для чего уравнение менделеева клапейрона

Уравнение состояния идеального газа

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона — Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

Уравнение состояния идеального газа

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Внимание! При решении задач важно все единицы измерения переводить в СИ.

Пример №1. Кислород находится в сосуде вместимостью 0,4 м 3 под давлением 8,3∙10 5 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

Из основного уравнения состояния идеального газа выразим массу:

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона — Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

Подсказки к задачам

Важна только та масса, что осталась в сосуде. Поэтому:

Давление возросло на 15%p2 = 1,15p1
Объем увеличился на 2%V2 = 1,02V1
Масса увеличилась в 3 разаm2 = 3m1
Газ нагрелся до 25 о СT2 = 25 + 273 = 298 (К)
Температура уменьшилась на 15 К (15 о С)T2 = T1 – 15
Температура уменьшилась в 2 разадля чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона
Масса уменьшилась на 20%m2 = 0,8m1
Выпущено 0,7 начальной массы
Какую массу следует удалить из баллона?Нужно найти разность начальной и конечной массы:

Газ потерял половину молекулдля чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона
Молекулы двухатомного газа (например, водорода), диссоциируют на атомыдля чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона
Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ)M (O3) = 3Ar (O)∙10 –3 кг/моль M (O2) = 2Ar (O)∙10 –3 кг/моль
Открытый сосудОбъем V и атмосферное давление pатм остаются постоянными
Закрытый сосудМасса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ— постоянные величины
Нормальные условияТемпература T0 = 273 К Давление p0 = 10 5 Па
Единицы измерения давления1 атм = 10 5 Па

Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Преобразим уравнения и получим:

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Приравняем правые части и выразим искомую величину:

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейронаНа графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На высоте 200 км давление воздуха составляет примерно 10 –9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

Источник

Уравнение Клапейрона-Менделеева

Что такое уравнение Клапейрона-Менделеева

Идеальный газ — это газ, в котором пренебрегают взаимодействием молекул газа между собой.

Идеальными считают разреженные газы. Особенно близкими к идеальным считают гелий и водород.

Идеальный газ — это упрощенная математическая модель, которая широко применяется для описания свойств и поведения реальных газов при атмосферном давлении и комнатной температуре.

Давление, объем и температура — это основные параметры состояния системы, и они связаны друг с другом. Соотношение, при котором определяется данная связь, называется уравнением состояния данного газа.

Существует эквивалентная макроскопическая формулировка идеального газа — это такой газ, который одновременно будет подчиняться закону Бойля-Мариотта и Гей-Люссака, то есть:

В представленном выше уравнении состоянии газа под const подразумевается количество молей.

Свойства классического и квазиклассического идеального газа описываются уравнением состояния идеального газа, которое называется уравнением Менделеева-Клапейрона, ниже представлена формула Менделеева-Клапейрона.

Таким образом давление и объем прямо пропорциональны количеству молей и температуре.

Также уравнение Клапейрона-Менделеева можно записать в ином виде:

Какое значение имеет универсальная газовая постоянная

Универсальная газовая постоянная (R) — это величина, которая является константой, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 K.

Постоянную Больцмана используют в формулах, описывающих изучаемое явление или поведение рассматриваемого объекта с микроскопической точки зрения, тогда как универсальная газовая постоянная более удобна при расчетах, касающихся макроскопических систем, когда число частиц задано в молях.

Связь с другими законами состояния идеального газа

С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса и один трех макропараметров (давление, температура или объем) — остаются неизменными.

Количественные зависимости между двумя параметрами газа при фиксированном третьем параметре называют газовыми законами, которые связывают эти параметры.

Изопроцессы — это термодинамические процессы, во время протекания которых количество вещества и один из макропараметров состояния: давление, объем, температура или энтропия — остается неизменным.

В зависимости от того, какой параметр остается неизменным различают разные процессы, которые выражаются законами, являющимися следствием уравнения состояния газа:

Изотермический процесс (T=const)

Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой — термостатом. Им может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса.

Согласно уравнению Клапейрона-Менделеева, в любом состоянии с неизменной температурой произведение давления газа на объем одно и то же, то есть постоянно:

Этот закон был открыт экспериментально английским ученым Бойлем и несколько позднее французским ученым Мариоттом. Именно поэтому он называется закон Бойля-Мариотта.

Закон Бойля-Мариотта справедлив для любых газов, а также для смеси газов (например, для воздуха).

Зависимость давления газа от объема при постоянной температуре изображается графической кривой — изотермой. Изотерма для различных температур представлена в координатах pV на рис.1. и представляет собой гиперболу.

Рис.1. Изотерма в pV — координатах.

Изохорный процесс (V=const)

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

Из уравнения состояния следует, что отношение давлений газа данной массы при постоянно объеме равно отношению его абсолютных температур:

Газовый закон был установлен экспериментально в 1787 г. французским физиком Ж. Шарлем и носит название закона Шарля: давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

Так, если в качестве одного из состояний газа выбрать состояние газа при нормальных условиях, тогда

p = p 0 T T 0 = p 0 γ T

Коэффициент γ называют температурным коэффициентом давления газа. Он одинаков для всех газов.

