для чего увеличивают камеру сгорания
Увеличение степени сжатия
Объем камеры сгорания влияет на конечную степень сжатия двигателя.
Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.
Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.
Объем камеры сгорания состоит из суммы 3 объемов:
1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.
объем камеры сгорания степень сжатия
Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.
Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.
То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?
Степень сжатия можно повысить двумя самыми эффективными способами:
1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.
2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.
Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.
Примеры прибавок в процентах:
с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %
Примеры перехода на более высокооктановое топливо при повышении (СС)
менее 8 — 76 бензин
от 8 до 9 — 80 бензин
от 9 до 10.5 — 92 бензин
от 10 до 12.5 — 95 бензин
от 12 до 14.5 — 98 бензин
от 13.5 до 16 — 102 бензин
от 15.5 до 18 — 109 бензин
Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.
Увеличение степени сжатия
Объем камеры сгорания влияет на конечную степень сжатия двигателя.
Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.
Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.
Объем камеры сгорания состоит из суммы 3 объемов:
1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.
Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.
Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.
То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?
Степень сжатия можно повысить двумя самыми эффективными способами:
1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.
2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.
Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.
Примеры прибавок в процентах:
с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %
Примеры перехода на более высокооктановое топливо при повышении (СС)
Турбированный ДВС. Основные заблуждения принципов работы.
Скажу прямо, что и я долгое время был дезинформирован о принципах наддува в двигателях.
Важно признать свои ошибки и хотя бы попытаться взглянуть на тюнинг мощности под другим углом.
Заблуждение № 1
Мощность ДВС можно поднять путём увеличения наддува турбины, либо заменой турбиной большей производительности.
Так то оно так, но только при условии что повышение штатного наддува является следствием изменения процессов горения смеси.
В большинстве случаев, с которым в тюнинге я сталкиваюсь всё чаще, бывает наоборот. Повышение наддува ведёт к радикальному изменению процессов горения. и уж совсем при таком подходе не ведёт к повышению мощности.
Предполагается, что на каждую дополнительную порцию топлива (даже если мы поставим более производительный топливный насос и форсунки ) мы можем наддувом турбины добавить дополнительную порцию воздуха, что бы смесь была 14.7 (забегая вперёд, для турбированных ДВС она должна быть крайне корректно выбрана в пределах 11-12.5)
Таким образом, заблуждение состоит в том, что если мы в цилиндр задуем больше воздуха и добавим топлива, то смеси станет больше и при её сгорании работы по толканию поршня будет произведено тоже больше.
Так то оно так, но почему этого не происходит. а теперь разберём, почему.
Даже если и впихнём — получим повышенную температуру выхлопных газов, как следствие, возрастёт температура в Камере Сгорания. А это детонация.
Напомню, что детонация (самопроизвольное очаговое возгорание смеси )возникает :
на бензине RON98 — при температуре в цилиндре (до воспламенения свечой) около 270*
на бензине RON95 — при 250*
именно поэтому тюнеры и льют 98ой и выше, якобы он лучше горит и работы больше.
На самом деле октановое число напрямую связано с температурой горения смеси.
и заливая 98ой на заправке мы не получим больше мощности без дополнительных доработок.
Мы просто понизим порог детонации до 270 градусов.
Так что если мы впихнули в Камеру сгорания больше смеси путём дополнительного наддува и залили 98, то в принципе будет небольшой прирост, хотя тоже под вопросом.
Конечно, можно открутить Угол Опережения Зажигания назад на 30-40 градусов и мы уменьшим порог срабатывания детонации и в принципе по такой лжетеории можем задуть ещё. Но имеем обратный эффект.
УОЗ откручен назад, смесь воспламеняется раньше, Пока поршень идёт вверх, ему нужно преодолеть давление уже горящей смеси и только потом выполнить основную работу после ВМТ. но смесь уже почти сгорела, её остатки уже не с той силой давят на рабочий ход поршня вниз.
Результат увеличиваем наддув, повышеная температура в КС, боремся с детонацией, откручиваем УОЗ, теряем мощность.
Вообщем сами наддувом создаём проблемы и пытаемся успешно с этим бороться. Мазохизмом попахивает.
Наверное когда то все слышали что у турбированного ДВС степень сжатия должна быть ниже чем у атмосферного. и это ключевой момент и отличия в принципах работы Turbo и ATM.
Что бы никто не путал компрессию и степень сжатия СС напомню, что СС это отношение суммарного объёма цилиндра с камерой сгорания к объёму самой камеры сгорания КС.
Работа отсутствует, потому что в ВМТ отсутствует рычаг между шатуном и кривошипом коленвала
И не важно какого размера КС. Работа всё равно будет 0, так всё давление приходится на опорные подшипники и вкладыши коленвала.
Минимальная работа появляется, как только между кривошипом и шатуном появляется угол или Плечо, пусть даже и минимальный, из курса школьной физики говорят, что появляется Момент силы
Кстати, это тот самый момент, который меряют вместе с Лошадиными силами.
думаете, что всё знаете и назачем я всё это рассказываю?
Наиболее терпеливые дождались. суть самого главного…
Наибольший момент возникает при угле в 90* между кривошипом и шатуном.
Но нужно понимать, что по мере хода поршня вниз и приближении шатуна относительно кривошипа к углу в 90*, Давление газов с ростом объёма падает
И не смотря на то что мы имеем максимальный крутящий момент под углом 90*, давление газов на поршень при этом уже значительно упало.
Я уже молчу, когда тюнеры откручивают УОЗ назад, предотвращая детонацию и смесь уже полностью сгорела, а именно сейчас для получения момента нам и нужно давление. а его уже давно нету.
И именно по этой причине для Турбированных ДВС в большинстве случаев используют меньший диаметр поршня но большую длину его хода. Хотя это тоже спорный момент. Например в Формуле 1 в своё время, когда наддув был ещё разрешён, применялись короткие шатуны. Но вспомним, что и обороты двигателя доходили до 15000. а при таких оборотов растёт сила растяжения в НМТ и МВТ, которая пропорциональна квадрату скорости вращения коленвала. В этом случае с длинными шатунами получаем на высоких оборотах большой ход поршня и очень большую силу по растяжению. Инерционные силы движения поршня уже совсем не компенсируют силы растяжения.
Другими словами, выбор коротких или длинных шатунов в большей степени обуславливается тем, что мы больше хотим получить момент на верхах в 7000-8000 тыс или в середине.
Путь №2 — Увеличиваем объём камеры сгорания.
По мере хода поршня вниз объём цилиндра с КС возрастает. соответственно давление газов падает, НО!
При увеличенной КС на величину V весь суммарный объём V1+V+V2 увеличивается чуть медленнее, чем объём V1+V2 для камеры с обычной степенью сжатия.
А если объём растёт медленнее, то и давление газов падает медленнее и на момент рычага в 90* мы имеем бОльшее давление на поршень чем случае с обычной КС.
теперь нам только остаётся наполнить смесью объём увеличенной КС, а именно для этого нам и нужна принудительная подача воздуха за счёт турбины. Турбиной мы компенсируем увеличенную КС.
Считаю, что более наглядно данную тему осветил бородатый дядька из Украины в своём видике.
Настоятельно рекомендую глянуть его теорию, но предупреждаю заранее:
Двигатель с наддувом описан очень даже неплохо.
Но господин Травников сильно ошибается в отдельных ключевых моментах, когда рассказывает о тюнинге Головок Блока Цилиндров ГБЦ.
Он замечательный автослесарь, делает всё правильными инструментами, правильными руками с отличным подходом, но с искажённой теорией о ГБЦ.
Забегая вперёд, поясню, что ключевую роль в ГБЦ имеет геометрия каналов и камеры сгорания, а он делает упор на ширину каналов и клапанных сёдел, предполагая, что через более широкий канал прокачается турбиной бОльшее количество воздуха. А это типовое заблуждение всех тюнеров.
А потом у меня спрашивают, как на давлении в 1.3 бара можно на моём Fiat Coupe 20VT получить 450 сил.
Сегодня было начало ответов на эту тему.
Думаю, что все уже устали читать и статья получилась длинной, так что об остальном напишу чуть позже.
Да и писать у меня получается только по ночам
Повышение степени сжатия
Термический КПД двигателя ηt в значительной степени зависит от величины степени сжатия ε. Чем выше степень сжатия, тем меньше топлива используется для получения той же самой мощности, поэтому повышение степени сжатия — один из основных методов увеличения мощности двигателя. Термический КПД двигателя при увеличении степени сжатия увеличивается сначала быстро, а после значений степени сжатия 12-13 — несколько медленнее.
Увеличение степени сжатия ограничивается появлением детонации вследствие роста температуры рабочей смеси в конце хода сжатия, в результате чего двигатель перегревается, наполнение цилиндров бензовоздушной смесью ухудшается, износ основных деталей двигателя повышается в 2-3 раза. Сильная детонация может привести к прогоранию днища поршня. Практически предельное значение степени сжатия ограничивается октановым числом применяемого моторного топлива. Наиболее рациональным является форсировка двигателя до степени сжатия 9,8 — 10, что подтверждается опытом участия в спортивных соревнованиях в нашей стране и за рубежом. Указанные значения также типичны для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам многих форсированных двигателей. При увеличении продолжительности такта впуска посредством установки распределительного вала с более длительным периодом впуска прирост мощности от степени сжатия становится еще более значительным.
Прирост мощности при увеличении степени сжатия можно определить по приведенной ниже таблице, показывающей приращение мощности двигателя от исходной величины при изменении степени сжатия. Для этого находят в таблице столбец с исходной степенью сжатия и колонку с новой предполагаемой степенью сжатия. Прочитанное значение в элементе таблицы покажет увеличение мощности в процентах.
исходная степень сжатия
новая степень сжатия
Данные таблицы базируются на механических степенях сжатия, определенных путем математических расчетов из фиксированного объема, а не на динамических степенях сжатия, которые будут увеличиваться при увеличении эффективности впуска. При улучшении наполнения цилиндра динамическая степень сжатия увеличивается подобно увеличению объема цилиндра, т.к. в цилиндр будет поступать больше воздуха и топлива.
Практически увеличение степени сжатия не всегда приводит к увеличению мощности. Если статическая (подсчитанная ) степень сжатия уже находится около предела детонации для используемого топлива, ее дальнейшее увеличение может ухудшить мощность и/или надежность двигателя. Это особенно справедливо, когда достигнут коэффициент наполнения цилиндра больше 1. К тому же, когда коэффициент наполнения цилиндра больше 1, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. Однако если мы увеличиваем степень сжатия путем уменьшения объема камеры сгорания или путем увеличения выпуклости поршня, то общее количество бензовоздушной смеси, которую может принять цилиндр, уменьшится на эту величину, и, как следствие, при увеличении степени сжатия ухудшается наполнение цилиндров. Чем лучше наполнение цилиндров (полученное турбиной, насосом, полировкой каналов, изменением фаз газораспределения и т.д.), тем меньше будет требуемая степень сжатия.
Практически степень сжатия двигателя зависит от объема камеры сгорания, размера и формы поршня и его хода. Так, для двигателей УЗАМ 3313 и 3318, имеющих одинаковый диаметр цилиндра и ход поршня и одинаковую головку блока цилиндров, за счет изменения формы поршня степень сжатия изменяется с 7.6 в двигателе УЗАМ-3313 до 9.2 в двигателе УЗАМ-3318, что приводит к увеличению максимальной мощности с 85 до 90 л.с., а максимального крутящего момента с 135 н/м до 145 н/м.
Ниже в таблице показана зависимость степени сжатия двигателя УЗАМ-412 от глубины фрезерования головки блока цилиндров:
Увеличение камеры сгорания двигателя что дает
Увеличение степени сжатия, получаемое путем уменьшения объема камеры сгорания, ведет к увеличению мощности двигателя. Увеличение степени сжатия ведет к росту давления сгорания в цилиндре за счет увеличения давления сжатия, улучшения циркуляции смеси в камере сгорания и увеличения скорости сгорания.
Степень сжатия нельзя увеличивать до любой произвольной величины. Она ограничена качеством используемого топлива, а также тепловой и механической прочностью узлов двигателя. Достаточно сказать, что при увеличении эффективной степени сжатия с 6 до 10 силы, действующие на поршень, возрастают почти вдвое; т. е. вдвое возрастает нагрузка, например, на кривошипный механизм.
С учетом прочности деталей двигателя и детонационных свойств доступных топлив не рекомендуется применять геометрическую степень сжатия больше 14. Увеличение степени сжатия до этого значения требует не только удаления прокладки (если она была), но и придания соответствующей формы головке цилиндра, а иногда и цилиндру. Для облегчения расчета объема камеры сгорания для разных степеней можно пользоваться диаграммой, показанной на рис. 9.17. Каждая из кривых относится к определенному рабочему объему цилиндра.
Рис. 9.17. Диаграмма зависимости степени сжатия а от объемов камеры сгорания V1= 125 см 3 и V2 —50 см 3
В некоторых двигателях с относительно небольшой степенью сжатия ее значительное увеличение возможно только путем механической обработки. В этом случае заплавляют камеру сгорания и снова обрабатывают ее. Это позволяет также изменить форму камеры. Большинство современных двигателей, применяемых в картинге, имеют камеру сгорания в виде шляпы. Эту форму не следует изменять при доработках двигателя.
Прокладки под головку цилиндра в гоночных двигателях либо вообще не применяются, либо их заменяют тонкие медные кольца. В обоих случаях поверхности стыка цилиндра и головки должны быть притерты. Применение прокладок из материала с низким коэффициентом теплопроводности противопоказано, потому что это затруднит отток теплоты от верхней части гильзы цилиндра, несущей значительную тепловую нагрузку, к головке и ее охлаждающим ребрам. Прокладка головки цилиндра ни в коем случае не должна выступать в камеру сгорания. Выступающая кромка прокладки будет накаляться и станет источником калильного зажигания.
Рис. 9.18. Определение объема камеры сгорания
Октановое число применяемого бензина должно соответствовать степени сжатия. Однако надо учитывать, что степень сжатия является не единственным фактором, определяющим возможную детонацию топлива.
Детонация зависит от протекания процесса сгорания, от движения смеси в камере сгорания, от способа зажигания и т. п. Вид топлива для конкретного двигателя подбирается опытным путем. Однако использовать высокооктанное топливо для двигателя с низкой степенью сжатия не имеет смысла, потому что работа двигателя не улучшается.
Продувка цилиндра
Подбор соответствующих фаз газораспределения в двухтактном двигателе играет огромное значение для удаления отработавших газов из цилиндра и наполнения его свежей смесью. Кроме того, надо так направить струи смеси, идущие из перепускных окон, чтобы они проходили через все закутки цилиндра и камеры сгорания, выдувая из них остатки отработавших газов и направляя их к выпускному окну.
Для увеличения ЧВ двигателя и, как следствие, его мощности, необходимо значительно расширить фазу выпуска, а точнее, увеличить разность между фазами выпуска и продувки. В результате этого увеличивается время, в течение которого отработавшие газы, расширяясь, выходят из цилиндра. В этом случае в момент открытия перепускных окон цилиндр уже пуст, поступающий в него свежий заряд лишь незначительно смешивается с остатками отработавших газов.
Фаза выпуска увеличивается за счет смещения (спиливания) верхней кромки окна. Фаза выпуска в гоночных двигателях достигает 190° по сравнению со 130—140° в серийных двигателях. Это значит, что верхнюю кромку можно спилить на несколько миллиметров. Надо, однако, учитывать, что в результате увеличения высоты выпускного окна уменьшается ход поршня, на котором выполняется работа. Поэтому увеличение высоты выпускного окна окупается только в том случае, если потери в работе поршня компенсируются улучшением продувки цилиндра.
В связи с целесообразностью достижения максимальной разности между фазами выпуска и продувки угол открытия продувочных окон обычно остается неизменным.
Существенное влияние на качество продувки имеют размер и форма перепускных каналов и окон. Направление впуска смеси в цилиндр из перепускного канала должно соответствовать принятой системе продувки (см. п. 9.2.4, рис. 9.10). В двух-и четырехканальной системах продувки струи поступающей в цилиндр горючей смеси направляются над поршнем к стенке цилиндра, противоположной выпускному окну, причем в четырехканальной системе струи, исходящие из окон, расположенных ближе к выпускному окну, обычно направлены к оси цилиндра. В системах с тремя или пятью перепускными окнами одно окно должно быть расположено напротив выпускного окна, канал этого окна должен направлять струю горючей смеси вверх под минимальным углом к стенке цилиндра (рис. 9.19). Это необходимое условие эффективного действия этой дополнительной струи, получаемое обычно уменьшением ее сечения, а также более позднего открытия этого окна.
Изготовление дополнительного (третьего или пятого) канала является правилом, для двигателей с вращающимся золотником или мембранным клапаном. В двигателях, в которых наполнением кривошипной камеры управляет поршень, на месте классического третьего (или пятого) перепускного канала находится впускное окно. В таких двигателях могут быть дополнительные перепускные каналы, причем впускное окно должно иметь соответствующую форму; подобное решение показано на рис. 9.20. В этом двигателе сделаны три дополнительных перепускных окна небольшого размера, соединенных общим перепускным каналом, вход в который находится над впускным окном. Необходимая фаза впуска обеспечивается здесь соответствующей формой впускного окна.
Рис. 9.19. Влияние формы третьего перепускного канала на движение заряда в цилиндре:
a — неправильная форма; б— правильная форма
При установке на обычный двигатель вращающегося золотника в цилиндре появляется возможность сделать перепускной канал напротив выпускного окна. Здесь удобно сделать сильно изогнутый короткий канал (рис. 9.21, а), поступление смеси в который на некоторое время закрывается юбкой поршня.
Недостаток этого решения заключается в том, что движение поршня нарушает нормальный ток горючей смеси, но оно имеет два важных достоинства: маленький объем канала лишь незначительно увеличивает объем кривошипной камеры, а горючая смесь, проходя через поршень, прекрасно его охлаждает. Практически такой канал легко сделать следующим образом. В цилиндре делаются два отверстия (перепускное окно и вход в канал), в этом месте вырезаются ребра и прикручивается накладка с проточенным в ней каналом (рис. 9.21,6). Можно также попробовать вырезать вертикальную канавку в зеркале цилиндра между входом в канал и окном, ширина канавки равна ширине канала. Однако в этом случае движение поршня вниз будет вызывать некоторую турбулизацию горючей смеси в канале (рис. 9.21, в).
Перепускные каналы должны сужаться к окнам в цилиндре.
Рис. 9.21. Дополнительный перепускной канал с протеканием смеси через поршень:
а — принцип действия; б — часть канала проходит во внешней накладке; в — канал, вырезанный в зеркале цилиндра
Вход в перепускной канал должен иметь площадь на 50 % больше, чем площадь перепускного окна. Очевидно, что изменение сечения канала должно быть выполнено по всей его длине. Углы окон и сечений каналов должны быть скруглены радиусом 5 мм для повышения ламинарности потока.
Недопустимы какие-либо погрешности при стыковке частей каналов, находящихся в разных деталях двигателя. Это замечание прежде всего касается места соединения цилиндра с картером двигателя, где источником дополнительных завихрений смеси может стать прокладка, и стыков впускного и выпускного патрубков с цилиндром. Вихри в потоке смеси могут возникать также в месте стыка литой рубашки цилиндра с залитой или запрессованной гильзой (рис. 9.22). Несовпадения размеров в этих местах должны быть безусловно исправлены.
В некоторых двигателях окна цилиндра разделены ребром. Это прежде всего касается впускных и выпускных окон. Не рекомендуется уменьшать толщину этих ребер и, уж тем более, удалять их при увеличении площади окна. Такие ребра предохраняют поршневые кольца от попадания в широкие окна и, следовательно, от поломки. Допустимо лишь придать обтекаемую форму ребру впускного окна, но только с внешней стороны цилиндра.
Рис. 9.22. Нарушения движения заряда, вызванные неправильным
взаимным расположением гильзы цилиндра и литой рубашки цилиндра
Невозможно дать однозначный рецепт для получения определенных эффектов доработок. Вообще можно сказать, что увеличение открытия выпускного окна увеличивает мощность двигателя, увеличивая одновременно ЧВ максимальной мощности и максимального момента, но сужая диапазон рабочих ЧВ. Аналогичное действие оказывает увеличение размеров окон и сечений каналов в цилиндре.
Хорошо иллюстрируют эти тенденции изменения в скоростных характеристиках двигателя (рис. 9.23) объемом 100 см (диаметр цилиндра 51 мм, ход поршня 48,5 мм), полученные в результате изменения размеров и фаз газораспределения (рис. 9.24). На рис. 9.24, а приведены размеры окон, при которых двигатель развивает наибольшую мощность (кривые NА и Мд на рис. 9.23). Фаза выпуска составляет 160°, продувки — 122°, впуска — 200°. Впускное окно открывалось при 48° от НМТ, а закрывалось при 68° от ВМТ. Диаметр диффузора карбюратора 24 см.
На рис. 9.24, б показаны размеры окон, при которых достигается наибольший рабочий диапазон ЧВ (см. рис. 9.23, кривые NB и Мв). Фаза выпуска составляет 155°, продувки — 118° и впуска — 188°, открытие впуска на угол 48° после НМТ и закрытие на угол 56° после ВМТ. Диаметр диффузора карбюратора равен 22 мм.
Следует обратить внимание, что сравнительно небольшие изменения размеров и фаз газораспределения значительно изменили характеристики двигателя. У двигателя А мощность больше, но он практически бесполезен при частоте вращения ниже 6000 об/мин. Вариант В применим в значительно большем диапазоне ЧВ, а это основное достоинство двигателя без коробки передач.
Хотя рассмотренный пример касается двигателя не применяемого в Польше класса, он хорошо иллюстрирует зависимость между формой окон и каналов цилиндра и параметрами его работы. Однако надо помнить о том, что привели ли наши доработки к желаемым результатам, мы будем знать только после их выполнения и проверки двигателя на стенде (или субъективно во время обкатки). Подготовка гоночного двигателя является бесконечным циклом доработок и проверок результатов этой работы, новых доработок и проверок, а ведь на характеристики двигателя огромное влияние оказывают и другие агрегаты двигателя (карбюратор, выпускная система и т. п.), оптимальные параметры которых можно определить только опытным путем.
Надо также подчеркнуть огромное значение геометрической симметрии всех окон и каналов в цилиндре. Даже небольшое отклонение от симметричности окажет отрицательное влияние на движение газов в цилиндре. Незначительная разница в высоте перепускных окон с обеих сторон цилиндра (рис. 9.25) вызовет несимметричное движение смеси и нарушит действие всей системы продувки. Отличным показателем, позволяющим непосредственно оценить правильность направления потоков смеси, поступающих из перепускных окон, являются следы на днище поршня. Спустя некоторое время работы двигателя часть днища поршня покрывается слоем сажи. Та же часть днища, которую омывают струи свежей горючей смеси, поступающей в цилиндр, остается блестящей, словно ее вымыли.
Рис. 9.25. Влияние различия в высоте перепускных окон
с обеих сторон цилиндра на симметрию движения заряда
Увеличение степени сжатия
Увеличение степени сжатия является одной из основных методик поднятия мощности. Тем самым можно получить больше отдачи с того же объема двигателя. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня?
Как увеличить степень сжатия? 2 способа
1. Установка более тонкой прокладки двигателя. При таком варианте, клапана могут столкнуться с поршнями и нужно все тщательно рассчитывать. Как вариант, это установка новых поршней с более глубокими выемки под клапана. Также изменятся фазы газораспределения и нужно будет их заново настраивать.
2. Растачивание цилиндров. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение объема возросшего цилиндра к прежнему объему камеры сгорания покажет большую величину степени сжатия.
Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9, чем с 13 до 14.
Уменьшение степени сжатия
Так, в старые времена поступали владельцы «Жигулей» и «Москвичей», когда переводили машины с дорогого 92-ого бензина на более дешевый и доступный 76-ой. Для этих целей используется аналогичный способ, только придется увеличить высоту прокладки под головку двигателя. Берем две обычные прокладки и между ними вставляем алюминиевую нужной толщины. Прокладки, если нужно, вырезались самостоятельно в гараже с помощью подручных средств.
Если на современной иномарке уменьшить степень сжатия до 8, то ее динамика будет как у «копейки». Многие моторы можно заправлять 92-ым бензином вместо 95-ого и у многих даже детонации не случается. Но если машина на гарантии, я бы не стал этого делать, ради мнимой экономии. Ведь на 95-ом бензине расход топлива меньше, чем на 92-ом и при чуть высшей цене — общая стоимость на бензин выходит равной. Что было проверено на практике.
Другое дело, производитель указывает ездить за более высокооктановом бензине из-за норм экологичности. Если в новую машину заправить более дешевый бензин может выйти из строя катализатор, т.к. 92-ый бензин имеет меньшую температуру горения. Плюс могут засориться форсунки. По поводу детонации. Делать переделку мотора, ради того, чтобы заправлять 92 вместо 95 бензина — глупо. Чтобы сознательно уменьшать степень сжатия нужны более веские причины, например так поступают при установке турбокомпрессора на двигатель, чтобы избавиться от детонации.
Степень сжатия и ее вариативность — понятие, актуальное исключительно для поршневых двигателей, которые имеют камеру сгорания. Оно представляет собой отношение двух объемов надпоршневого пространства: в нижней и верхней точке движения. Собственно говоря, это разница в показателях давления, образующегося внутри камеры во время подачи и воспламенения топливной смеси. Параметр этот можно варьировать как в сторону уменьшения, так и увеличения. Давайте разберемся, как увеличить степень сжатия двигателя?
4. Изменение степени сжатия
Изменение степени сжатия
Доказано, что высокая степень сжатия делает работу двигателя более эффективной. Как правило, для того, чтобы увеличить этот показатель, уменьшают первоначальные объемы камеры сгорания, хотя такие манипуляции нередко заставляют балансировать между эффективной и безопасной эксплуатацией.
Чем опасно увеличение степени сжатия? Прежде всего, ощутимым понижением существующего детонационного порога, то есть предельно увеличив степень сжатия есть риск спровоцировать детонацию. Именно поэтому модернизация старых двигателей порой бывает менее эффективна и более затратна, чем установка современных, которые уже имеют высокую степень сжатия. Именно поэтому аренда Ford Transit является оптимальным вариантом для тех, кто хочет получить в распоряжение современное авто. Кстати, практически во всех современных моделях применяется высокооктановый бензин от 95 и выше.
Еще один вариант повысить степень сжатия — это фрезеровка ГБЦ, то есть головки блока цилиндров. Процесс этот называется форсированием и заключается в укорачивании ГБЦ и, как следствие, уменьшении объема камеры. Одновременно автоматически становится меньше и объем горючего, которое сгорает в цилиндре.
Воспламенение и детонация
Функционирование двигателя такого типа построено на равномерном горении топливной смеси. Это обеспечивает не только более эффективный расход топлива, но и равномерный износ всех деталей, исключая их перегрев. Равномерность рассчитывается на всем промежутке движения поршня вниз, но проблема в том, что скорость этого движения ниже скорости горения, а значит, увеличив давление, можно спровоцировать самопроизвольное возгорание смеси. Такой вариант значительно снижает эффективность использования энергии сгорающего топлива. Более того, излишки энергии приводят к детонации, что может очень плачевно сказаться на работе всего двигателя. Избежать печальных последствий можно с помощью использования высокооктанового горючего.
Альтернативный вариант
Есть способ избежать уменьшения объема камеры сгорания при гарантированном увеличении степени сжатия, установив турбонагнетатель. Он увеличивает давление, нагнетая больший объем воздуха в камеру. Это позволяет изменять степень сжатия в зависимости от нагрузки на работающий двигатель. Контролирует процесс высокоточная электроника, исключающая возможность детонации