для чего трилобиты нужны геологам
Физика в мире животных: трилобиты и их «линзы» из кальцита
Трилобиты — класс морских животных, вымерший сотни миллионов лет назад. Ученым известно 9 отрядов трилобитов, которые включают 150 семейств, 5 тысяч родов и 10 тысяч видов. Ближайшие современные аналоги трилобитов по строению тела — мокрицы и мечехвосты (кстати говоря, «живые ископаемые»). У большинства трилобитов был мощный панцирь. Рот и ноги располагались на нижней стороне тела, а глаза — на верхней.
Глаза большинства трилобитов были очень сложными, причем их строение радикально отличалось от строения глаз современных животных. Кристаллинового хрусталика у этих животных не было, вместо него у трилобитов были минеральные линзы из кальцита. Сейчас единственными животными с минеральными зрительными линзами являются некоторые существующие ныне офиуры и моллюск Acanthopleura granulata. Сложность глаз трилобитов была гораздо выше сложности глаз этих наших современников.
Как ученые выяснили строение глаз трилобитов? Благодаря тому, что они состояли из неорганического кальцита, глаза трилобитов очень хорошо сохранились. В элементарных линзах составных глаз ископаемых членистоногих кальцит имеет необычную кристаллическую структуру. Луч света, который идет под определенным углом, не преломляется и не разбивается на несколько лучей. А вот лучи, которые падают на глаз животного под другим углом, разбиваются на два луча, которые преломляются и поступают на сенсорные клетки именно так, как нужно для последующего формирования общей картинки. Поскольку глаза трилобитов были почти полностью неорганическими, то и фокусироваться на различных объектах они не могли самостоятельно. У большинства современных животных фокусировка происходит в автоматическом режиме благодаря изменению формы и размера зрачка и хрусталика (конечно, это относится только к тем животным, у кого есть и зрачок, и хрусталик).
Глаза большинства видов трилобитов имеют структуру, которая очень похожа на структуру тех оптических конструкций, которые были созданы Декартом и Гюйгенсом в середине 17-го века. Окуляр Гюйгенса состоит из двух плоско-выпуклых линз, расположенных плоскими частями к глазу наблюдателя и разделённых некоторым промежутком. Линзы называются линзами глаза и линзами поля. Фокальная плоскость расположена между двумя линзами. Он был изобретен Христианом Гюйгенсом в конце 1660 годов и был первым составным (многолинзовым) окуляром. Гюйгенс открыл, что две разделённые промежутком линзы могут быть использованы для изготовления окуляра с нулевой хроматической аберрацией. Эти асферические анапланатные линзы могут оптимизировать формируемое отдельными элементами глаза изображение, собирая лучи света лучше прочих систем. Среди трилобитов встречались виды, у которых не было глаз вообще (вероятно, они жили в темноте или в очень мутной воде), например, у вида Agnostus, или виды, у которых были примитивные глаза.
Но у большинства остальных глаза были развитыми. Они разделяются на три типа:
Глаза голохроического типа. Они состояли из большого количества элементарных «фасеток», речь идет о 15000 призматических линз или даже большем их числе. Все элементарные линзы находились в прямом контакте друг с другом, без непрозрачных разделяющих мембран. Прозрачная защитная мембрана покрывала глаза такого типа только сверху.
Глаза шизохроического типа. Они состояли примерно из 700 элементов каждый и разделялись непрозрачными стенками. Отдельные «фасетки» представляли собой округленные или многоугольные линзы. Глаза были покрыты сверху прозрачной мембраной, которая, вероятно, защищала весь орган от повреждения. У всех ранних видов трилобитов глаза были голохроического типа, которые затем эволюционировали в шизохроический тип глаз.
Абатохроический тип глаз. В нем было гораздо меньше элементов (не более 70). Это были все те же округленные или многоугольные линзы, которые отличались от линз глаз шизохроического типа размером. Каждая элементарная линза была отделена от соседних тонкой непрозрачной мембраной (склерой). Эти глаза были меньшими по размеру, чем предыдущие два типа, но обеспечивали своим «владельцам» неплохое зрение. Вероятно, абатохроические глаза были у тех трилобитов, кто жил на дне или в относительно мутной воде.
Глаза разных видов трилобитов отличались по размеру и расположению. Например, у тех животных, которые жили в донном грунте, глаза располагались на стебельках. Они позволяли закопавшемуся в ил животному видеть все, происходящее вокруг. У многих трилобитов был превосходный обзор. Так, глаза у вида Opipeuter обеспечивали практически круговой обзор — эти плавающие животные видели все, что происходит сверху, снизу и по бокам. Так называемых мертвых зон у них не было.
В целом, «картинка» у трилобитов формировалась примерно так же, как у современных насекомых с фасеточными глазами. Отдельные элементы изображения складывались в общую мозаику, которая была тем лучшей, чем больше отдельных элементов содержал глаз. Вероятно, это можно сравнить с пикселизацией изображения на мониторах — чем больше пиксель, тем большую «зернистость» мы видим.
Бриджитт Шоемененн, палеонтолог из Боннского университета, одной из первых изучала глаза трилобитов, используя для этого рентгеноскопию. Благодаря своему методу она смогла оценить строение не только линз-фасеток, но и клеток, которые расположены под ними. Под каждой миниатюрной линзой расположены сенсорные клетки, причем их расположение напоминает расположение лепестков цветов. Центральным элементом были ромбовидные фоторецепторы. В промежуточном пространстве располагались пигментные клетки, которые придавали глазам коричнево-черную окраску.
Как уже говорилось выше, с фокусировкой изображения у трилобитов не было никаких проблем. Они одновременно видели объекты рядом с собой и те объекты, что находились от них за сотни метров. В целом, эти древние животные имели сложнейшие глаза, которые обеспечивали «картинку» не хуже, чем глаза современных животных. И при этом структура этих древних глаз радикально отличалась от структуры глаз современных животных.
Трилобиты
Введение
Рассказ у нас пойдет в особенности о трилобитах, и любознательный читатель узнает многое об их повадках и истории.
Трилобиты – это класс морских членистоногих, широко распространенный в палеозойских морях, и вымерший в конце пермского периода. Из ныне живущих животных самыми близкими родственниками трилобитов можно считать мечехвостов, но и они находятся в дальнем родстве с этими древними существами.
Трилобиты привлекают внимание многих людей – палеонтологов, эволюционных биологов, коллекционеров и создателей кинофильмов. Это невероятно успешная в эволюционном плане группа. Сохраняя общий план строения, трилобиты смогли освоить множество экологических ниш и просуществовать более 300 миллионов лет.
Сегодня мы оставим в стороне привычное изучение окаменелостей и компьютерных реконструкций. Для того чтобы познакомиться с героями нашего повествования, мы отправимся в прошлое, в силурийский период.
Силурийский период
Итак, 430 миллионов лет до нашей эры, Южное полушарие, побережье суперконтинента, Гондваны. До самого горизонта простирается безбрежный океан, и где-то там, на севере, его волны разбиваются о берега Лаврентии, Балтики и Ангарида – других континентов этого юного мира.
Вглубь суши уходят каменистые холмы, сменяющиеся горами, за которыми тянутся огромные пустоши. Привычной нам зелени нет, но на камнях играют красками пятна лишайников, а сырые места покрыты мягким ковром изо мха, над которым возвышаются хрупкие кустики каких-то растений. День по-летнему теплый, даже жаркий, но нам с вами придется ходить в особых скафандрах и дышать через кислородную маску – озоновый слой еще не сформировался, а в атмосфере слишком мало кислорода (около 10%) и в три раза больше углекислого газа, чем сегодня.
Начинается отлив, и не все морские жители поспевают за уходящими водами. Здесь, на обнажившемся дне, среди буро-зеленых комков водорослей, раковин брахиопод, морских звезд и луж воды неспешно ползают странные существа. Покрытые сегментированным панцирем, они похожи на гигантских мокриц. На мощном головном щитке панциря выделяются фасеточные глаза, длинные усики ощупывают поверхность перед собой. При нашем приближении трилобиты стараются спрятаться в лужах, а некоторые сворачиваются в шар. Такое поведение может спасти от хищника, а мы же с легкостью добываем несколько экземпляров, и теперь самое время рассмотреть их поближе.
Броня и лапки
Трилобиты – членистоногие, представители того же типа, что и пауки, многоножки, крабы, жуки и бабочки.
Общий план строения у трилобитов одинаков, не смотря на разницу в размерах и образе жизни. Тело делится на три части как вдоль, так и поперек. В поперечном плане это: голова (цефалон), тело (торакс) и хвост (пигидий). В продольном – центральная осевая доля (рахис), и две плевральные доли/лопасти справа и слева от нее. Головной щит скрывает самые важные органы – мозг и желудок. Остальные сегменты тела имеют однотипное строение. Через каждый сегмент проходит нервный тяж с ганглиями, кишечник и длинный многокамерный сосуд – сердце.
