для чего служит резистор в электрической цепи
Что такое резистор
Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.
В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.
Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.
Содержание статьи
Для чего нужен резистор в электрической цепи
Наглядный пример работы резистора
С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.
Закон Ома выражается формулой U = I*R, в которой:
Также резисторы работают как:
Основные характеристики резисторов
Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:
При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.
Способ монтажа
По технологии монтажа резисторы разделяют на выводные и SMD.
Выводные резисторы
Радиальный выводной резистор
Аксиальный выводной резистор
Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.
Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.
Из чего состоит резистор проволочного типа
В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.
Чем отличается металлопленочный резистор от проволочного
У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.
SMD-резисторы
SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.
SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.
Из чего делают чип-резисторы
Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.
Виды резисторов по характеру изменения сопротивления
Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.
В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.
Что делают подстроечные резисторы
Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.
Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.
Типы резисторов по характеру вольтамперной характеристики
По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.
Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.
Виды резисторов по назначению
Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:
Шумы резисторов и способы их уменьшения
Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.
Способы борьбы с шумами:
Обозначение резисторов на схеме
Обозначение по ГОСТ 2.728-74 | Описание |
| Постоянный резистор без указания номинальной мощности рассеивания |
| Постоянный резистор номинальной мощностью рассеивания 0,05 Вт |
| Постоянный резистор номинальной мощностью рассеивания 0,125 Вт |
| Постоянный резистор номинальной мощностью рассеивания 0,25 Вт |
| Постоянный резистор номинальной мощностью рассеивания 0,5 Вт |
| Постоянный резистор номинальной мощностью рассеивания 1 Вт |
| Постоянный резистор номинальной мощностью рассеивания 2 Вт |
| Постоянный резистор номинальной мощностью рассеивания 5 Вт |
Обозначение переменных, подстроечных и нелинейных резисторов на схемах:
Обозначение по ГОСТ 2.728-74 | Описание | | Переменный резистор (реостат). |
| Переменный резистор, включенный как реостат (ползунок соединён с одним из крайних выводов). |
| Подстроечный резистор. |
| Подстроечный резистор, включенный как реостат (ползунок соединён с одним из крайних выводов). |
| Варистор (сопротивление зависит от приложенного напряжения). |
| Термистор (сопротивление зависит от температуры). |
| Фоторезистор (сопротивление зависит от освещённости). |
Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.
Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:
Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:
Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:
Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.
Все про резисторы
Свойства в теории и практике
Основное свойство этой радиодетали – это сопротивление. Измеряется в омах (Ом).
Разберем для начала понятие активного сопротивления. Оно так называется потому, что есть у всех материалов (даже у сверхпроводников, пусть и 0,00001 Ом). И именно оно является основным у резисторов.
Что говорит теория
В теории у резистора есть постоянное сопротивление, которое на зависит от внешних условий (температуры, давления, напряжения и т.п.).
График зависимости тока от напряжения прямолинеен.
В идеальных и математических условиях у резистора только активное сопротивление. По типам бывают нелинейные и линейные резисторы.
Что на самом деле
На самом у всех резисторов непрямолинейная зависимость тока от напряжения. То есть, его сопротивление тоже зависит от внешних условий, конкретно от температуры.
Конечно, эта зависимость не такая, как у полупроводников, но она есть. И самое главное, у этой радиодетали есть емкость и индуктивность. Помимо активного сопротивления, есть еще и реактивное.
Реактивное сопротивление отличается от активного тем, что оно по разному пропускает электрический ток на разных частотах.
Например, для постоянного тока сопротивление 200 Ом, а если есть высокие значения индуктивности, то на частотах выше 2 кГц, сопротивление будет уже 250 Ом.
Именно поэтому резисторы делаются из разных материалов. Они бывают керамическими, углеродными, проволочными и у них разные допуски и погрешности. SMD деталь обладает меньшей емкостью и индуктивностью, чем DIP.
