для чего служит интеркулер в системе турбонаддува на дизель
Разрушители легенд. Турбонаддув дизеля. Часть №2. Интеркулер.
Для чего нужен интеркулер?
Для того чтобы ПОЛНОСТЬЮ сжечь 1кг горючего(любого углеводородного) нужно около 3,5 кг кислорода. Такое количество кислорода содержится в 15кг воздуха.
Двигатель для приготовления горючей смеси не взвешивает ни топливо, ни окислитель. И то и другое в цилиндры поступает отмеренное ОБЪЁМАМИ. На примитивных двигателях никто и не пытался измерять сколько реально входит воздуха в цилиндры или впрыскивается топлива. По большому счёту на дизелях это и сегодня нафиг не нужно. Но ужесточение экологических норм с одной стороны и желание производителя заявить как можно бОльшую мощность двигателя с другой стороны — заставляют таки обвешивать дизель кучей датчиков. Что же делают эти датчики? Эти датчики позволяют понять сколько у нас на каждом такте поступает в камеру сгорания воздуха в ГРАММАХ и сколько поступает топлива в ГРАММАХ. И очень прецизионно ограничить подачу топлива в двигатель — буквально на грани от разрешённого законодательством.
Плотность и вязкость углеводородного топлива очень сильно зависит от температуры:
Плотность воздуха ещё сильнее зависит от температуры:
Потому для прецезионного смесеобразования нужно знать и температуру топлива и температуру воздуха. Но цель данной статьи не смесеобразование(этот вопрос мы уже разобрали в предыдущих статьях), а вполне прикладная задача — как напихать в цилиндры двигателя максимальное количество МОЛЕКУЛ воздуха.
Для сжатия воздуха обычно используется турбокомпрессор. Именно он позволяет удвоить, а то и утроить ДАВЛЕНИЕ воздуха во впускном коллекторе двигателя — соответственно удвоить, а то и утроить количество поступающего в цилиндры воздуха, а значит — позволит спалить и топлива больше и получить в итоге повышенную мощность с неизменного объёма двигателя.
Ну а при чём же здесь интеркулер?
При быстром(адиабатическом) сжатии воздуха его температура пропорционально растёт.
При сжатии воздуха до давления в 0.5атм избытка воздух нагреется на 45С просто в результате сжатия. Если сжимать воздух до давления 1атм избытка — то он нагреется уже на 85С. В современных высокофорсированных дизелях воздух сжимается до 2-3 атмосфер и его температура увеличивается до 200 градусов. Понятно, что за счёт теплопередачи от раскалённых лопаток, корпуса турбины и стенок впускного коллектора воздух будет нагрет ещё заметно сильнее.
Но с ростом температуры снижается ПЛОТНОСТЬ воздуха.
Если проанализировать грубо — то получается приблизительно такая зависимость при сжатии воздуха температурой +20С:
наддув 0,5атм — повышение темп воздуха на 45С — падение плотности воздуха на 15%
наддув 0,7атм — повышение темп воздуха на 65С — падение плотности воздуха на 23%
наддув 1атм — повышение темп воздуха на 85С — падение плотности воздуха на 30%
наддув 1,5атм — повышение темп воздуха на 100С — падение плотности воздуха на 34%
наддув 2атм — повышение темп воздуха на 125С — падение плотности воздуха на 42%
наддув 3атм — повышение темп воздуха на 160С — падение плотности воздуха на 55%
Считаем на пальцах:
Если турбина у нас качает 1атм избытка — то мы надеемся на удвоение количества(массы) воздуха, загоняемого в цилиндры. Но без эффективного интеркулера из-за снижения плотности воздуха при сжатии мы получим не удвоение МАССЫ воздуха, а лишь: Х*2\100*70=1,4Х
Увы и ах!
Именно поэтому старые безинтеркулерные дизеля с примитивными турбинами(с давлением в прыжке до 0,7атм) и не блещут приростом мощности. Ибо — Х*1,7\100*77=1,31Х
30% прироста МАКСИМУМ даже теоритически.
Практически всё обычно намного хуже из-за организации топливоподачи на этих дизелях.
Интеркулер позволяет заметно снизить температуру сжатого воздуха и таким образом повысить его плотность. Понятно, что охладить воздух после турбины обратно до температуры забортного воздуха практически не реально, но стремится к этому стОит. Правда на серийных автомобилях производитель этим вопросом редко заморачивается — потому мы и наблюдаем интеркулеры смешных размеров, нахлобученные поверх двигателей не в самом удачном с точки зрения охлаждения месте — сбить пиковую температуру(и вписаться в эконормы) хватает и таких. Именно из-за понижения выбросов азотистых соединений интеркулер и стал стандартным узлом любого турбодизеля — до такой степени стандартным(как и сам ТУРБОдизель), что надписи типа «2.8 intercooler turbo» давно исчезли с кузовов автомобилей.
Существует ещё один интересный момент.
В отличие от турбонагнетателя, где на «утрамбовку» воздуха затрачивается довольно существенная мощность(не верьте утверждениям, что турбина утилизирует «дармовую» энергию выхлопных газов — ничего дармового в этом мире не бывает), на «утрамбовку» воздуха интеркулером таких колоссальных затрат энергии обычно не требуется. Потому на режимах частичной мощности эффективный интеркулер позволяет значительно «разгружать» турбонагнетатель — ведь давление на впуске в двигатель можно снизить пропорционально росту плотности воздушного заряда.
Опять считаем на пальцах:
Пусть турбина давит 0.7атм избытка. Воздух нагревается на 65С. Плотность воздуха при этом падает на 23%.
Если установить интеркулер, который обеспечит снижение температуры сжатого турбиной воздуха хотя бы на 40-45С — то плотность воздуха после интеркулера возрастёт на 15%. Можно снизить давление турбины на эти 15% — до 0,45атм избытка. Мощность двигателя останется прежней — воздуха в граммах поступает одинаковое количество, а вот расход топлива заметно снизится — ведь сжимать воздух приходится до существенно меньших значений.
На допотопных турбинах с вестгейтом эффект экономии топлива за счёт этого эффекта выражен слабо — ведь энергия выхлопных газов за счёт установки интеркулера снижается незначительно и турбина давит ровно столько, сколько может. На турбинах с управляемой геометрией, регулируемой механическим клапаном(или примитивным электронным контроллером), тоже выигрыш не велик — все эти системы стремятся обеспечить максимально возможное давление(то самое при котором начинает открываться клапан сброса) невзирая на то, нужно ли на данном режиме работы настолько высокое давление или нет. Давайте ещё раз вспомним — ТУРБИНА на распространённых ТУРБОдизелях обеспечивает от 20 до 35% тяги. Другими словами — при нажатии на газульку до 2\3 её хода нам давление турбины НЕ НУЖНО ВООБЩЕ!
Поэтому на частичных нагрузках из-за ненужного наддува заметно страдает общий КПД двигателя. А вот при управлении геометрией турбины компьютером поумнее — можно получить значительную экономию топлива за счёт точного дозирования наддува. Речь идёт о реальных 10-15% расхода — именно столько получали владельцы ZD30 просто крутя регулировку штока геометрии турбины в сторону снижения давления. Но тупое снижение давления турбины вызывает и снижение максимальной мощности двигла.
По фуншую же нужно ВСЕГДА поддерживать давление на впуске всего лишь ЧУТЬ ВЫШЕ необходимого для полного сжигания топлива(количество потребного топлива определяется газулькой) — тогда будет доступна и ВСЯ ВОЗМОЖНАЯ(турбина ZD30 качает без вреда для себя до 1,7атм избытка — что даёт момент до 620Нм долговременно при наличии эффективного интеркулера) мощность двигателя и экономия топлива на режимах частичной мощности. Турбина с изменяемой геометрией как раз позволяет ХУДО-БЕДНО вытворять такие вещи.
Почему худо-бедно?
Об этом читайте в следующих статьях.
что такое интеркулер
Грубо говоря, интеркулер — это промежуточный радиатор охлаждения воздуха, устанавливаемый на двигателях внутреннего сгорания, оснащенных турбинами. Интеркулеры устанавливаются и на бензиновых, и на дизельных двигателях.
Назначение интеркулера — уменьшить температуру воздуха, подаваемого в двигатель. Как известно, плотность воздуха тем больше, чем ниже его температура. В то же время, при нагнетании воздуха турбиной он разогревается, а значит, становится менее плотным, и количество поступающего к двигателю в единицу времени воздуха становится меньше. Значит, нужно охладить сжатый турбиной воздух, сделать его более плотным, что позволит двигателю с турбонаддувом развить большую мощность.
Отсюда становится понятно, почему интеркулеры не устанавливаются на нетурбированных двигателях: транспортные средства с двигателями, лишенными турбины, используют прохладный, не подвергавшийся сжатию, воздух из окружающей среды, прошедший только через воздушный фильтр.
Интеркулеры, как правило, устанавливаются в передней части автомобиля, сразу за бампером или решеткой радиатора, так, чтобы быть первыми на пути набегающего на автомобиль прохладного воздуха. Интеркулер охлаждает точно тем же способом, что и обычный радиатор охлаждения двигателя, только не воду, а воздух: по изогнутой трубке, снабженной многочисленными ребрами для повышения теплоотдачи, прокачивается воздух, сжатый турбиной; снаружи интеркулер обдувается более прохладным атмосферным воздухом.
Таким образом, воздух, прошедший через интеркулер, становится более холодным (в идеале его температура должна равняться температуре забортного воздуха, но для этого нужен промежуточный радиатор очень большого размера, так что обычно довольствуются примерно 70% снижением температуры прошедшего через турбину воздуха) и более плотным, что увеличивает мощность двигателя и повышает детонационный порог.
Фронтальный интеркулер
При адиабатическом (без теплообмена с окружающей средой) сжатии воздуха в системе наддува его температура повышается.
(Твход нагнетателя)/(Твых нагнетателя) = (Рвход/Рвых)(n-1)/n.В реальной ситуации при Т на входе нагнетателя 20 °C:
Рвых/Рвхода = 1,5, следовательно, разность температур составляет 45 °C и после сжатия Твых = 65 °C;
Рвых/Рвхода = 2, следовательно, разность температур составляет около 84 °C и после сжатия Твых = 104 °C.
Согласно расчётам, при начальной температуре 50 °C повышение температуры воздуха на 10 °C при постоянном давлении приводит к уменьшению его плотности на 3 %.
Поэтому, если не охлаждать воздух после нагнетателя, эффект наддува может быть значительно ослаблен.
Пример: при отношении Рвых/Рвхода = 1,5 плотность воздуха после сжатия (значит, и мощность) падает на 14 %; при отношении Рвых/Рвхода = 2 плотность воздуха падает на 25 %.
Поэтому в двигателе внутреннего сгорания воздух, который подается в цилиндры, разумно дополнительно охлаждать, повышая его плотность, что в свою очередь повышает эффективность наддува, а также снижает детонационный порог. Для дизельных двигателей промежуточное охлаждение наддувочного воздуха целесообразно лишь при двух и более ступенчатом наддуве (применении двух и более компрессоров).
Одним из видов тюнинга ДВС является установка интеркулера большего объема.
Радиатор интеркулера обычно крепится перпендикулярно продольной оси автомобиля (фронтальный интеркулер) перед радиатором либо под крылом, пример — Mitsubishi Lancer Evolution.Mitsubishi Lancer Evo VII фронтальный интеркулер
Другой способ крепления — горизонтально над двигателем (например, Subaru Impreza WRX). В таком случае в капоте автомобиля обычно имеется воздухозаборник для подвода потока воздуха к интеркулеру.
Subaru Impreza WRX горизонтальное расположение интеркулера
Разрушители легенд. Турбонаддув дизеля. Часть №2. Интеркулер.
Для чего нужен интеркулер?
Для того чтобы ПОЛНОСТЬЮ сжечь 1кг горючего(любого углеводородного) нужно около 3,5 кг кислорода. Такое количество кислорода содержится в 15кг воздуха.
Двигатель для приготовления горючей смеси не взвешивает ни топливо, ни окислитель. И то и другое в цилиндры поступает отмеренное ОБЪЁМАМИ. На примитивных двигателях никто и не пытался измерять сколько реально входит воздуха в цилиндры или впрыскивается топлива. По большому счёту на дизелях это и сегодня нафиг не нужно. Но ужесточение экологических норм с одной стороны и желание производителя заявить как можно бОльшую мощность двигателя с другой стороны — заставляют таки обвешивать дизель кучей датчиков. Что же делают эти датчики? Эти датчики позволяют понять сколько у нас на каждом такте поступает в камеру сгорания воздуха в ГРАММАХ и сколько поступает топлива в ГРАММАХ. И очень прецизионно ограничить подачу топлива в двигатель — буквально на грани от разрешённого законодательством.
Плотность и вязкость углеводородного топлива очень сильно зависит от температуры:
Плотность воздуха ещё сильнее зависит от температуры:
Потому для прецезионного смесеобразования нужно знать и температуру топлива и температуру воздуха. Но цель данной статьи не смесеобразование(этот вопрос мы уже разобрали в предыдущих статьях), а вполне прикладная задача — как напихать в цилиндры двигателя максимальное количество МОЛЕКУЛ воздуха.
Для сжатия воздуха обычно используется турбокомпрессор. Именно он позволяет удвоить, а то и утроить ДАВЛЕНИЕ воздуха во впускном коллекторе двигателя — соответственно удвоить, а то и утроить количество поступающего в цилиндры воздуха, а значит — позволит спалить и топлива больше и получить в итоге повышенную мощность с неизменного объёма двигателя.
Ну а при чём же здесь интеркулер?
При быстром(адиабатическом) сжатии воздуха его температура пропорционально растёт.
При сжатии воздуха до давления в 0.5атм избытка воздух нагреется на 45С просто в результате сжатия. Если сжимать воздух до давления 1атм избытка — то он нагреется уже на 85С. В современных высокофорсированных дизелях воздух сжимается до 2-3 атмосфер и его температура увеличивается до 200 градусов:
Понятно, что за счёт теплопередачи от раскалённых лопаток, корпуса турбины и стенок впускного коллектора воздух будет нагрет ещё заметно сильнее.
Но с ростом температуры снижается ПЛОТНОСТЬ воздуха.
Если проанализировать грубо — то получается приблизительно такая зависимость при сжатии воздуха температурой +20С:
наддув 0,5атм — повышение темп воздуха на 45С — падение плотности воздуха на 15%
наддув 0,7атм — повышение темп воздуха на 65С — падение плотности воздуха на 23%
наддув 1атм — повышение темп воздуха на 85С — падение плотности воздуха на 30%
наддув 1,5атм — повышение темп воздуха на 100С — падение плотности воздуха на 34%
наддув 2атм — повышение темп воздуха на 125С — падение плотности воздуха на 42%
наддув 3атм — повышение темп воздуха на 160С — падение плотности воздуха на 55%
Считаем на пальцах:
Если турбина у нас качает 1атм избытка — то мы надеемся на удвоение количества(массы) воздуха, загоняемого в цилиндры. Но без эффективного интеркулера из-за снижения плотности воздуха при сжатии мы получим не удвоение МАССЫ воздуха, а лишь: Х*2\100*70=1,4Х
Увы и ах!
Именно поэтому старые безинтеркулерные дизеля с примитивными турбинами(с давлением в прыжке до 0,7атм) и не блещут приростом мощности. Ибо — Х*1,7\100*77=1,31Х
30% прироста МАКСИМУМ даже теоритически.
Практически всё обычно намного хуже из-за организации топливоподачи на этих дизелях.
Интеркулер позволяет заметно снизить температуру сжатого воздуха и таким образом повысить его плотность. Понятно, что охладить воздух после турбины обратно до температуры забортного воздуха практически не реально, но стремится к этому стОит. Правда на серийных автомобилях производитель этим вопросом редко заморачивается — потому мы и наблюдаем интеркулеры смешных размеров, нахлобученные поверх двигателей не в самом удачном с точки зрения охлаждения месте — сбить пиковую температуру(и вписаться в эконормы) хватает и таких. Именно из-за понижения выбросов азотистых соединений интеркулер и стал стандартным узлом любого турбодизеля — до такой степени стандартным(как и сам ТУРБОдизель), что надписи типа «2.8 intercooler turbo» давно исчезли с кузовов автомобилей.
Существует ещё один интересный момент.
В отличие от турбонагнетателя, где на «утрамбовку» воздуха затрачивается довольно существенная мощность(не верьте утверждениям, что турбина утилизирует «дармовую» энергию выхлопных газов — ничего дармового в этом мире не бывает), на «утрамбовку» воздуха интеркулером таких колоссальных затрат энергии обычно не требуется. Потому на режимах частичной мощности эффективный интеркулер позволяет значительно «разгружать» турбонагнетатель — ведь давление на впуске в двигатель можно снизить пропорционально росту плотности воздушного заряда.
Опять считаем на пальцах:
Пусть турбина давит 0.7атм избытка. Воздух нагревается на 65С. Плотность воздуха при этом падает на 23%.
Если установить интеркулер, который обеспечит снижение температуры сжатого турбиной воздуха хотя бы на 40-45С — то плотность воздуха после интеркулера возрастёт на 15%. Можно снизить давление турбины на эти 15% — до 0,45атм избытка. Мощность двигателя останется прежней — воздуха в граммах поступает одинаковое количество, а вот расход топлива заметно снизится — ведь сжимать воздух приходится до существенно меньших значений.
На допотопных турбинах с вестгейтом эффект экономии топлива за счёт этого эффекта выражен слабо — ведь энергия выхлопных газов за счёт установки интеркулера снижается незначительно и турбина давит ровно столько, сколько может. На турбинах с управляемой геометрией, регулируемой механическим клапаном(или примитивным электронным контроллером), тоже выигрыш не велик — все эти системы стремятся обеспечить максимально возможное давление(то самое при котором начинает открываться клапан сброса) невзирая на то, нужно ли на данном режиме работы настолько высокое давление или нет. Давайте ещё раз вспомним — ТУРБИНА на распространённых ТУРБОдизелях обеспечивает от 20 до 35% тяги. Другими словами — при нажатии на газульку до 2\3 её хода нам давление турбины НЕ НУЖНО ВООБЩЕ!
Поэтому на частичных нагрузках из-за ненужного наддува заметно страдает общий КПД двигателя. А вот при управлении геометрией турбины компьютером поумнее — можно получить значительную экономию топлива за счёт точного дозирования наддува. Речь идёт о реальных 10-15% расхода — именно столько получали владельцы ZD30 просто крутя регулировку штока геометрии турбины в сторону снижения давления. Но тупое снижение давления турбины вызывает и снижение максимальной мощности двигла.
По фуншую же нужно ВСЕГДА поддерживать давление на впуске всего лишь ЧУТЬ ВЫШЕ необходимого для полного сжигания топлива(количество потребного топлива определяется газулькой) — тогда будет доступна и ВСЯ ВОЗМОЖНАЯ(турбина ZD30 качает без вреда для себя до 1,7атм избытка — что даёт момент до 620Нм долговременно при наличии эффективного интеркулера) мощность двигателя и экономия топлива на режимах частичной мощности. Турбина с изменяемой геометрией как раз позволяет ХУДО-БЕДНО вытворять такие вещи.
Почему худо-бедно?
Об этом читайте в следующих статьях.
Интеркулер
Интеркулер – это промежуточный радиатор для охлаждения наддувочного воздуха в турбированном моторе.
Что такое интеркулер и зачем он нужен?
Во время работы системы турбонаддува поступающий внутрь воздух сжимается под давлением. Вследствие этого меняется плотность воздушной смеси, а ее температура увеличивается практически до 200-т градусов (Цельсия). Способствует изменению температуры не только сжатие, но и нагревание самим турбокомпрессором, который прогревается за счет отработанных газов. Результат резкого повышения температуры – снижение плотности воздуха. Это приводит к понижению давления при наддуве.
Интеркулер используется для понижения температуры воздушной смеси на 50-60 градусов (Цельсия). За счет этого цилиндры смогут накапливать больше воздуха, что спровоцирует увеличение мощности двигателя. Специалисты утверждают, что показатель мощности мотора изменится на 3% за 10 градусов, на которые была снижена температура. Хороший интеркулер способен повысить значение мощности на 20%, но не более. Вместе с этим снижается риск детонации отходящих газов.
Цикл работы интеркулера
Разновидности интеркулеров – что заливают в интеркулер?
Воздушный интеркулер. Устройство, работающее по схеме «воздух-воздух», получило широкое распространение среди автовладельцев за счет простоты конструкции. Для охлаждения воздушной смеси используется система трубок и пластин. Трубки увеличивают путь, который должен пройти воздух, пластины – обеспечивают оптимальную теплоотдачу. Единственным минусом является потеря давления наддува, что происходит по причине смены направления трубок, а значит – возникновения препятствий на пути воздуха.
Эффективность воздушного интеркулера проявляется на скорости более чем 30 км/ч. Местом для установки устройства может быть:
Второй и третий вариант встретить можно чаще, ведь именно они обеспечивают большую интенсивность обдува теплообменника. Примером могут стать модели Subaru Impreza и Mitsubishi Lancer. Кроме того воздушный тип интеркулера пользуется популярностью у владельцев грузовиков и крупногабаритных внедорожников.
Жидкостный интеркулер. В отличие от воздушного типа, жидкостный аналог считается более эффективным в работе. Он обладает сложной конструкцией, которая включает:
Полученная двухконтурная система охлаждения может использовать в качестве жидкости не только воду, но и хладагент (антифриз, тосол или жидкий азот). За счет свойств этих жидкостей происходит быстрая теплоотдача и остывание воздушной смеси.
Недостатками жидкостного интеркулера являются: время необходимое для остывания охлаждающей жидкости и стоимость устройства вместе с дополнительными приборами.
Достоинства и недостатки интеркулера
Как уже говорилось ранее, использование интеркулера позволяет добиться лучших показателей мощности двигателя. Но это еще не все. Улучшенное наполнение цилиндров экономит топливо, расходуя его более эффективно. Работа интеркулера снижает токсичность выхлопных газов, что благотворно сказывается на окружающей среде и наверняка заинтересует всех, кто заботиться о природе.
К недостаткам применения интеркулера стоит отнести:
Какой интеркулер выбрать – оптимальные технические характеристики
Интеркулер «воздух-воздух» стоит выбирать в зависимости от типа двигателя и его характеристик. Основными конструктивными параметрами при проектировании устройства являются:
Изучив конструктивные параметры, каждый автовладелец сможет понять, что же влияет на работу и сам выбрать нужный ему интеркулер из всего представленного ассортимента.
Особенности эксплуатации интеркулера
Современные интеркулеры не требуют особого ухода. Периодический осмотр устройства и знание основных признаков выхода из строя его частей позволяет своевременно обнаружить проблему и устранить ее без серьезных последствий.
Чаще всего происходит разрыв патрубка или теплообменника. Причиной этого является высокое давление. Определить проблему можно по резкому снижению мощности двигателя и увеличению количества топлива, потребляемого автомобилем.
Избежать снижения эффективности работы промежуточного охладителя можно периодически промывая его. Избавившись от мелкого мусора можно не бояться забитых сот, которые негативно сказываются на свойствах интеркулера.
Как увеличить эффективность интеркулера?
Орошение интеркулера водой
Обладатели спортивных автомобилей прибегают к орошению теплообменника водой. Такая мера позволяет увеличить эффективность работы воздушного интеркулера. Примером, модели автомобиля, где штатно используется специальный опрыскиватель, является – Subaru Impreza WRX STI и все ее модификации. Для того чтобы обеспечить дополнительное устройство необходимым количеством воды в багажник устанавливается 12-и литровый бачок. Дополнительный электромотор позволяет быстро передать воду в опрыскиватель после нажатия кнопки на приборной панели.
Модели жидкостного типа не нуждаются в модификациях. Единственное, что можно сделать для улучшения работы интеркулера – это выбрать охлаждающую жидкость, которая будет эффективнее справляться с задачей и быстрее остывать.
Стоимость интеркулеров различного типа
Модельный ряд интеркулеров достаточно большой. Для отечественных автомобилей (к примеру, ВАЗов) можно выбрать недорогие варианты фронтального интеркулера. Стоимость устройства воздушного типа окажется в пределах от 3500 до 5400 рублей. Точное значение цены может зависеть от размеров теплообменника, диаметра входного патрубка, качества материала и конструкции, а также от производителя. Средний жидкостный интеркулер выйдет в пределах 5000-7000 рублей.
Владельцам иномарок придется изрядно потратиться, чтобы купить хороший интеркулер. Его цена намного выше, чем для отечественных автомобилей. Точное значение привести трудно, ведь для каждой модели подойдет определенный вид устройства. Но для примера скажем, что установка интеркулера на Audi A3 выйдет около 50 000 рублей.
Но и это не предел цены. Самыми дорогими считаются модели интеркулера для спортивных автомобилей. К примеру, HKS Intercooler предназначенный для автомобиля Subaru Impreza GRB выйдет около 120 тыс. рублей, для модели машины Toyota Supra – 118 тыс. рублей, а для такого известного болида, как Nissan GT-R R35 – от 250 тыс. рублей и более.
Почему интеркулер в масле?
Интеркулер в масле
Масло в интеркулере – первый признак опасной проблемы. Определить насколько она серьезна можно лишь при визуальном осмотре деталей. Способствует этому и знание основных причин попадания масла в интеркулер:
При резком спаде мощности, кроме турбины, обязательно проверяют и интеркуллер, поскольку даже малейшая утечка воздуха под давлением способствует значительному ее снижению.
Очистка интеркулера
Чистить интеркуллер нужно не только изнутри но и очищать от грязи снаружи
Определить проблему и устранить причину попадания масла – это лишь первые шаги для возобновления нормальной работы интеркулера. Для того чтобы завершить ремонтные работы стоит провести чистку устройства, иначе остатки масла смешаются с воздухом и постепенно загрязнят топливную смесь. К чему это приведет? К нескольким неприятным последствиям, среди которых присутствует увеличение расхода топлива, снижение мощности мотора и перегрев двигателя (характерно для дизельных двигателей в летнее время года).
Очистка воздушного интеркулера. Проводится при помощи специальной автохимии. Перед тем, как использовать химические средства следует полностью снять устройство.
Чистка производится не только внутри но и снаружи, дабы удалит грязь или замаслености и улучшить теплоотдачу радиатора.
Очистка жидкостного интеркулера. Снять детали данного типа устройства – трудоемкий процесс. Для этого могут понадобиться специальные инструменты, о которых можно узнать в инструкции к интеркулеру.
Чем чистить интеркулер? Для того чтобы провести процедуру очистки не стоит применять бензин или другие растворители. Материалы деталей охлаждения могут серьезно повредиться под их воздействием. Именно поэтому специалисты рекомендуют автомобильную химию, специально разработанную для очистки интеркулера.
Подпишись на наш канал в Я ндекс.Дзене
Еще больше полезных советов в удобном формате