Как и у всех членистоногих, тело трилобита покрыто хитиновым панцирем, выполняющим роль экзоскелета. Изнутри к панцирю крепятся соединительная ткань, мышцы и внутренние органы. Панцирь не является сплошной монолитной конструкцией, он состоит из множества сегментов, что обеспечивает хорошую подвижность животному. Его толщина – от 1 мм и более у крупных видов. Высокая прочность достигается двумя способами: за счет минерализации хитина солями кальция и конструктивных особенностей. Разнообразные гребни, шипы и прочие наросты создают дополнительные ребра жесткости, усиливающие броню трилобита.
Пойманные нами трилобиты имеют темный однотонный серо-зеленый окрас, но попадаются особи с красно-бурым панцирем и пятнами, похожими на камуфляжные.
Одной из интересных особенностей трилобита является умение сворачиваться в шар во время опасности. Наши образцы сейчас выглядят как свернувшиеся мокрицы-переростки. В таком состоянии они могут находиться длительное время, но если оставить их в покое, они не спеша разворачиваются.
Если трилобита перевернуть, мы увидим множество шевелящихся членистых ножек. Поскольку конечности редко сохраняются в окаменелом виде, сейчас у нас есть уникальная возможность изучить их вживую. На первый взгляд кажется, что они одинаковые, но это не так. Самая первая пара конечностей видоизменилась и стала антеннами – с их помощью трилобит ощупывает и обнюхивает предметы. Под головным щитом расположены четыре пары сильных ног, захватывающих и измельчающих пищу. Конечности на брюшке и хвосте делятся на две веточки. Основная – это собственно ходильная нога. А от ее основания отходит особая щетинистая пластинка. Это жабры, часть дыхательной системы трилобита. В задней части, под пигидием, эти щеточки гораздо больше и массивней, и выполняют роль плавательных лопастей.
Крепкий внешний скелет – это хорошая защита от врагов, но у него есть существенный минус. Он не может растягиваться по мере роста животного. Поэтому от панциря надо периодически избавляться, линять. На головном щите трилобита расположены особые швы, по которым разрывалась старая оболочка. Процесс линьки начинался с высвобождения глаз, и их отсутствие у окаменелости – один из признаков, что мы имеем дело со сброшенной оболочкой. Здесь, на берегу силурийского моря, эти панцири встречаются большими кучами, покрытыми слоем песка и ила. Очевидно, для линьки трилобиты собирались в одно место, как это делают современные крабы, чтобы защищать друг друга от врагов.
Зоркий взгляд
Трилобиты – одни из первых животных, которые обзавелись сложными глазами. Вглядитесь в эти фасетки – их каменный взгляд завораживает даже спустя миллионы лет. И каменный – вовсе не метафора. Глаз трилобита состоит из множества фасеток (от 70 до 10-15 тысяч). В каждой фасетке находятся две линзы. Нижняя состоит из хитина, а вот верхняя представляет собой кристалл кальцита с примесью магния. Это очень необычно. Подобного рода «минеральные» линзы в глазах есть еще только у двух групп живых существ – панцирных моллюсков-хитонов, и у иглокожих, офиур. Но только у трилобитов они развиты до совершенства и обеспечивают хорошее зрение. Их происхождение – результат параллельной эволюции и особенностей обмена веществ у этих животных.
Трилобиты – мастера биохимической работы с карбонатом кальция. Анализ окаменелых панцирей и пробы, взятые у живых трилобитов, показывают высокую степень минерализации их хитиновой брони, что также не встречается ни у кого из членистоногих.
Такое устройство глаз позволяло хорошо видеть объекты на расстоянии до нескольких метров, а множество фасеток формировали объемное сфокусированное изображение объекта. В окаменелостях глаза трилобитов сохраняются практически неизменными, включая цвет – у некоторых они могут быть бирюзовыми, изумрудно-зелеными, или желтыми.
Половой вопрос
Как и большинство современных членистоногих, трилобиты были двуполыми и откладывали яйца.
Чтобы отличить самца и самку трилобита, нужно обратить внимание на форму тела и скульптурные элементы панциря. У самцов тело более узкое, но панцирь может быть богато украшен выростами. У самок шипы и отростки панциря меньше, зато широкое сильное тело. Но основным внешним отличием все-таки будет выводковая сумка, особое приспособление на головном щите либо на его нижней стороне, в которое помещаются яйца.
Личинки трилобита мало похожи на своих родителей – у них нет глаз, а тело скрыто под нерасчлененным щитком. Такие личинки свободно плавают в толще воды и разносятся волнами и течением на большие расстояния. По мере роста молодой трилобит становится все больше похож на взрослую особь. Планктонную стадию в размножении проходят и многие современные морские членистоногие.
Также, подобно некоторым ракообразным, трилобиты способны на миграции во взрослом состоянии. Известно, что трилобиты способны выстраиваться в цепочки, как это делают лангусты, и перемещаться крупными группами на большие расстояния. Что заставляет их мигрировать, сезонное это явление или нет – нам еще предстоит выяснить.
Среда обитания
Для того, чтобы изучить образ жизни трилобитов в естественной среде, нам придется погрузиться на дно силурийского моря в передвижной лаборатории и установить камеры наблюдения.
От океана нашу мелководную лагуну отделяет риф барьерного типа. Его строители – строматопороидеи, колониальные организмы, близкие к губкам. Вместе с одноклеточными водорослями и кораллами (ругозами и табулятами) они образуют сложное сообщество, на котором селятся морские лилии, актинии, брахиоподы и моллюски.
Здесь, между кустиками кораллов мы встречаем Paralejurus-ов, небольших трилобитов с гладким массивным цефалоном и крупными глазами. Они многочисленны, и неторопливо переползают с места на место в поисках пищи – моллюски, мертвый мечехвост, застрявшая среди морских лилий панцирная рыба станут их добычей. Еще пара похожих особей увлеченно грызет губку, пытаясь извлечь из нее что-то съедобное.
В целом трилобиты – хищники, ведущие придонный образ жизни. Основная добыча – разнообразные черви и прочие мягкотелые беспозвоночные. Некоторые виды устраивают засады на проползающую мимо добычу – зарываются в песок, оставляя на поверхности одни глаза, и резким рывком набрасываются на свою жертву. Так охотился, к примеру, Asaphus kowalewskii, имеющий глаза на длинных стебельках, но сейчас, в силуре, подобных ему мы не наблюдаем. Зато ночью камера записала удивительную сцену выслеживания добычи другим трилобитом – Cheirurus-ом. Имеющий вытянутые назад и острые, как рога, отростки цефалона, и два вытянутых шипа на пигидии, хейрурус выглядит устрашающе. Быстро переползая по дну, он изучает норки многощетинковых червей. Одна из них привлекла его внимание и трилобит затаился. Прошло около часа, прежде чем из норы показался червь, и как только он вылез полностью, последовал стремительный рывок, в воду взметнулось облако песка и ила. Червь был схвачен поперек тела передними ногами трилобита, и после непродолжительной борьбы разорван на несколько частей.
Изучая записи камер и делая выходы наружу в аквалангах, мы убедились, что разнообразие трилобитов велико даже на таком крохотном участке, как небольшая лагуна. Прибрежные заросли водорослей населяли мелкие, с ноготь, трилобиты, обгрызающие их сочные стебли. Во впадинах, где скапливался ил и вязкая грязь, встречались шипастые существа, похожие на Dicranurus-ов. Длинные отростки на панцире помогали им не тонуть в этом густом песчано-илистом киселе.
Некоторые норы, которые мы поначалу приняли за норы червей, оказались норами трилобитов с гладким, уплощенным телом и крохотными глазами. Поедая детрит и мелких обитателей дна, они прокладывали свои тоннели и иногда по ночам выходили на поверхность. Большой во всех смыслах удачей было обнаружение истинного короля трилобитов – Isotelus-а. Несколько крупных, до метра в длину особей обитали у подножия рифа и сутки напролет бороздили дно лагуны в поисках добычи.
Закат эпохи
Получив необходимую информацию и образцы, мы возвращаемся обратно в наше время. Наше путешествие в силурийский период закончено, но история трилобитов будет продолжаться еще 200 миллионов лет.
За расцветом во время силура последует постепенный спад разнообразия и численности этих удивительных животных. Девон, следующая эпоха, принесет серьезные перемены. На сцену выйдут быстрые рыбы с мощными челюстями, способные разгрызать прочные панцири членистоногих. Появятся аммониты. Среди донных хищников особое место будут занимать эвриптероидеи – ракоскорпионы длиной до двух метров. Морские экосистемы будут перестраиваться, становясь все более сложными. Постепенно к пермскому периоду от былого разнообразия трилобитов не останется почти ничего. Последние из древних исчезнут на рубеже перми и триаса, во время Великого вымирания, а их экологическую нишу со временем займут равноногие ракообразные – изоподы.
Для чего трилобиты нужны геологам
Трилобиты являются очень важной группой ископаемых организмов: они часто используются для определения возраста осадочных пород палеозоя, вмещающих их остатки, для реконструкций палеоэкологических обстановок прошлого, изучения особенностей эволюции членистоногих, истории развития и геологического строения многих регионов мира. Помимо научной значимости, трилобиты представляют собой эстетическую ценность, ведь их панцири имеют весьма необычный, броский облик. Они хорошо запоминаются даже неспециалистами. Широкое распространение трилобитов в палеозойских отложениях многих стран мира и их значительная эстетическая ценность обеспечивает им огромную популярность среди широких слоев населения. Этому вопросу и посвящена данная статья.
Трилобиты в биологии. Первые трилобиты были описаны в конце XVII века. Изучением этой группы занимались многие выдающиеся биологи и палеонтологи. Они использовали результаты изучения этих организмов для доказательства своих научных концепций развития органического мира. И сейчас трилобиты используются современными биологами в качестве доказательства происхождения членистоногих от группы кольчатых червей, приспособившихся к фильтрационному способу питания [ Суворова, 1990 ].
Так можно определить, например, амплитуду сброса или взброса. По преобладающему расположению остатков панцирей трилобитов в пластах палеозойских пород также можно определить истинное положение их кровли и подошвы.
Многие отторженцы палеозойских пород содержат слои с трилобитами. Видовой состав, особенности распространения и степени сохранности трилобитов в породах этих образований успешно применяются при сопоставлении разрезов этих отторженцев с коренными разрезами палеозойских пород. Это сравнение позволяет с большой степенью точности установить место первоначального залегания содержащих их пород, а иногда даже и особенности их формирования. На основе этого метода были установлены точные места коренного залегания блоков пород с трилобитами, слагающих многие ледниковые и тектонические отторженцы пород палеозоя.
Характерным примером использования трилобитов для решения тектонических задач являются результаты изучения трилобитов А.Ф. Лесниковой [ Асаткин, 1938 ] из отторженцев ордовикских пород в окрестностях бывшей деревни Мишина гора (Псковская область). Во многом именно благодаря изучению комплексов ископаемых организмов из пород этих образований и их сравнению с фауной, встречающихся в скважинах и разрезах Балтийско-Ладожского глинта, был сделан прогноз о тектоническом происхождении «Гдовских дислокаций». Этот вывод впоследствии был подтвержден результатами бурения. Большое значение для выяснения места коренного залегания, генезиса и особенностей перемещения тектонических отторженцев (олистостромов) пород позднего палеозоя Горного Крыма имели исследования трилобитов из этих образований, осуществленные О.Г. Туманской [ 1935 ]. Трилобиты также применялись для выяснения места первоначального залегания олистостромов палеозойских пород, распространенных на территории Италии, Турции и Балканских стран.
Активно используются трилобиты и при изучении ледниковых отторженцев, сложенных палеозойскими породами. Классическим примером этих исследований является применение трилобитов при изучении ледниковых отторженцев и валунов пород нижнего и среднего палеозоя Северной Германии [ Steinhardt, 1874, Wigand, 1888 и др.] На основании изучения этой группы было выяснено, что большинство этих отторженцев принесены из Южной Швеции. Позднее трилобиты использовались при изучении ледниковых отторженцев пород нижнего палеозоя Польши, Белоруссии и Канады. На основе изучения А.Ф. Лесниковой [ Даниловский, 1931 ] и автора [ Крылов, 2006 ] трилобитов из ордовикских пород ледниковых отторженцев Новгородской и Тверской областей выяснено происхождение, места коренного залегания и маршрут перемещения этих образований. Эти исследования способствуют созданию реконструкций движения ледника в четвертичное время на этих территориях.
1. Асаткин Б.П. Гдовские дислокации (Ленинградская область) // Тр. Лен. Геол. треста, ОНТИ-НКТП-СССР. 1938. Вып. 14. С. 1-69.
3. Колчинский Э.И. Неокатастрофизм и селекционизм: вечная дилемма или возможность синтеза (Историко-критические очерки). СПб.: Наука, 2002. 554 с.
4. Крылов А.В. Палеоаутэкология трилобитов: линька и возможности ее применения в качестве сезонного индикатора формирования ордовикских отложений Восточной Балтоскандии. СПб.: Школа экологической геологии и рационального недропользования, 2002. С. 250-252.
6. Крылов А.В. Ледниковые отторженцы ордовикских пород у г. Вышний Волочек (Тверская область) // Региональная геология и металлогения. Вып. 3. № 27. СПб., ВСЕГЕИ, 2006. С. 52-59.
7. Суворова Н.П. Вопросы систематики кембрийских трилобитов // Систематика и филогения беспозвоночных. Критерии выделения высших таксонов. М., Наука, 1990. С. 114-131.
12. Nielsen A.T. Trilobite systematics, biostratigraphy and palaeoecology of the Lower Ordovician Komstad Limestone and Huk Formations, southern Scandinavia // Fossils & Strata. 1995, № 38. P. 1-374.