Еще существует специальные типы резисторов с более выраженной нелинейной вольт-амперной характеристикой. Если у обычных резисторов вольт-амперный график чуть-чуть не линейный, то у такого типа деталей он лавинообразный.
У них сопротивление резко зависит от внешних условий, не так. как у обычных:
Кроме того, еще одна особенность активного сопротивления – выделение тепла, когда проходит электрический ток. Когда протекает электрический ток замкнутой цепи, электроны ударяются об атомы. И поэтому выделяется тепло. Тепло измеряется в мощности. Она рассчитывается исходя из напряжения и тока.
Одна из популярных функций резисторов это снижение напряжения и ограничения тока. Например, если через резистор проходит ток 0,25 А и на нем есть падение напряжения 1 В, то мощность, которая будет на нем рассеиваться это 0,25 Вт.
И из-за этого и существуют резисторы с разной рассеиваемой мощностью. Нельзя ставить резистор 0,125 Вт на место 1 Вт. Он начнет греться, трескаться, чернеть. А потом и сгорит. Потому, что не рассчитан на такую мощность.
Обозначения на схемах
На схемах в Европе и СНГ обознается прямоугольником и латинской букой R. Согласно ГОСТу, на отечественных схемах не указывается номинал сопротивления, а только номер детали (R). Однако, если под изображением детали указано число, например 120, оно по умолчанию читается как 120 Ом.
Основное обозначение | |
0,125 Вт | |
0,25 Вт | |
0,5 Вт | |
1 Вт | |
2 Вт | |
5 Вт | |
Переменный | |
Подстроечный |
Типы включения и примеры использования
Основные типы включения это последовательные и параллельные соединения.
Последовательно сопротивление рассчитывается просто. Достаточно все сложить.
При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.
Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.
Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.
Однако, если вы хотите использовать делитель напряжения для питания цепи, то должны помнить, что нужно согласовать сопротивления. В этой схеме сопротивление 1 кОм. Если вы подключите к ней нагрузку меньше этого сопротивления, то она не получит напряжения на свои выводы в полном объеме. Поэтому, все схемы с делителями напряжения должны быть рассчитаны и согласованы друг с другом.
Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.
Это необходимо для того, чтобы он работал без искажений.
Параллельное включение
При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.
В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.
Формулы расчета
Для двух резисторов:
Для более:
Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.
Его сопротивление рассчитывается по формуле:
Эквивалентное соединение
В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.
В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.
А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.
Фильтры и резисторы
С помощью резисторов и конденсаторов можно делать фильтры. Так называются RC фильтры.
Эта пара может разделять сигнал на постоянные и переменные составляющие.
В качестве примера рассмотрим ФНЧ и ФВЧ.
В схеме фильтра низких частот конденсатор C1 забирает на себя высокочастотные токи. Его сопротивление для них намного меньше, чем у нагрузки. Он шунтирует нагрузку. Таким образом, можно получить низкую частоту, отделив от нее все высокие составляющие. В фильтре высоких частот наоборот. Высокие частоты свободно проходят через C1, и если в сигнале есть низкочастотные, то они пойдут через R1.
Такие фильтры бывают разные по конструкции. П образные, Г образные и т.п. Конкуренцию резистору может составить катушка индуктивности или дроссель. У них меньше активное сопротивление, но реактивное больше. Благодаря этому снижаются потери от активного сопротивления.
Устройство и применение резистора в электрической цепи
Самым распространённым элементом в электрических схемах является резистор. Эта несложная в изготовлении радиодеталь используется для ограничения проходящего через него тока, а также изменения напряжения. По своей сути она является пассивным элементом, преобразующим электрическую энергию в тепло.
История открытия
Существование электричества было обнаружено ещё в VII веке до н. э. греческими философами, но сам термин «электричество» появился только в 1600 году. Учёный Уильям Гилберт, проводя эксперименты с янтарём, обнаружил его способность притягивать другие вещества (электростатический заряд). Это явление получило название «янтарность». А уже через 60 лет Отто фон Герике создал конструкцию с шаром, надетым на металлический стержень, и фактически изготовил первую электростатическую машину.