Зависимость давления газа от температуры при постоянном объеме изображается графически прямой, которая называется изохорой (Рис.2).

Рис.2 Изображение изохоры в pT-координатах.

Изобарный процесс (p=const)

Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

Из уравнения Клапейрона-Менделеева вытекает, что отношение объемов газа данной массы при постоянном давлении равно отношению его абсолютных температур.

Если в качестве второго состояния газа выбрать состояние при нормальных условиях (нормальном атмосферном давлении, температуре таяния льда) следует:

V = V 0 T T 0 = V 0 α T

Этот газовый закон был установлен экспериментально в 1802 г французским ученым Гей-Люссаком.

Закон Гей-Люссака: объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре.

Коэффициент α называют температурным коэффициентом объемного расширения газов.

Зависимость объема газа от температуры при постоянном давлении изображается графической прямой, которая называется изобарой (Рис.3).

Рис. 3. Изобара в VT-координатах.

Использование универсального уравнения для решения задачи

В реальности проводятся различные физико-химические процессы. Рассмотрим каким образом уравнение состояния идеального газа и законы, связанные с ним находят применение для решения физических и химических задач.

Так как в уравнении даны объем и температура — два из трех макроскопических параметров, а третий (давление) нужно определить, то мы можем использовать уравнение Клапейрона-Менделеева:

p V = n R T = m M R T

Не забываем перевести температуру в Кельвины:

T = t + 273 = 27 + 273 = 300 K

Молярная масса кислорода известна из таблицы Менделеева:

Выразим из уравнения состояния давления и поставим все имеющиеся данные:

Используем уравнение Менделеева-Клапейрона, из которого выражаем объем кислорода, который нужно найти:

p = n R T V = m R T M V

Молярная масса кислорода предполагается равной:

M ( O 2 ) = 2 * 16 = 32 г / м 3

Не забываем перевести температуру в Кельвины:

T = t + 273 = 20 + 273 = 293 K

Переводим давление: p = 15680000 Па

Выражаем из уравнения Клапейрона-Менделеева объем и подставляем значения, данные в условиях задачи:

Согласно уравнению Менделеева-Клапейрона:

p = n R T V = m R T M V

Плотность — это величина, характеризующая массу некоторого объема и находится по формуле:

ρ = m V и л и V = m ρ

Тогда p m ρ = n R T = m R T M

Откуда выражаем плотность газа:

Для водорода эта формула запишется следующим образом:

ρ H 2 = p M H 2 R T

По условию задачи водород и любой другой газ находятся при одинаковых условиях, откуда следует, что:

ρ H 2 M H 2 = p R T

Поставим последнее выражение в выражение для плотности любого газа:

Молярная масса водорода, исходя из таблицы Менделеева равна 2 г/моль и тогда. Молекулярная масса численно равная молярной и представляет собой массу молекулы в атомных единицах, поэтому в дальнейшем мы совершили переход к молекулярной массе.

Рассмотрим несколько задач на законы, связанные с уравнение Клапейрона-Менделеева, то есть на изотермические, изохорные, изобарные процессы.

При уменьшении давления газа в 2,5 раза его объем увеличился на 12 л. Какой объем занимал газ в начальном состоянии, если температура на протяжении всего процесса оставалась постоянной?

По условию задачи температура в ходе всего процесса оставалась постоянной, откуда следует, что у нас изотермический процесс, и мы можем воспользоваться для решения законом Бойля-Мариотта.

Откуда можем найти начальный объем:

Ответ: первоначальный объем газа был равен 8 л.

Газ находится в баллоне при температуре 400 К. До какой температуры нужно нагреть газ, чтобы его давление увеличилось в 1,5 раза?

Так как нагревание газа по условиям данной задачи происходит при постоянном объеме, значит перед нами изохорный процесс.

При изохорном процессе:

При 27°C объем газа равен 600 мл. Какой объем займет газ при 57°C, если давление будет оставаться постоянным?

Так как давление по условию остается постоянным, то можем использовать закон Гей-Люссака.

V_2 – искомый объем

Для правильного расчета необходимо перевести температуры из Цельсий в Кельвины:

T 1 = 273 + 27 = 300 K

T 2 = 273 + 57 = 330 K

V 2 = ( 600 * 330 ) / 300 = 660 м л

Так как по условию задания давления газа не изменяется, значит перед нами изобарный процесс. Для решения воспользуемся законом Гей-Люссака:

Перейдем к абсолютной температуре:

T 1 = 1150 + 273 = 1423 K

T 2 = 200 + 273 = 473 K

Масса газа: m = ρ 1 V 1 = ρ 2 V 2

Использование этих формул приводит к следующему:

Источник

Для чего уравнение менделеева клапейрона

где NА — число Авогадро, k — постоянная Больцмана.

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Такие процессы называют изопроцессами. Законы, описывающие изопроцессы, были открыты задолго до теоретического вывода уравнения состояния идеального газа.

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

V= const => p/T = const — закон Шарля

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

N = 3,7·10 10 · 0,5 г · 60 сек · 60 мин · 24 час · 365 дней = 5,83·10 17 атомов.

Запишем уравнение Клапейрона-Менделеева PV = nRT и заметим, что число молей гелия n = N/NA. Отсюда:

В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

Источник

Закон Клапейрона-Менделеева для идеального газа: исторические предпосылки, формула, пример задачи

Рассмотрение свойств газов в физике в первом приближении основывается на концепции идеального газа. В данной статье подробно изучим эту концепцию и приведем уравнение, которое описывает численно термодинамические свойства упомянутой текучей субстанции. Это уравнение называется законом Клапейрона-Менделеева.

Концепция идеального газа

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

В школьном курсе физики газовое агрегатное состояние вещества характеризуется произвольным перемещением с различными скоростями всех составляющих его атомов и молекул. Эти частицы считаются в первом приближении абсолютно упругими материальными точками. Они имеют массу, но не размеры. Весь характер их взаимодействия друг с другом заключается в абсолютно упругих столкновениях, в результате которых сохраняется количество движения и энергия. Все перечисленные свойства частиц и их приближения образуют концепцию идеального газа.

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона Вам будет интересно: Каково значение слова «сострадание»?

Любой реальный газ, будь то гелий, кислород или воздух, можно с высокой точностью считать идеальным, если его давление составляет порядка одной атмосферы и ниже, а температура соответствует комнатной или выше. Если эти условия не выполняются, то газ считается реальным, и для его описания следует использовать уравнение Ван-дер-Ваальса, а не закон Клапейрона-Менделеева, о котором пойдет речь далее в статье.

Предпосылки возникновения уравнения состояния идеального газа

Под уравнением состояния газа идеального принято понимать математическую формулировку газового закона Менделеева-Клапейрона. Как и любое открытие в физике, это уравнение не появилось из неоткуда, а имело вполне определенные исторические предпосылки.

В 60-70-е годы XVII века англичанин Роберт Бойль и француз Эдм Мариотт независимо друг от друга в результате многих проведенных экспериментов с различными газами установили, что произведение объема на давление для закрытой системы с газом остается постоянным для любых процессов, в результате которых температура не изменяется. В настоящее время этот газовый закон носит фамилии названных ученых.

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Наконец, в 1834 году Эмиль Клапейрон вывел, анализируя открытые предыдущими учеными газовые законы, уравнение Клапейрона. Менделеева фамилия появилась в названии этого уравнения благодаря его вкладу в преобразование исходного выражения к современному виду. В частности, Менделеев ввел понятие универсальной газовой постоянной.

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Формула закона Клапейрона-Менделеева

Выше мы дали определение идеального газа, рассказали о законах, которые привели к формулировке универсального уравнения состояния. Теперь пришло время записать это уравнение:

Коэффициентом пропорциональности является уже упомянутая универсальная постоянная R. Она равна 8,314 Дж/(моль*К). Если 1 моль газа нагреть на 1 кельвин, то в процессе расширения он совершит работу 8,314 Джоуля. Любопытно заметить, что универсальной величина R называется потому, что она не определяется химической природой газа. Для всех чистых газов и их смесей она принимает единственное значение.

Откуда выводится изучаемое уравнение?

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Выше мы уже сказали, что Клапейрон свое уравнение получил в результате банального обобщения экспериментальных результатов различных ученых. Тем не менее, закон Клапейрона-Менделеева может быть получен чисто теоретическими методами.

Одним из них является МКТ (молекулярно-кинетическая теория). МКТ рассматривает газовую систему с точки зрения концентрации частиц, распределения их скоростей, учета их масс и следование концепции идеального газа. Универсальное уравнение газа однозначно следует, если применить второй закон Ньютона к процессу упругого соударения частиц со стенками герметичного сосуда. В результате применения МКТ получается выражение:

Это равенство приводит к записанному в предыдущем пункте уравнению, если учесть следующие выражения:

Использование универсального уравнения для решения задачи

Известно, что некоторый газ под давление 2 атмосферы находится в баллоне при температуре 25 oC. Объем баллона составляет 50 литров. Какое количество вещества содержится в баллоне?

для чего уравнение менделеева клапейрона. Смотреть фото для чего уравнение менделеева клапейрона. Смотреть картинку для чего уравнение менделеева клапейрона. Картинка про для чего уравнение менделеева клапейрона. Фото для чего уравнение менделеева клапейрона

Поскольку нам известны 3 из 4-х параметров, то можно применить закон Клапейрона-Менделеева, чтобы найти величину n. Прежде чем это сделать, переведем все единицы в систему СИ:

P = 2 атм. = 101325*2 = 202650 Па;

T = 25 + 273,15 = 298,15 К;

Теперь воспользуемся формулой, получим:

n = P*V/(R*T) = 202650*0,05/(8,314*298,15) = 4,09 моль.

Хотя само значение 4,09 моль является небольшим, количество частиц газа будет гигантским. Чтобы его получить, следует n умножить на NA=6,02*1023.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *