для чего в линиях электропередачи используют повышающие трансформаторы

Почему передачу электроэнергии на расстояние выполняют на повышенном напряжении

Сегодня передачу электрической энергии на расстояние всегда выполняют на повышенном напряжении, которое измеряется десятками и сотнями киловольт. По всему миру электростанции различного типа генерируют электричество гигаваттами. Это электричество распределяется по городам и селам при помощи проводов, которые мы можем видеть например вдоль трасс и железных дорог, где они неизменно закреплены на высоких опорах с длинными изоляторами. Но почему передача всегда осуществляется на высоком напряжении? Об этом расскажем далее.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Представьте что вам необходимо передать по проводам электрическую мощность хотя бы в 1000 ватт на расстояние 10 километров в форме переменного тока с минимальными потерями, чтобы запитать мощный киловаттный прожектор. Что вы предпримете? Очевидно, что напряжение необходимо будет так или иначе преобразовывать, понижать или повышать при помощи трансформатора.

Допустим, источник (небольшой бензиновый генератор) выдает напряжение 220 вольт, при этом в вашем распоряжении есть двухжильный медный кабель с сечением каждой жилы по 35 кв.мм. На 10 километров такой кабель даст активное сопротивление около 10 Ом.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Нагрузка мощностью 1 кВт имеет сопротивление около 50 Ом. И что если передаваемое напряжение оставить на уровне 220 вольт? Это значит, что шестая часть напряжения придется (упадет) на передающий провод, который окажется под напряжением около 36 вольт. И вот, порядка 130 Вт потеряно по пути — просто подогрели передающие провода. А на прожекторе получим не 220 вольт, а 183 вольта. КПД передачи оказалось 87%, и это пренебрегая еще индуктивном сопротивлении передающих проводов.

Дело в том, что активные потери в передающих проводах всегда прямо пропорциональны квадрату тока (см. Закон Ома). Следовательно если передачу той же самой мощности осуществить при более высоком напряжении, то падение напряжения на проводах не окажется столь губительным фактором.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Итак, при мощности нагрузки 1000 ватт при напряжении 22000 вольт, ток в передающем проводе (здесь можно обойтись без учета реактивной составляющей) составит всего 45мА, а значит на нем упадет уже не 36 вольт, (как было без трансформаторов) а всего 0,45 вольт! Потери составят уже не 130 Вт, а всего 20 мВт. КПД такой передачи на повышенном напряжении составит 99,99%. Вот почему передача на повышенном напряжении более эффективна.

В нашем примере ситуация рассмотрена грубо, и использовать дорогие трансформаторы для такой простой бытовой цели было бы конечно нецелесообразным решением. Но в масштабах стран и даже областей, когда речь идет о расстояниях в сотни километров и об огромных передаваемых мощностях, стоимость электроэнергии, которая могла бы потеряться, тысячекратно превышает любые затраты на трансформаторы. Вот почему при передаче электроэнергии на расстояние всегда применяется повышенное напряжение, измеряемое сотнями киловольт — чтобы снизить потери мощности при передаче.

Непрерывный рост электропотребления, концентрация генерирующих мощностей на электростанциях, сокращение свободных от застройки территорий, ужесточение требований по защите окружающей среды, инфляция и рост цен на землю, а также ряд других факторов настоятельно диктуют повышение пропускной способности линий электропередачи.

Конструкции различных линий электропередачи рассмотрены здесь: Устройство различных ЛЭП разного напряжения

Объединение энергетических систем, увеличение мощности электрических станций и систем в целом сопровождаются увеличением расстояний и потоков мощности, передаваемых по линии электропередачи. Без мощных линий электропередачи высокого напряжения невозможна выдача энергии от современных крупных электростанций.

Единая энергетическая система позволяет обеспечить передачу резервной мощности в те районы, где имеется в ней потребность, связанная с ремонтными работами или аварийными условиями, появится возможность передавать избыток мощности с запада на восток или наоборот, обусловленный поясным сдвигом во времени.

Благодаря дальним передачам стало возможным строительство сверхмощных электростанций и полное использование их энергии.

Капиталовложения на передачу 1 кВт мощности на заданное расстояние при напряжении 500 кВ в 3,5 раза ниже, чем при напряжении 220 кВ, и на 30 — 40% ниже, чем при 330 — 400 кВ.

Стоимость передачи 1 кВт•ч энергии при напряжении 500 кВ вдвое ниже, чем при напряжении 220 кВ, и на 33 — 40% ниже, чем при напряжении 330 или 400 кВ. Технические возможности напряжения 500 кВ (натуральная мощность, расстояние передачи) в 2 — 2,5 раза превышают возможности напряжения 330 кВ и в 1,5 раза — напряжения 400 кВ.

Линия напряжением 220 кВ может передать мощность 200 — 250 МВт на расстояние до 200 — 250 км, линия 330 кВ — мощность 400 — 500 МВт на расстояние до 500 км, линия 400 кВ — мощность 600 — 700 МВт на расстояние до 900 км. Напряжение 500 кВ обеспечивает передачу мощности 750 — 1 000 МВт по одной цепи на расстояние до 1 000 — 1 200 км.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Справочник электрика

вторник, 30 апреля 2013 г.

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Рассмотрим кратко систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии. Глава расширит кругозор тех, кто хочет научиться грамотно использовать домашнюю электросеть.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. 1.4 представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

От электростанции электроэнергия напряжением 110—750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6—35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В, и по воздушным или кабельным линиям электроэнергия поступает непосредственно к потребителю в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.
Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на рис. 1.5. Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Потери зависят от величины проходящего тока и диаметра проводника, а не приложенного напряжения.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Например:
Допустим, что с электростанции в город, находящийся от нее на расстоянии 100 км, нужно передавать по одной линии 30 МВт. Из-за того, что провода линии имеют электрическое сопротивление, ток их нагревает. Эта теплота рассеивается и не может быть использована. Энергия, затрачиваемая на нагревание, представляет собой потери.

Свести потери к нулю невозможно. Но ограничить их необходимо. Поэтому допустимые потери нормируют, т. е. при расчете проводов линии и выборе ее напряжения исходят из того, чтобы потери не превышали, например, 10% полезной мощности, передаваемой по линии. В нашем примере это 0,1-30 МВт = 3 МВт.

Например:
Если не применять трансформацию, т. е. передавать электроэнергию при напряжении 220 В, то для снижения потерь до заданного значения сечение проводов пришлось бы увеличить примерно до 10 м2. Диаметр такого «провода» превышает 3 м, а масса в пролете составляет сотни тонн.
Применяя трансформацию, т. е. повышая напряжение в линии, а затем, снижая его вблизи расположения потребителей, пользуются другим способом снижения потерь: уменьшают ток в линии. Этот способ весьма эффективен, так как потери пропорциональны квадрату силы тока. Действительно, при повышении напряжения вдвое ток снижается вдвое, а потери уменьшаются в 4 раза. Если напряжение повысить в 100 раз, то потери снизятся в 100 во второй степени, т. е. в 10000 раз.

Например:
В качестве иллюстрации эффективности повышения напряжения укажу, что по линии электропередачи трехфазного переменного тока напряжением 500 кВ передают 1000 МВт на 1000 км.

Электрические сети предназначены для передачи и распределения электроэнергии. Они состоят из совокупности подстанций и линий различных напряжений. При электростанциях строят повышающие трансформаторные подстанции, и по линиям электропередачи высокого напряжения передают электроэнергию на большие расстояния. В местах потребления сооружают понижающие трансформаторные подстанции.

Основу электрической сети составляют обычно подземные или воздушные линии электропередачи высокого напряжения. Линии, идущие от трансформаторной подстанции до вводно-распределительных устройств и от них до силовых распределительных пунктов и до групповых щитков, называют питающей сетью. Питающую сеть, как правило, составляют подземные кабельные линии низкого напряжения.