В течение следующих лет учёные, экспериментаторы и инженеры открывали всё новые и новые свойства электричества, изучая его природу возникновения. Так, в 1800 году итальянец Алессандро Вольта изобрёл источник тока. Через 20 лет датчанин Кристиан Эрстед открыл электромагнитное взаимодействие, а Андре-Мари Ампер установил связь между электричеством и магнетизмом.
Продолжая исследования Джоуля, Ленца, Фарадея, Гаусса, Ома и Майкла Фарадея, будущий лауреат Нобелевской премии Джозеф Томсон охарактеризовал понятие электричества, введя термин «электрон». Таким образом было установлено, что электричество — это способность физических тел создавать вокруг себя поле, воздействующее на предметы. В каждом теле существуют элементарные частички, которые могут быть как свободными, хаотично перемещающимися, так и привязанными к атомам.
Если же к материалу, имеющему свободные электроны, поднести электромагнитное поле, то движение частичек становится направленным, и возникает электрический ток. Чтобы заряд переместился из одной точки в другую, необходимо затратить работу, которая называется напряжением. При перемещении частички сталкиваются с различными неоднородностями кристаллической решётки. В результате часть их потенциала передаётся этим дефектам, величина заряда электронов уменьшается, а сила тока снижается.
Способность электронов беспрепятственно перемещаться по структуре материала была названа проводимостью, а величина обратная ей — резистори́ (сопротивление).
Физическая сущность
Изучение учёными электричества привело к пониманию, что существует что-то, мешающее свободным зарядам проходить через вещество. Способность тела пропускать через себя электрический ток была названа электропроводимостью. Как выяснилось позже, она определяется количеством свободных зарядов, присутствующих в структуре элемента, характером внешнего воздействия и физическими размерами тела. Все существующие вещества были разделены на три вида:
К первой группе отнесли материалы, при прохождении через которые значение электрического тока практически не уменьшается. Это все металлы и электролиты. Ко второй — элементы, проводимость которых существенно изменяется при воздействии на них внешних факторов, таких как температура, свет, электромагнитное излучение. Например, кремний, германий, селен. Диэлектриками назвали вещества, практически полностью поглощающие энергию электронов, то есть преобразовывающие электрическую мощность в тепловую. Яркими представителями этой группы являются: каучук, пластмассы, композиционные материалы (текстолит, гетинакс, второпласт).
По мере развития электротехники и создания различных радиоэлектронных устройств разрабатывались как пассивные, так и активные элементы. При этом важнейшей их характеристикой всегда являлось сопротивление. Радиодеталь, использующую способность материалов по-разному проводить ток, назвали резистором.
Это слово произошло от латинского resisto, что в дословном переводе на русский язык звучит как «сопротивляюсь». Правильное его определение, которое можно встретить в специализированной литературе, звучит следующим образом: «Резистор, или сопротивление, представляет собой пассивную радиодеталь в электрической цепи, характеризующуюся постоянной или изменяемой величиной проводимости. Он предназначен для преобразования силы тока в разность потенциалов или наоборот».
Закон Ома
Опыты, проводимые в 1825 году Георгом Симоном Омом, позволили установить связь между силой тока и напряжением. Связующим элементом оказалось сопротивление (резистор).
В 1826 году экспериментатор сформулировал свой закон: ток прямо пропорционален разности потенциалов и обратно пропорционален сопротивлению цепи. Первоначально учёным миром этот закон не был принят, и лишь после его смерти специальной комиссией была определена его истинность.
Математически закон был записан в виде выражения:
X = a / (b+l), где:
X — измерения, показываемые гальванометром;
a — значение, определяющее параметры источника напряжения;
l — длина проводника;
b — коэффициент, характеризующий электроустановку.
В современном же понятии закон описывается формулой:
I — электрический ток, А;
U — разность потенциалов, В;
R — сопротивление на участке цепи, Ом.
Таким образом, была экспериментально установлена связь между тремя фундаментальными значениям электротехники. Согласно формуле величина резистора прямо пропорциональна напряжению и обратно пропорциональна току. То есть ток, проходя через резистор, уменьшается. Математически же сопротивление выглядит так: R = I/U.
Учитывая, что мощность цепи равна произведению тока на напряжение, P = I*U, и используя закон Ома, можно записать: P = I2*R = U2/R. То есть мощность также зависит и от величины сопротивления.
Физически эти формулы можно объяснить следующим образом. Электрический ток, обусловленный направленным движением свободных электронов, встречая сопротивление, теряет часть мощности. При этом уменьшается и значение потенциала (падение напряжения). Энергия, отданная электронами, переходит кристаллической решётки вещества, вызывая тепловые колебания атомов или нагрев резистора. Выделенное количество тепла характеризуется мощностью, рассеиваемой на резисторе.
Виды резисторов
Резистор относится к виду простых пассивных элементов. То есть к радиодеталям, для работы которых не требуется активный источник питания. Основным элементом конструкции радиоэлемента является резистивная составляющая, которая может быть как плёночного, так и объёмного вида. Значение же её определяется количеством свободных носителей заряда.
По своему виду резисторы разделяются на постоянные и переменные. Первые обладают постоянным значением сопротивления, а у вторых существует возможность его изменять. Например, приложением напряжения (варисторы), температурой (терморезисторы), освещением (фоторезисторы).
Кроме этого, элементы различают по назначению. Они могут быть:
Кроме этого, резисторы отличаются по виду конструкции и бывают проволочными и непроволочными. В первом случае для их изготовления используют нихром, константан или никель. Применяются они в высокоточных радиоприборах, где существуют повышенные требования к уровню шумов. Во втором — плёнка, которой обматывается жаропрочное основание, например, керамика. Этот тип характеризуется небольшими габаритами и меньшими значениями паразитных составляющих (ёмкость, индуктивность).
А также сопротивления бывают термо- и вибростойкими, ударопрочными и высоконадёжными. По типу используемых материалов для изготовления резисторов их разделяют на группы. Наиболее часто в радиоприборах используются следующие три группы элементов:
Основные типы
В процессе развития электротехники открывались новые свойства различных материалов. Так, были созданы резисторы, сопротивление которых зависит от вида воздействия, оказываемого на них. Эти типы резисторов нашли широкое применение в качестве всевозможных датчиков или ограничителей напряжения.
Существуют следующие виды таких резисторов:
Конструкции элементов
При изготовлении резисторов используются не только различные материалы, но и технологии. Самая простая конструкция резистора выглядит в виде стержня с высоким электрическим удельным сопротивлением. С внешней стороны он защищается оболочкой, выполненной из стеклоэмалевого или стеклокерамического материала. Снаружи резистор покрывается термостойкой эмалью, спрессованной пластмассой, или просто металлическим корпусом.
Конструкция плёночного резистора предполагает использование диэлектрика, на который наносится резистивная плёнка. На торцы конструкции одеваются проводящие ток колпачки с припаянными к ним выводами. Сверху же на элемент наносится защитный слой. Такое же строение имеют и проволочные резисторы, но вместо резистивной плёнки для их изготовления используется токопроводящая проволока. Для повышения сопротивления она накручивается на основание витками.
В микроэлектронике часто используются плёночные резисторы, располагающиеся на подложке создаваемой микросхемы. В одном из её слоёв методом напыления и осаждения наносится тонкий резистивный слой. Для увеличения сопротивления он делается в виде зигзага.
Самой сложным из всех видов конструкций резисторов считается радиодеталь, предназначенная для поверхностного монтажа. В её состав входит защитный и резистивный слой, подложка из керамики, внутренний и внешний вывод, никелированный электрод. Для изготовления подложки применяется окись алюминия. В качестве резистивного слоя используется плёнка, полученная из чистого хрома или оксида рутения. Внутренний вывод может состоять из серебра или палладия. А защитная оболочка (резисторный слой) выполняется из полимерного материала.
От размеров резистивного слоя зависит сопротивление резистора, расчёт которого выполняется по формуле
Используя формулу, можно выполнить необходимые расчеты, а по ним сделать резистор своими руками. Для этого понадобится проводящий элемент и справочник радиолюбителя, в котором будет указано значение его удельного сопротивления. Например, для меди оно составляет 0.0171 Ом*м.
Техническое обозначение
В радиоэлектронных схемах и технической документации принято условное обозначение резистора в виде латинской буквы R, вне зависимости от того, как он устроен. Возле буквы подписывается номинал элемента в соответствии с международной системой единиц (СИ) и его порядковый номер. Например, R21 150к означает, что радиодеталь имеет 21 номер в спецификации к схеме, а значение её сопротивления составляет 150 килоом.
Если необходимо дополнительно указать мощность рассеивания элемента, то в середине прямоугольника ставятся чёрточки или римские цифры. Например, одна косая черта обозначает максимально допустимое рассеивание энергии 0,25 Вт, а римская двойка — 2 Вт. Такое обозначение резистора принято в странах Европы и бывшего СССР, в то время как в США он изображается в виде ломаной линии.
В случае изображения регулируемого резистора сверху чертится стрелка, обозначающая подвижный контакт. Кроме этого, для подчёркивания особенности конструкции прямоугольник перечёркивается наклонной линией, внизу которой рисуется полочка. Возле неё ставится буква, служащая классификатором элемента. Например, U — для варистора, P — для тензорезистора.
На самом корпусе резистора проставляется цифробуквенный код или рисуются цветные полоски. Такая маркировка нужна для того, чтобы можно было определить, какой у резистора номинал, не прибегая к измерениям и схемам.
Число в коде обозначает сопротивление в омах, а буква, стоящая после него, указывает на множитель. В полосочном же обозначении используется принцип того, что каждый цвет полоски соответствует своему порядку. Например, красный — двойке, зелёный — пятёрке. Первые две полоски обозначают номинал, третья — множитель, а четвёртая и пятая — допуск.
Характеристики и параметры
Резистор, как и любой другой радиоэлемент, характеризуется различными параметрами, определяющими его свойства. Основным из них, известным даже «чайникам», является номинальное сопротивление. Но мало кто из начинающих радиолюбителей знает, что кроме него существует ещё ряд важных характеристик.
К основным параметрам резистора относят:
При этом некоторые характеристики могут являться несущественными, а для других отводится главная роль. Зависит это от режима работы схемы, в которой он применяется. Например, от частоты сигнала. Если резистор работает на высоких частотах, то из-за наличия посторонних составляющих величина сопротивления может увеличиваться или уменьшаться.
Делитель напряжения
Чаще всего резистор применяется как ограничивающий элемент тока или напряжения. Кроме этого, используя последовательное соединение двух резисторов, можно сделать простейший делитель напряжения. Точка соединения их контактов между собой называется общей, а противоположные контакты — плечами.
При таком включении напряжение, измеренное по отношению к общей точке и контакту плеча, будет отличаться от выдаваемого источником питания. Связано это с тем, что падение напряжения на каждом резисторе, в соответствии с законом Ома, пропорционально сопротивлению. Такой делитель у начинающего радиолюбителя нужен для использования в электрическом фильтре. Но этим его применение не ограничивается.
Делитель имеет большое значение и используется практически в 90% сложных схем. Он применяется в качестве параметрического стабилизатора напряжения, в цепях усилительных каскадов и даже как элемент памяти в аналого-вычислительных машинах.
Таким образом, резистор — важный пассивный элемент электрической цепи. Основной его параметр — сопротивление. Предназначен резистор для ограничения тока или уменьшения напряжения на определённом участке. При этом он также может использоваться в качестве датчика, следящего за изменением интенсивности света, давления, температуры или электромагнитного поля.