Noctua NH-D15 — одно из самых эффективных решений современности. В качестве термоинтерфейса между процессором и радиатором использовалась комплектная термопаста NT-H1. Она наносилась на поверхность теплораспределителя ровным и тонким слоем. Нагрузка на «камень» подавалась при помощи программы LinX 0.6.5, в основе которой лежит математический пакет Linpack. Пожалуй, на сегодняшний день не существует софта, прогревающего процессор сильнее. Тестовый «прогон» длился 15 минут. Температура в помещении поддерживалась на уровне 25 градусов Цельсия.
Полностью тестовые стенды выглядят следующим образом.
Начнем с Core i7-4770K. Уже в номинале (при активной технологии Turbo Boost) Noctua NH-D15 пришлось включиться в полную мощь. Максимальная температура процессора достигла 89 градусов Цельсия. И это с кулером стоимостью 90 долларов США! Без какого-либо разгона! При попытке поднять скорость работы на 100 МГц температура поднялась еще на два градуса Цельсия. А вот при частоте 4100 МГц топовая австрийская «башня» уже не справилась с охлаждением. Напомню, что максимальная температура процессоров Haswell, при которой не активируется троттлинг, составляет 100 градусов Цельсия. Как видите, даже с использованием сверхэффективного кулера ни о каком серьезном разгоне Core i7-4770K речи даже не идет.
Серьезный нагрев процессоров Intel Haswell из-за низкокачественного термоинтерфейса — профильный недостаток этих решений
В принципе, ничего нового я не открыл. От себя лишь добавлю, что используемый в испытании Core i7-4770K до этого момента почти два года лежал без дела. Есть вероятность, что за это время TIM в нем элементарно высох. Во-вторых, судя по рабочим напряжениям, мне достался очень «тугой» чип. Есть модели Core i7-4770K, которые работают стабильно на частоте 3900 МГц при напряжении 0,9 В. Мне же пришлось выставить более высокую разность потенциалов в размере 1,1 В.
Скальпирование процессора LGA 2066 Skylake-X (Как чем и зачем) и Припой в Skylake-X Refresh.
Для владельцев процессоров intel LGA 2066 особенно если это Skylake-X пожалуй самая актуальная тема это скальпирование, а точнее вопрос: «Стоит ли игра свеч?» Ответ на него кстати крайне прост:
реклама
Другой вопрос, что разгон даст))) ответ на этот на него в следующем материале!
«А пока вернёмся к нашим пони»
Перед тем как думать о разгоне и скальпировании нужно проверить VID проца.
И к тому же стоить понимать что чем больше ядер тем меньше вероятность получить эту заветную 5ку. Плюс ещё с этой 5кой не так все гладко так как есть по мимо обычной частоты, AVX, AVX512 и ещё разгон кеша. данная тема так же будет раскрыта в следующей заметке.
Начнем с самого основного чем скальпировать? Мой опыт и рекомендация Китайский делиддер за 500р, для всех камней подойдёт идеально. С его помощью с дюжину камней я скальпировал, ниже есть пара видео посвящённых самому процессу с тестом и нанесением ЖМ.
Основное видео просвещённое скальпированию Core i9 7900X
реклама
Мой первый пробный ролик с Core i7 7740X (там все так же как и выше)
И конечно же ответ на вопрос стоит ли покупать дорогущий der8auer Delid Die Mate X
Ответ кстати нет=))))
Данный пост создан для того чтобы показать и объяснить что скальпирование это просто. Затраты минимальные, профит большой (если нужен разгон и камень имеет хороший потенциал), жаль всё это лишает гарантии. Думаю подле этого, некоторым владельцам Skylake-X не захочется идти отдавать кому то деньги за скальп, так как это немного лишено смысла, особенно если вы энтузиаст, тем более начинающий.
Скальпирование процессора без жидкого метала, есть ли смысл? (ответ в посте)
Все знают что intel под крышки своих процессоров вместо припоя мажет какую-то дрянь.
Существует процедура замены этой дряни на термоинтерфейс жидкий металл, но стоит он прилично. А что если вместо родной пасты намазать хорошую arctic cooling mx-4?
Я попробовал, смысл есть. Процессор 7600к, охлаждение жидкостное, ватерблок старый EK supreme HF. Скальпировал с помощью китайского девайса с алиэкспресс:
Процессор просто вставляется внутрь, подвижная часть отрывает крышку, что бы всё пошло легче процессор можно нагреть феном, я использовал строительный, им быстрее.
Гарантия потеряна, поэтому крышку дополнительно отполировал с обеих сторон:
Далеко не идеально, но ещё по прошлым процессорам понял что идеал тут большой роли не играет.
А вот и результат (слева сток, справа после скальпа, смотреть на крайние столбцы):
Нагрев проводился LinX-0.6.5 c AVX в течении 40 минут (что бы вся жидкость в контуре прогрелась). В реальных задачах температура будет ниже.
Полировка и использовании жидкого металла вероятно даст ещё большую разницу. Но и с обычной термопастой разница большая.
«Все знают что intel под крышки своих процессоров вместо припоя мажет какую-то дрянь»
Вы припоем называете термопасту?
Ребят а вообще как узнать по модели процессора что у него внутри термопасту менять надо? у меня core i7 3820
Оранжевую деталь-отцеплялку от лего при скальпировании тоже использовали?
тоже думал что можно скальпануть и намазать терпопасту, в итоге все равно пришлось заказывать ЖМ.
А крышку приклеил чем назад?
а зачем? у меня и на штатном кулере без скальпирования камень не разогревается выше 70
Вопрос далеко не знатока А если проц без крышки оставить? Я имею ввиду что можно ли на разобранный проц установить стандартный кулер?
Через год термопаста высохнет и проц сгорит с высокой степенью вероятности. Жидкий металл эту проблему снимает
То что вы называете крышкой процессора, называется радиатором процессора.
Или я чего-то не понимаю или ты фотки перепутал. Справа температура больше.
Как бы крышку сорвал, нахрена ее назад одевать? И вешай сразу кулер.
Путешествие в нанометровый мир
Все мы знаем как выглядит процессор. Знаем что под крышкой которая передает тепло находится небольшой кремниевый кристалл, в нем и творится вся магия вычислений. Казалось бы, любоваться тут не на что – что может быть красивого в обычном кусочке полированного металла?
Но стоит снять с кристалла верхний слой пустого кремния, добавить капельку иммерсионного масла и чип начинает переливаться всеми цветами радуги, показывая свой богатый внутренний мир. Разумеется, эти цвета ложные — структуры внутри, давно уже имеют нанометровые размеры и на порядки меньше длины волны света.
Красота из прошлого – Penitum II
Начнем нашу экскурсию вглубь старичка Pentium II родом из 97 года. Вторые пеньки производились по техпроцессу от 180 до 350 нм, а частоты достигали смешных по современным меркам 450 МГц.
Эти процессоры интересны тем, что среди них есть первые решения, производимые по технологии Flip Chip, то есть когда кристалл припаивается к подложке, а не соединяется с ней проводками.
На фото слева кристалл Pentium II, который изготовлен по старой «проводной» технологии Wire Bonding, справа — чуть более крупный собрат уже с Flip Chip.
При этом, что интересно, техпроцесс у них одинаковый, 250 нм, а увеличение площади произошло только из-за перехода на новую технологию. Да, на тот момент в новом способе производства не было смысла, но это позволило заложить фундамент для создания современных процессоров с тысячей контактов. Момент еще пока заметной глазу эволюции.
И сразу для контраста погрузимся в знакомые многим 14 нанометров. Уничтожать старые чипы может каждый, то вот выводить из строя современные мощные CPU на много дороже. Но все же такие находятся и у нас есть возможность посмотреть что под верхним слоем кремния у быстрого 8-ядерного Core i9-9900K.
На фото отчетливо видны 8 прямоугольников ядер, и большая область справа — это интегрированная графика, которая занимает почти треть всего кристалла — раньше про нее мало кто вспоминал, сейчас другое время. Разумеется, после таких варварских экспериментов процессор умер, но в данном случае красота определенно стоила жертв.
Варварское уничтожение AMD Threadripper
Спасибо AMD, восьмью ядрами сейчас уже никого не удивить. Известный немецкий оверклокер Роман «Der8auer» Хартунг буквально разломал отнюдь недешевый Threadripper 1950X чтобы показать нам его 16-ядер.
В 2017 году это были те же 14 нанометров, вернее назывались так же как у Интел, но по факту на тот момент синие нанометры были меньше. Почему так мы рассказали в выпуске про 2 нм IBM.
Как на самом деле выглядит процессор на примере Intel 4004
Глядя на красивые переливающиеся кристаллы многие, наверно, задаются вопросом — а как на самом деле выглядят процессоры внутри? Можем ли мы как-то это узнать? Разумеется — достаточно взять чип, техпроцесс которого больше длины волны видимого света, что позволяет разглядеть его внутренности в обычный световой микроскоп.
Пожалуй самый яркий пример — Intel 4004 — первый микропроцессор компании, 50 лет назад совершивший настоящую революцию в электронной промышленности. Его техпроцесс в 10 мкм на порядок больше длин волн видимого излучения, что делает его идеальным кандидатом для изучения. И, надо сказать, выглядит он не особо эффектно: оранжевые полоски — это медные дорожки, серые — различные кремниевые структуры. И да, это реальные процессорные цвета.
По оценке Intel, вычислительная мощность 10-летних процессоров Intel Core второго поколения с миллиардом транзисторов, не менее чем в 350 тыс. раз превосходит мощность первого процессора Intel. Невероятный прогресс за 40 лет. Сейчас мы такого уже не увидим.
Разглядываем отдельные транзисторы
Кстати о транзисторах, некоторые свежие процессоры имеют уже больше 40 миллиардов крошечных переключателей, которые увидеть в световой микроскоп невозможно. Но если очень хочется узнать, как на самом деле выглядит один транзистор, то можно обратиться к старым простым логическим микросхемам – например, советской 3320A, которая выпускалась в Зеленограде в 70х годах.
Этот золотой лабиринт не имеет ничего общего со словом техпроцесс ибо структуру микросхемы, которая представляет из себя пару логических элементов 4И-НЕ, можно рассмотреть буквально в школьный микроскоп.
И да, как видите по фото, никакой тут магии и сложной электроники нет — сам по себе транзистор устроен очень просто, что позволяет значительно их уменьшить и производить миллиардами штук.
Огромный кристалл AMD Fiji
Но что-то мы все о процессорах да о процессорах. Давайте посмотрим, как выглядят внутри видеочипы. Да, уничтожать дефицитные графические кристаллы сейчас выглядит кощунством, но спешу успокоить — фото были сделаны еще до дефицита. Итак, мы можем полюбоваться на большой 28 нм кристалл AMD Fiji, который работал в видеокартах Fury 2015 года выпуска и снабжался 4 ГБ памяти HBM.
Почти 9 млрд транзисторов. Прошло 6 лет, новыми эти карты уже не встретить, а на авито они стоят аж 25 000 рублей.
А вот еще фото другого GPU – на этот раз GP102, который ставился в топовую GTX 1080 Ti. Хорошо видны 6 кластеров GPC, что дает аж 3.5 тысячи потоковых процессоров. Мощь 12 млрд. транзисторов в 2017 году за 50 000 рублей.
Сенсор оптической мыши
Теперь, давайте уйдем в сторону. Вы никогда не задумывались, как выглядит сенсор оптической мыши? На самом деле достаточно занятно, ведь это объединение фотосенсора и чипа. Вы видите фотосенсор старенькой мышки с разрешением матрицы всего 22 на 22 пикселя (ST Microelectronics OS MLT 04), однако этого вполне хватает, чтобы улавливать изменения поверхности и тем самым определять сдвиг мыши. А с учетом того, что делать это нужно быстро, сам чип расположен в одном кристалле с фото матрицей.
У современных мышей разрешение матрицы выше и достигает сотни на сотню пикселей, что позволяет им быть точнее и быстрее. Но в целом сенсоры выглядят также. — например, на картинке можно полюбоваться на внутренности PixArt PMW 3310.
Вернем к процессорам, на этот раз мобильным. Современные ARM-чипы можно в прямом смысле назвать искусством, ведь в одном кристалле прячутся и несколько кластеров ядер, и GPU, и многочисленные контроллеры. Так, например, выглядит 8-нм Exynos 9820.
Сходу тут сложно понять, где что. Но все же получилось определить, что в правом нижнем углу расположены два больших ядра M4, которые могут работать на частоте до 3 ГГц. Над ними 2 средних ядра Cortex A75 и 4 малых Cortex A55, которые ощутимо меньше и слабее. Слева внизу можно увидеть двухъядерный нейропроцессор, ну а выше от него расположен крупный GPU Mali с 12 ядрами.
Консольный чип Xbox One X
Что интересно, ARM-чипы очень напоминают APU из консолей. И это не случайно — последние также на одном кристалле имеют и процессорные ядра, и графику, и различные контроллеры. Так выглядит 16-нанометровый чип из Xbox One X.
Хорошо видно, насколько велика графика от AMD с 40 вычислительными модулями — она занимает 3/4 чипа. А вот 8 процессорных ядер AMD Jaguar можно сначала и не заметить – все дело в том, что по сути это урезанная архитектура, которая применялась для различных ультрабучных чипов «красной» компании, что и отразилось на их размерах.
Огромный кристалл 18-ядерного Core i9
В то время как AMD продолжает приносить в массы многокристальную структуру процессоров, Intel все еще выступает за один большой кристалл.
И в случае с высокопроизводительной линейкой гигантомания компании удивляет — так, в случае с Core i9-7980XE на одном кристалле размещено аж 18 ядер!
Разумеется, стоит такой CPU немало, но все тому же Роману «Дербауэру» он достался нерабочим от подписчика, что и позволило с чистой душой произвести вскрытие пациента. Картинки действительно удивляют — 18 огромных ядер вплотную друг к другу, из-за чего теплопакет составляет аж 165 Вт, а на деле выше 200. Но зато с межъядерными задержками все хорошо.
Российский чип Байкал
И под конец — а вы никогда не задумывались, как выглядят внутри российские процессоры? Много ли в них отличий от забугорных решений? На самом деле — нет, как показало вскрытие последнего Baikal — 2 миллиарда транзисторов на 28 нанометрах. Этот ARM-чип имеет два 4-ядерных кластера и графику Mali, а производится на заводах TSMC.
Так что внутренних отличий от других ARM-чипов, очевидно, немного, и структура действительно похожа на фото Exynos выше. К слову, на основе этого Байкала уже выпускаются и продаются простенькие, но отнюдь не дешевые ПК.
Как видите, процессоры прошли огромный путь от простых интегральных схем, внутренности которых можно разглядеть буквально под лупой, до высокотехнологических чипов, состоящих из миллиардов транзисторов. И уже долгие годы человек не является главным звеном в цепи производства полупроводниковых кристаллов — целой жизни не хватит, чтобы расположить в кусочке кремния размером с ноготь такие огромные количества миниатюрных переключателей.
Да, вы правильно поняли — компьютеры проектируют процессоры. Умные машины создают себе подобных. А может, лет через 10, компьютеры решат, что мы вообще лишние в этой схеме?
Мой Компьютер специально для Пикабу.
50 лет назад создан первый микропроцессор
Микропроцессор Intel 4004 в керамическом корпусе с серыми полосами (оригинальный тип корпуса)
15 ноября 1971 года фирма Intel выпустила свой первый коммерческий микропроцессор Intel 4004, ставший также первым микропроцессором в мире. Его разработка началась в 1969 году, когда японская компания Nippon Calculating Machine Corporation попросила Intel создать 12 чипов для калькулятора Busicom 141-PF.
Эта задача была поручена инженерам Федерико Фаггину, Теду Хоффу и Стэнли Мазору. Именно они придумали инновацию, которая стала настоящей гордостью компании: 16-пиновый микропроцессор из единого куска кремния с 2300 транзисторами MOS, работающий с частотой 740 кГц.
— По стечению обстоятельств первый микропроцессор получил обозначение, аналогичное дате сотворения мира по версии одного из основоположников библейской хронологии Джеймса Ашшера.
— Цикл инструкций: 10,8 микросекунд (в рекламном буклете Intel есть ошибка, указана скорость выполнения операций 108 кГц вместо 93 кГц, ошибку заметили лишь на 40-летие процессора в 2011 году).
— Intel 4004 является одной из самых популярных микросхем в плане коллекционирования. Наиболее высоко ценятся бело-золотые микросхемы Intel 4004 с видимыми серыми следами на белой части (оригинальный тип корпуса). Так, в 2004 году такая микросхема на интернет-аукционе eBay оценивалась примерно в 400 долларов. Немного менее ценными являются микросхемы без серых следов на корпусе, обычно их стоимость составляет порядка 200—300 долларов
Задача серьёзная
К отопительному сезону готов
ZX Spectrum
23 апреля 1982 года британская компания «Синклер Рисёрч» представила 8-разрядный домашний компьютер «ZX Spectrum», один из наиболее популярных компьютеров в Европе в 1980-е годы!
Компьютер был создан на основе микропроцессора Z80 фирмы «Zilog», улучшенного и более продвинутого варианта Intel 8080 (в отличие от прототипа ему, в частности, требовалось только один источник питания +5В).
В ходе разработки компьютер назывался «ZX81 Colour» и «ZX82», название «Spectrum» должно было подчеркнуть одно из главных отличий от его предшественника ZX81 — цветное изображение. Почитатели этого компьютера часто называют его «Спекки» (англ. Speccy).
В апреле 1982 года компьютер был представлен в двух вариантах — с 16 и 48 КБ оперативной памяти. В ПЗУ был прошит диалект языка Бейсик, так называемый Sinclair BASIC.
Эта же программа ПЗУ обеспечивала базовый ввод-вывод и пользовательский интерфейс. Системными процедурами (например, печатью на экран) можно было воспользоваться из машинного кода, вызвав их по абсолютным адресам. Архитекторами компьютера была принята политика не изменять программу ПЗУ, несмотря на наличие в ней ошибок. Расположение такой «операционной системы» и языка программирования в постоянной памяти обеспечивало перезагрузку компьютера за пару секунд, включая тестирование ОЗУ, и, что важно, уменьшало размер программ (программист мог использовать «стандартные» процедуры ПЗУ, не расходуя доступную оперативную память и не теряя при этом совместимость).
Первая модель «ZX Spectrum» имела недорогую в производстве клавиатуру, состоящую из 40 резиновых клавиш. Характерной её особенностью была многофункциональность: алфавитно-цифровые клавиши имели до семи значений в различных режимах. При этом режим ввода отображался с помощью курсора. Такими режимами были: L — для ввода строчных букв, C — для ввода заглавных букв, K — для ввода основных ключевых слов BASIC, E — для ввода дополнительных ключевых слов и операторов и G — для ввода псевдографических, управляющих символов и символов, определённых пользователем.
Режим переключался как автоматически, так и с помощью управляющих клавиш Caps Shift и Symbol Shift. Например, в начале набора BASIC ждёт номер строки или команду, поэтому курсор находится в режиме K. Однократное нажатие клавиши «G» в таком режиме приведёт к автоматическому вводу оператора GO TO. После этого курсор перейдёт в режим L и позволит набрать число, имя переменной по буквам или математическое выражение (в том числе с помощью режима Е). Более поздние модели (начиная с ZX Spectrum 128) позволяли в качестве альтернативы набирать команды языка по буквам.
Благодаря невысокой цене, за первые 17 месяцев было продано более миллиона этих машин. Низкая стоимость компьютера была обусловлена целым рядом факторов: низкими техническими и пользовательскими характеристиками по сравнению с более дорогими компьютерами того времени; использованием бытового телевизора в качестве монитора и магнитофона в качестве внешнего накопителя.
В начале 80-х ZX Spectrum был одним из самых популярных компьютеров в Европе. На мировом рынке его основным соперником были американские компьютеры Commodore 64, а также 8-битные Atari, BBC Micro, Amstrad CPC и компьютеры системы MSX. Любопытно, что европейские MSX-системы (например, Philips VG80XX) были также построены на базе процессора Z80.
Появление в продаже доступных компьютеров привело не только к всплеску популярности видеоигр, но и программирования. Несколько поколений европейских программистов называют своим первым компьютером ZX Spectrum. Комментируя вызванный им компьютерный бум, сэр Клайв Синклер (владелец Sinclair Research) тогда заявлял, что «программное обеспечение, работающее на кремнии» должно положить конец «долгой монополии углеродных организмов, являющихся самой разумной жизнью на Земле».
В 80-е годы большинство советских микрокомпьютеров было построено на базе микропроцессора КР580ВМ80А (аналог Intel 8080) и не имело общей совместимости. С открытием советского рынка и приходом на него импортных микропроцессоров Z80 (а позднее и собственных аналогов Т34ВМ1 и КР1858ВМ1), появилась возможность клонировать ZX-Spectrum и адатировать его богатейшую библиотеку игр и программ!
В результате, в начале 90-х многочисленные клоны ZX Spectrum, полностью или частично собранные на отечественной элементной базе (включая наборы для самостоятельной сборки), получили широкое распространение на территории бывшего СССР.
Иной раз кажется, что если бы и фирма Sinclair Research вовремя подсуетилась и выпустила свою игровую приставку, она сумела бы сохранить лидирующее положение на рынке. Как ни удивительно, но такая идея у неё была!
Создатели ZX-Spectrum готовили к выпуску игровую консоль
В 1983-м (том самом году, когда компания Nintendo выпустила легендарный Famicom) Sinclair Research могла выпустить первую европейскую игровую приставку!
Инженер Sinclair Research Мартин Бреннан разработал игровую систему LC3 (Low Cost Colour Computer), реализованную всего на двух микросхемах, с играми не на кассетах, а на картриджах. Стив Берри написал для LC3 многозадачную операционную систему с оконным графическим интерфейсом. Если бы этот игровой «low-coster» увидел свет, возможно, он повторил бы успех ZX-Spectrum и смог бы составить конкуренцию Nintendo, Atari и Sega!
По всей видимости, прообразом будущей консоли стал интерфейс ZX Microdrive, позволявший загружать игры с картриджей.
Но в ноябре 1983-го все работы над LC3 прекратились. Силы были переброшены на проект Sinclair QL, который должен был стать первым в мире 32-разрядным домашним компьютером.
В 1983-м до Клайва Синклера дошли слухи о том, что американская фирма Apple готовит к выпуску компьютер на 32-разрядном процессоре, ориентированный для домашнего и бизнес-использования. Он решил действовать на опережение. Им было приложено максимум усилий для того, чтобы успеть выпустить Sinclair QL раньше компьютера Apple. Спешка отразилась даже в названии компьютера: буквы QL означали Quantum Leap — «Квантовый Скачок».
В свою очередь, разработчики игр и ПО также не спешили осваивать платформу QL из-за необходимости использования картриджей Microdrive. В итоге владельцы ZX-Spectrum, которые были вполне довольны тем, что у них уже было, делать апгрейд до компьютера с довольно скромной библиотекой игр не пожелали.
Фирма Amstrad продолжила линейку Spectrum, снабдив их встроенным магнитофоном (величаво именуемым «datacorder»), как и компьютеры своей марки. В 1986-м был выпущен ZX Spectrum +2, а год спустя ZX Spectrum +3, ZX Spectrum +2A и +2B. Ни одному из них не удалось даже приблизиться ни к успеху ZX-Spectrum, ни к популярности Amstrad CPC-664.
Фирма Sinclair Research продолжила своё существование, однако компьютерным бизнесом уже не занималась. Интересы Клайва Синклера переключились на транспортные средства: инвалидные коляски, велосипеды и электромобили. Оглядываясь в прошлое, можно с уверенностью сказать, что ZX-Spectrum стал самым большим успехом его жизни!