По принципу построения сети разделяются на разомкнутые и замкнутые. В разомкнутую сеть входят линии, идущие к электроприемникам или их группам и получающие питание с одной стороны. Разомкнутая сеть обладает некоторыми недостатками, заключающимися в том, что при аварии в любой точке сети питание всех потребителей за аварийным участком прекращается.

Замкнутая сеть может иметь один, два и более источников питания. Несмотря на ряд преимуществ, замкнутые сети пока не получили большого распространения. По месту прокладки сети бывают наружные и внутренние.

Способы выполнения линий электропередач

Каждому напряжению соответствуют определенные способы выполнения электропроводки. Это объясняется тем, что чем напряжение выше, тем труднее изолировать провода. Например, в квартирах, где напряжение 220 В, проводку выполняют проводами в резиновой или в пластмассовой изоляции. Эти провода просты по устройству и дешевы.

Несравненно сложнее устроен подземный кабель, рассчитанный на несколько киловольт и проложенный под землей между трансформаторами. Кроме повышенных требований к изоляции, он еще должен иметь повышенную механическую прочность и стойкость к коррозии.

Для непосредственного электроснабжения потребителей используются:

♦ воздушные или кабельные ЛЭП напряжением 6 (10) кВ для питания подстанций и высоковольтных потребителей;
♦ кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электроприемников. Для передачи на расстояние напряжения в десятки и сотни киловольт создаются воздушные линии электропередач. Провода высоко поднимаются над землей, в качестве изоляции используется воздух. Расстояния между проводами рассчитываются в зависимости от напряжения, которое планируется передавать. На рис. 1.6 изображены в одном масштабе опоры для воздушных линий электропередач напряжениями 500, 220, 110, 35 и 10 кВ. Заметьте, как увеличиваются размеры и усложняются конструкции с ростом рабочего напряжения!

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Например:
Опора линии напряжением 500 кВ имеет высоту семиэтажного дома. Высота подвеса проводов 27 м, расстояние между проводами 10,5 м, длина гирлянды изоляторов более 5 м. Высота опор для переходов через реки достигает 70 м. Рассмотрим варианты выполнения ЛЭП подробнее.

Воздушные ЛЭП
Определение.
Воздушной линией электропередачи называют устройство для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикрепленным при помощи траверс (кронштейнов), изоляторов и арматуры к опорам или инженерным сооружениям.

В соответствии с «Правилами устройства электроустановок» по напряжению воздушные линии делятся на две группы: напряжением до 1000 В и напряжением свыше 1000 В. Для каждой группы линий установлены технические требования их устройства.

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабельными линиями, меньшей плотностью застройки и т. д.

Для проводки воздушных линий и сетей используют различные провода и тросы. Основное требование, предъявляемое к материалу проводов воздушных линий электропередачи, — малое электрическое сопротивление. Кроме того, материал, применяемый для изготовления проводов, должен обладать достаточной механической прочностью, быть устойчивым к действию влаги и находящихся в воздухе химических веществ.

В настоящее время чаще всего используют провода из алюминия и стали, что позволяет экономить дефицитные цветные металлы (медь) и снижать стоимость проводов. Медные провода применяют на специальных линиях. Алюминий обладает малой механической прочностью, что приводит к увеличению стрелы провеса и, соответственно, к увеличению высоты опор или уменьшению длины пролета. При передаче небольших мощностей электроэнергии на короткие расстояния применение находят стальные провода.

Для изоляции проводов и крепления их к опорам линий электропередач служат линейные изоляторы, которые наряду с электрической должны также обладать и достаточной механической прочностью. В зависимости от способа крепления на опоре различают изоляторы штыревые (их крепят на крюках или штырях) и подвесные (их собирают в гирлянду и крепят к опоре специальной арматурой).

Штыревые изоляторы применяют на линиях электропередач напряжением до 35 кВ. Маркируют их буквами, обозначающими конструкцию и назначение изолятора, и числами, указывающими рабочее напряжение. На воздушных линиях 400 В используют штыревые изоляторы ТФ, ШС, ШФ. Буквы в условных обозначениях изоляторов обозначают следующее: Т — телеграфный; Ф — фарфоровый; С — стеклянный; ШС — штыревой стеклянный; ШФ — штыревой фарфоровый.

Штыревые изоляторы применяют для подвешивания сравнительно легких проводов, при этом в зависимости от условий трассы используются различные типы крепления проводов. Провод на промежуточных опорах укрепляют обычно на головке штыревых изоляторов, а на угловых и анкерных опорах— на шейке изоляторов. На угловых опорах провод располагают с наружной стороны изолятора по отношению к углу поворота линии.

Подвесные изоляторы применяют на воздушных линиях 35 кВ и выше. Они состоят из фарфоровой или стеклянной тарелки (изолирующая деталь), шапки из ковкого чугуна и стержня. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при комплектовании гирлянд. Гирлянды собирают и подвешивают к опорам и тем самым обеспечивают необходимую изоляцию проводов. Количество изоляторов в гирлянде зависит от напряжения линии и типа изоляторов.

Материалом для вязки алюминиевого провода к изолятору служит алюминиевая проволока, а для стальных проводов— мягкая стальная. При вязке проводов выполняют обычно одинарное крепление, двойное же крепление применяют в населенной местности и при повышенных нагрузках. Перед вязкой заготовляют проволоку нужной длины (не менее 300 мм).

Головную вязку выполняют двумя вязальными проволоками разной длины. Эти проволоки закрепляют на шейке изолятора, скручивая между собой. Концами более короткой проволоки обвивают провод и плотно притягивают четыре-пять раз вокруг провода. Концы другой проволоки, более длинные, накладывают на головку изолятора накрест через провод четыре-пять раз.

Для выполнения боковой вязки берут одну проволоку, кладут ее на шейку изолятора и оборачивают вокруг шейки и провода так, чтобы один ее конец прошел над проводом и загнулся сверху вниз, а второй — снизу вверх. Оба конца проволоки выводят вперед и снова оборачивают их вокруг шейки изолятора с проводом, поменяв местами относительно провода.

После этого провод плотно притягивают к шейке изолятора и обматывают концы вязальной проволоки вокруг провода с противоположных сторон изолятора шесть-восемь раз. Во избежание повреждения алюминиевых проводов место вязки иногда обматывают алюминиевой лентой. Изгибать провод на изоляторе сильным натяжением вязальной проволоки не разрешается.

Вязку проводов выполняют вручную, используя монтерские пассатижи. Особое внимание обращают при этом на плотность прилегания вязальной проволоки к проводу и на положение концов вязальной проволоки (они не должны торчать). Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки ввертывают непосредственно в деревянные опоры, а штыри устанавливают на металлических, железобетонных или деревянных траверсах. Для крепления изоляторов на крюках и штырях используют переходные полиэтиленовые колпачки. Разогретый колпачок плотно надвигают на штырь до упора, после этого на него навинчивают изолятор.

Провода подвешиваются на железобетонных или деревянных опорах при помощи подвесных или штыревых изоляторов. Для воздушных ЛЭП используются неизолированные провода. Исключением являются вводы в здания — изолированные провода, протягиваемые от опоры ЛЭП к изоляторам, укрепленным на крюках непосредственно на здании.

Внимание!
Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет: в ЛЭП напряжением до 1000 В для промежуточных опор от 7 м, для переходных опор — 8,5 м; в ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор — 8,35 м.

Наименьшие допустимые сечения проводов воздушных ЛЭП напряжением более 1000 В, выбираемые по условиям механической прочности с учетом возможной толщины их обледенения, приведены в табл. 1.1.

Минимально допустимые значения проводов возжушныхЛЭП напряжением более 1000 В
Таблица 1.1

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

На воздушных ЛЭП напряжением до 1000 В устанавливают заземляющие устройства. Расстояние между ними определяется числом грозовых часов в году:

♦ до 40 часов — не более 200 м;
♦ более 40 часов — не более 100 м.

Сопротивление заземляющего устройства должно быть не более 30 Ом.

Допустимые расстояния от нижних проводов воздушных ЛЭП напряжением до 1000 В и до 10 кВ и их опор до объектов представлены в табл. 1.2.

Источник

Повышающий и понижающий трансформатор

В быту и на производстве используется огромное количество различных электронных устройств, приборов и оборудования. Довольно часто для их нормальной эксплуатации требуется повышающий и понижающий трансформатор. Каждый из них работает на основе самоиндукции, позволяющей изменять ток в ту или иную сторону. Само название трансформатора означает изменение или преобразование. Они применяются в основном совместно с электроникой зарубежного производства, рассчитанной на токи, отличающиеся от отечественных стандартов. Кроме того, трансформаторы обеспечивают защиту электрооборудования и оптимизируют его питание, делая работу максимально эффективной.

Функции и работа трансформаторов

В электронике трансформаторы являются незаменимыми устройствами. Однако, для их наиболее эффективной работы, необходимо хорошо представлять себе, что понижает или повышает трансформатор. В зависимости от потребностей, они повышают или, наоборот, понижают величину потенциала в цепочках с переменным током.

С появлением отличающихся трансформаторных устройств стала возможной доставка электричества на значительные дистанции. Заметно снижаются потери на проводах ЛЭП, когда переменное напряжение повышается, а ток – понижается. Это происходит на всей протяженности проводников, соединяющих электростанцию с подключенными потребителями. На каждом конце таких линий напряжения снижаются до безопасного уровня, облегчая работу используемого оборудования.
для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Какой трансформатор называют повышающим, а какой понижающим, и какая между ними разница

Если отвечать коротко, то прибор выдающий более высокий потенциал, в сравнении со входом, считается повышающим. Если же происходит обратный процесс, и потенциал на выходе меньше, чем на входе, такое устройство будет понижающим. В первом случае вторичная обмотка обладает большим количеством витков, чем на первичная, а во втором, наоборот, в работе применяется вторичная обмотка с меньшим количеством витков. Этим они кардинально отличаются друг от друга.

Можно ли понижающий трансформатор использовать как повышающий

Да, можно. Поскольку для перемены функций достаточно изменить схему соединения обмоток с источником потенциала и нагрузкой. Соответственно, изменится и функциональность понижающего трансформатора.

На практике, с целью повышения эффективности устройства, индуктивность всех обмоток рассчитывается для точных рабочих значений тока и напряжения. Эти показатели должны обязательно сохраняться в исходном состоянии, когда повышающий и понижающий трансформатор изменяют свои функции на противоположные.

Как определить принадлежность той или иной обмотки

Конструктивно, трансформаторы выполнены по такому принципу, что невозможно сразу определить их различия, то есть, какие провода называется и фактически являются первичной, а которые из них – вторичной обмоткой. Поэтому, чтобы не запутаться, применяется маркировка. Для высоковольтной обмотки предусмотрен символ «Н», в понижающих устройствах она служит первичной, а в повышающих – вторичной обмоткой. Обмотка с низким вольтажом маркируется символом «Х».

Для того чтобы понять особенности, отличие и принцип действия каждого из этих устройств, их следует рассмотреть более подробно.
для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Общее устройство и функционирование трансформаторов понижающего типа

Трансформаторы выполняют преобразование более высокого входящего напряжения в низкую характеристику напряжения на выходе, то есть позволяют понизить большие токи до требуемых значений. При необходимости такой прибор может использоваться как повышающий.

Принцип действия этих приборов определяется законом электромагнитной индукции. Стандартная конструкция состоит из двух обмоток и сердечника. Первичная обмотка соединяется с источником питания, после чего вокруг сердечника происходит генерация магнитного поля. Под его воздействием во вторичной обмотке возникает электрический ток с определенными заданными параметрами напряжения.

Выходная мощность определяется по количественному соотношению витков в каждой катушке. Изменяя этот показатель можно управлять характеристиками выходного напряжения и получать требуемый ток для бытового и промышленного оборудования.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

С помощью лишь одних трансформаторов невозможно изменить частоту электрического тока. Для этого конструкция понижающего аппарата дополняется выпрямителем, изменяющим частоту тока в диапазоне требуемых значений. Современные приборы дополняются полупроводниками и интегральными схемами с конденсаторами, резисторами, микросхемами и другими компонентами. В результате, получается устройство с незначительными размерами и массой, но достаточно высоким уровнем КПД, работающее на понижение напряжения.

Такие трансформаторы функционируют очень тихо и не подвержены сильному нагреву. Мощность выходного тока может выставляться путем регулировок и отличаться в каждом случае. Все устройства нового типа оборудованы защитой от коротких замыканий.

Понижающий трансформатор отличается простой и надежной схемой, широко применяются на подстанциях между отрезками линий электропередачи. Они выполняют понижение сетевого тока с 380 до 220 вольт. Подобные устройства относятся к промышленным. Используемые в быту, отличаются более низкими мощностями. Принимая на первичную обмотку входа 220 В, они затем выдают пониженное напряжение от 12 до 42 вольт в соответствии с подключенными потребителями. Коэффициент трансформации понижающих устройств всегда ниже единицы. Для того чтобы его определить, нужно знать соотношение между количеством витков в первичной и вторичной обмотке.

Особенности повышающего трансформатора

Повышающие трансформаторные устройства, как их называют специалисты, также используются в быту и на производстве. В основном их назначение – работа по своему профилю на проходных электростанциях. Они должны повысить ток в соответствии с нормативными показателями, поскольку в процессе транспортировки происходит постепенное снижение высокого напряжения в ЛЭП. В конце пути следования электростанция с помощью повышающего трансформатора напряжение поднимается до нормативных 220 В и поставляется в бытовые сети, а 380 В – в промышленные.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Работа трансформатора повышающего типа осуществляется по следующей схеме, включающей в себя несколько этапов:

Принцип работы повышающего трансформатора также основан на электромагнитной индукции. Основная конструкция состоит их двух катушек с разным количеством витков и изолированного сердечника.

Низкое переменное напряжение поступает в первичную обмотку и вызывает появление магнитного поля, возрастающего при оптимально подобранном соотношении обмоток. Под его влиянием во вторичной обмотке образуется электрический ток с повышенными показателями – 220 В и более. В случае необходимости изменения частоты, в цепочку дополнительно устанавливается преобразователь, способный выдавать постоянный ток для определенных видов оборудования.

В процессе работы трансформаторы нагреваются, поэтому им требуется использовать охлаждение, которое может быть масляным или сухим. Трансформаторные масла относятся к пожароопасным веществам, поэтому такие системы оборудуются дополнительной защитой. Сухие трансформаторы заполняются специальными негорючими веществами. Они безопасны в эксплуатации, но стоят значительно дороже.

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Понижающий трансформатор в электротехнике

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Понижающий трансформатор с 220 на 12 вольт

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Коэффициент трансформации трансформатора

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Как работает трансформатор

для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть фото для чего в линиях электропередачи используют повышающие трансформаторы. Смотреть картинку для чего в линиях электропередачи используют повышающие трансформаторы. Картинка про для чего в линиях электропередачи используют повышающие трансформаторы. Фото для чего в линиях электропередачи используют повышающие трансформаторы

Подключение трансформатора для преобразования тока

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *