для чего в реакторе есть управляющие стержни
Управляющий стержень
Содержание
Снижение реактивности
Реактор, находящийся в критическом состоянии (см. Коэффициент размножения нейтронов) как угодно долго, представляет собой математическую абстракцию. На самом деле, протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Обращение нейтронов в реакторе включает процесс деления; каждый акт деления означает убыль атома делящегося материала, а значит, и снижение k0. Правда, делящиеся атомы частично восстанавливаются за счёт поглощения избытка нейтронов ядрами 238 U с образованием 239 Pu. Однако накопление нового делящегося материала обычно не компенсирует потерь делящихся атомов, и реактивность снижается. Кроме того, каждый акт деления сопровождается появлением двух новых атомов, ядра которых, как и любые другие ядра, поглощают нейтроны. Накопление продуктов деления также снижает реактивность (см. Иодная яма). Наконец, просто повышение температуры активной зоны реактора обычно сопровождается снижением реактивности, а активные зоны энергетических реакторов должны быть разогреты до возможно бо́льшей температуры, поскольку коэффициент полезного действия тепловой машины в конечном счёте определяется разностью температур источника тепла и холодильника — окружающей среды.
Система управления
Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.
Аварийная защита
На случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с энерговыделением в активной зоне, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности. Аварийные стержни изготовляются из поглощающего нейтроны материала. Они сбрасываются под действием силы тяжести в центральную часть активной зоны, где поток наибольший, а значит, и наиболее велика отрицательная реактивность, вносимая в реактор стержнем. Стержней безопасности, как и регулирующих, обычно два или несколько, однако в отличие от регуляторов они должны связывать возможно бо́льшую величину реактивности. Роль стержней безопасности может выполнять и часть компенсирующих стержней.
Как устроена система безопасности АЭС: стержни, спринклер, контейнмент
ГК «Росатом» Активная зона реактора ВВЭР Нововоронежской АЭС-2
Оставшаяся часть — это энергия, которую уносит из ядра ионизирующее излучение: гамма-излучение и свободные элементарные частицы. Среди этих частиц присутствуют 2−3 свободных нейтрона, которые инициируют следующие реакции деления. Чтобы цепная реакция не приобрела лавинообразный неуправляемый характер, достаточно лишь регулировать число свободных нейтронов в активной зоне.
Это делается с помощью специальных поглощающих стержней, как правило, заполненных карбидом бора, и борной кислоты, которая присутствует в контуре охлаждения реактора. Попадая в ядро атома бора, нейтрон «застревает» в нем и больше не участвует в ядерных реакциях. Уровень погружения поглощающих стержней в активную зону, а также концентрации борной кислоты в охлаждающем контуре автоматически регулируются системой управления и защиты (СУЗ) под пристальным контролем команды операторов, которые в зависимости от требуемой мощности реактора могут регулировать цепную реакцию с помощью электрического сигнала с пульта.
Если при чрезвычайной ситуации на станции пропадет электричество, то поглощающие стержни автоматически погрузятся в активную зону. Для этого их подвешивают над реактором и фиксируют электромагнитами. При обесточивании стержни под действием силы тяжести неизменно опустятся в зону, где делится урановое топливо. Воспроизводство нейтронов прекратится, цепная реакция замедлится и остановится.
ГК «Росатом» Монтаж купола контейнмента на Ростовской АЭС
Кроме внешнего контроля над числом нейтронов конструкция активной зоны ВВЭР — наиболее распространенного типа энергетических реакторов — предусматривает так называемое саморегулирование. Если количество нейтронов возрастает, число реакций деления увеличивается. Закономерно растет общая температура топлива и конструкционных материалов активной зоны. Вслед за ней увеличивается температура теплоносителя — воды, что ведет к изменению ее плотности. Вода с пониженной плотностью лучше поглощает нейтроны, и количество реакций деления уменьшается. Данный эффект, который называется отрицательной обратной связью, возникает благодаря комплексным изменениям нейтронно-физических характеристик активной зоны, просчитанных и подобранных на этапе разработки реактора.
Естественный фон: как защитить персонал станции и окружающую среду
Радиоактивные продукты деления и образующееся в его ходе ионизирующее излучение не покидают корпус реактора благодаря четырем барьерам безопасности. Барьеры напоминают фильтры на водоочистительной станции, которые поэтапно задерживают крупные, средние, а затем и вовсе неразличимые глазом примеси. «Фильтры» в реакторе по очереди останавливают продукты радиораспада — от самых медленных и тяжелых осколков деления до самых легких и быстрых частиц.
ГК «Росатом» Монтаж купола контейнмента на Ростовской АЭС
Первым барьером служит сама топливная таблетка — спрессованный в характерную форму твердый диоксид урана. Таблетки перед сборкой в тепловыделяющий элемент (ТВЭЛ) спекаются при температуре 1650 °C, после чего они приобретают керамические свойства и задерживают некоторые нуклиды. Радионуклиды и частицы распада, которые проходят первый барьер, сталкиваются со вторым — оболочкой ТВЭЛ. Оболочку изготавливают из сплавов циркония ядерной чистоты, практически лишенного примесей, как правило, с небольшой добавкой ниобия. Чистота сплава обеспечивает повышенную коррозионную стойкость циркония. В нормальных режимах эксплуатации (без разгерметизации ТВЭЛ) все продукты деления остаются внутри ТВЭЛ.
Третий и четвертый барьеры призваны окончательно запечатать нуклиды и частицы внутри реактора и не дать им ни единого шанса вырваться наружу. Корпус реактора толщиной 20 см и первый контур с теплоносителем, доставляющим тепло из активной зоны к парогенератору, — это третий защитный барьер. Четвертым является так называемый контейнмент — внешняя герметичная оболочка активной зоны, выполненная из железобетона. Толщина стенки контейнмента — 1 м: это надежная защита от возможного выхода радиоактивных веществ (или материалов) в окружающую среду даже в случае серьезной аварии.
ГК «Росатом» Контейнмент Курской АЭС-2
Защита от внешних угроз
Контейнмент не просто толстый слой бетона, который защищает окружающую среду от радиации из чрева реактора. Внутри бетонной толщи натянуты металлические тросы, которые придают конструкции дополнительную монолитность и повышают ее устойчивость. Контейнмент спроектирован и построен таким образом, чтобы выдерживать внутреннее и внешнее воздействие огромной силы. Мощный купол гермооболочки настолько плотно прижат к корпусу, что реактору не страшны следующие возможные угрозы:
Что означают эти цифры? В быту давление 30 кПа кажется совсем не опасным. Такое давление на пол создает человек массой 65 кг, если стоит на одной босой ноге 40-го размера. Но ударная волна, создающая такое давление в воздухе, разрывает барабанные перепонки человека, выводит из строя самолеты и вертолеты, а в зданиях под действием воздушной волны такой силы разбиваются стекла, ломаются внутренние перегородки, изгибаются алюминиевые панели и начинают разрушаться стены. Толщина стен контейнмента выдержит такую нагрузку.
Ураганный ветер со скоростью выше 50 м/с не только собьет с ног стоящего человека и перевернет легковой автомобиль, если тот движется с большой скоростью. Такой ветер с корнем выворачивает деревья, разбивает окна, сносит крыши домов и создает на море волны высотой с 4−5-этажное здание, но не может разрушить гермооболочку реактора.
Строительство АЭС невозможно без тщательного исследования сейсмической обстановки в регионе расположения будущей станции. Ученые рассчитывают вероятность землетрясения максимум в 8 баллов, при этом выбирают участок, где сила возможного катаклизма наименьшая: на 1−2 балла ниже средней по региону. Вероятность крупного землетрясения не должна превышать показатель 1 раз в 10 тысяч лет. Для этого в расчет включают статистику региона и геологические условия площадки.
ГК «Росатом» Строительство Курской АЭС-2
На основании прогноза специалисты рассчитывают параметры строительных конструкций, трубопроводов и оборудования. При необходимости оборудование оснащается гидроамортизаторами. В настоящее время все российские АЭС находятся в зонах низкой сейсмоопасности. В европейской части нашей страны на Великорусской плите, где расположено большинство станций, землетрясения — редкость: если они случаются, то с небольшой интенсивностью. Мощные природные катаклизмы в местах, где расположены российские АЭС, попросту невозможны.
Как АЭС защищены от террористических угроз? Все действующие станции охраняются войсками национальной гвардии Российской Федерации — вооруженными и оснащенными спецтехникой профессионалами. Линия охраны каждой АЭС выстроена по всему периметру. Попасть внутрь зданий станции можно только через контрольные пункты, предъявив пропуск с фотографией, который есть в электронной базе сотрудников. Любой нарушитель пропускного режима будет немедленно задержан. Кроме того, на проходной досматривают сумки и пакеты, чтобы исключить пронос (провоз) на территорию АЭС запрещенных предметов (оружие, боеприпасы и пр.). На каждом КПП установлены приборы обнаружения металлических предметов и видеонаблюдение.
Как станции подготовлены к внутренним неполадкам
Контейнмент, кроме защиты окружающей среды от радиации и активной зоны реактора от внешних угроз, обеспечивает также герметичность внутреннего объема ядерного реактора. При проектировании оболочки инженеры рассчитали невозможную гипотетическую ситуацию, когда вся поданная в реактор вода испарится. В этом случае контейнмент выдержит колоссальное давление — до 5 килограммов на квадратный сантиметр.
ГК «Росатом» Установка купола гермооболочки (контейнмента) с установленной в нем спринклерной системой. Ленинградская АЭС-2
Давление пара снижается с помощью спринклерной системы (системы разбрызгивания), установленной внутри защитной оболочки под куполом. В случае аварии система активируется, и на активную зону разбрызгивается раствор борной кислоты и других веществ, под действием которых пар быстро конденсируется. За счет конденсации пара давление внутри контейнмента снижается до нормального за считаные секунды.
ГК «Росатом» Установка купола гермооболочки (контейнмента) с установленной в нем спринклерной системой. Ленинградская АЭС-2
На дне шахты реактора расположена так называемая ловушка расплава — последний рубеж обороны при аварийных ситуациях. Она включается в работу, если, несмотря на систему отвода тепла, температура в реакторе продолжает расти и доходит до 2500 °C — температуры плавления конструкций. Это может произойти только в самых тяжелых авариях, вероятность которых почти нулевая: шанс примерно такой же, как шанс падения на Землю крупного метеорита, который способен уничтожить все человечество.
Ловушка расплава — это 750-тонное устройство, предназначенное для локализации расплавленной активной зоны реактора в пределах гермооболочки. По сути, это холодный тигель — огнеупорная емкость: подобные емкости используют для нагрева и плавления веществ. Ловушка заполнена «жертвенным» материалом из оксидов железа и борной кислоты, который впитывает в себя расплавленную активную зону и позволяет мгновенно заглушить реакцию деления и остудить расплав до затвердевания. Это значит, что расплавленное топливо в ловушке останется в стабильном безопасном состоянии. Ловушка расплава — это уникальная российская разработка, благодаря которой наши станции считаются самыми безопасными в мире.
ГК «Росатом» Установки ловушки расплава на Курской АЭС-2
Сколько стоит система безопасности АЭС
Средства на обеспечение безопасности расходуются с этапа выбора площадки для строительства до вывода станции из эксплуатации. Огромное внимание этому вопросу уделяется в рамках культуры безопасности, которая действует на всех этапах жизненного цикла АЭС. Важно продумать и создать как активные системы безопасности, требующие участия человека и наличия источника электропитания, так и пассивные — те, что смогут работать без вмешательства человека даже в случае полного обесточивания станции. Соотношение этих систем позволяет максимально исключить человеческий фактор во внештатных ситуациях.
Большая Энциклопедия Нефти и Газа
Управляющие стержни
Реакторы, в которых горючее и замедлитель составляют однородную смесь, носят название гомогенных реакторов. Реактор охлаждается водой, циркулирующей по трубам в форме змеевика, расположенного внутри контейнера. Управляющие стержни изготовлены из кадмия. Интересная особенность реактора заключается в том, что цепная реакция поддерживается в нем на заданном уровне без помощи регулирующих стержней. Это связано с изменениями коэффициента размножения нейтронов даже при незначительных колебаниях концентрации ядерного горючего. При повышении температуры концентрация ядерного горючего уменьшается вследствие его теплового расширения, вызывая уменьшение коэффициента размножения и прекращение цепной реакции, до тех пор пока температура раствора урана не понизится до расчетного значения. [16]
Для промышленного получения ядерной энергии необходимо управлять цепной реакцией, поддерживая значение коэффициента размножения нейтронов равным единице. Это осуществляется путем введения в массу ядерного горючего подвижных управляющих стержней, содержащих кадмий или бор, которые являются сильными поглотителями нейтронов. Затем, когда нейтроны размножатся в достаточном количестве, управляющие стержни вдвигаются в котел и, поглощая часть нейтронов, замедляют цепную реакцию. При этом реакция стабилизируется: число нейтронов, образующихся в единицу времени, остается постоянным. [19]
Быстрое развитие цепной реакции сопровождается выделением значительной энергии, что может вызывать излишний перегрев реактора. При достижении реактором требуемой мощности необходимо надкритический режим развивающейся реакции свести к критическому режиму со значением 61 и затем поддерживать этот режим. Для уменьшения коэффициента размножения нейтронов в активную зону реактора вводятся стержни из материалов, сильно поглощающих т епловые нейтроны, например из бора или кадмия. Такие управляющие стержни уменьшают значение k и предотвращают нарастание скорости цепной реакции, поддерживая ее в необходимом стационарном режиме. [21]
Быстрое развитие цепной реакции сопровождается выделением значительной энергии, что может вызывать излишний перегрев реактора. При достижении реактором требуемой мощности необходимо надкритический режим развивающейся реакции свести к критическому режиму со значением kl и затем поддерживать этот режим. Для уменьшения коэффициента размножения нейтронов в активную зону реактора вводятся стержни из материалов, сильно поглощающих тепловые нейтроны, например из бора или кадмия. Такие управляющие стержни уменьшают значение k и предотвращают нарастание скорости цепной реакции, поддерживая ее в необходимом стационарном режиме. [22]
Быстрое развитие цепной реакции сопровождается выделением большого количества энергии, что может вызывать излишний перегрев реактора. При достижении реактором требуемой мощности необходимо надкритический режим развивающейся реакции свести к критическому режиму со значением k 1 и затем поддерживать этот режим. Для уменьшения коэффициента размножения нейтронов в активную зону реактора вводятся стержни из материалов, сильно поглощающих тепловые нейтроны, например из бора или кадмия. Такие управляющие стержни уменьшают значение k и предотвращают нарастание скорости цепной реакции, поддерживая ее в необходимом стационарном режиме. [23]
Управляющие стержни изготавливаются из соединений бора или кадмия, поглощающих тепловые нейтроны с очень большой эффективностью. Перед началом работы реактора их полностью вводят в его активную зону. Поглощая значительную часть нейтронов, они де лают невозможным развитие цепной реакции. Для запуска реактора управляющие стержни постепенно выводят из активной зоны до тех пор, пока выделение энергии не достигнет заданного уровня. При увеличении мощности свыше установленного уровня включаются автоматы, погружающие управляющие стержни в глубь активной зоны. [25]
В обычных реакторах критическое состояние физически неустойчиво, оно поддерживается искусственно с помощью очень сложной системы управления. Без такой системы происходит выход либо на под критический, либо на надкритический режимы. Реактор делается с запасом реактивности ( надкритичность), который компенсируется введением в активную зону специальных стержней, поглощающих лишние нейтроны. Если же по мере выгорания топлива реактивность уменьшается, то управляющие стержни частично выводятся из системы и нейтронный поток вырастает до величины, необходимой для плановой работы реактора. [27]
Управляющие стержни изготавливаются из соединений бора или кадмия, поглощающих тепловые нейтроны с очень большой эффективностью. Перед началом работы реактора их полностью вводят в его активную зону. Поглощая значительную часть нейтронов, они де лают невозможным развитие цепной реакции. Для запуска реактора управляющие стержни постепенно выводят из активной зоны до тех пор, пока выделение энергии не достигнет заданного уровня. При увеличении мощности свыше установленного уровня включаются автоматы, погружающие управляющие стержни в глубь активной зоны. [30]
Атомная энергетика сегодня, типы реакторов и переход к экологически чистой энергии
реклама
реклама
реклама
Внутри активной зоны атомы урана расщепляются естественным образом. При этом часть мощной силы, связывающей атомы вместе, высвобождается в виде гамма-излучения, а также пары нейтронов. Пока нейтроны летят, вода действует как замедлитель. То есть она замедляет эти нейтроны, увеличивая вероятность того, что они будут взаимодействовать с другими атомами урана.
Если один из этих нейтронов поглощается атомом урана-235, этот атом становится нестабильным и расщепляется, высвобождая больше энергии и больше нейтронов. Этот каскад нейтронов и расщепляющихся атомов перерастает в цепную реакцию, в результате которой выделяется энергия, достаточная для питания города в течение десятилетий. Чтобы реакция не вышла из-под контроля и не расплавила активную зону, можно вставить управляющие стержни, поглощающие нейтроны и гасящие выход.
Все это включает в себя множество очень сложных физических моментов, но в результате получается «гигантский чайник», который нагревает воду. Эта горячая вода проходит через теплообменник и нагревает еще один контур воды для создания пара, который затем вращает турбину, которая приводит в действие генератор, вырабатывающий электричество.
реклама
Современные типы реакторов
Вот краткая информация о том, как работают основные типы реакторов, используемых сегодня. Следует иметь в виду, что некоторые из этих основных конструкций были разработаны еще в 1950-х годах и на протяжении более 60 лет постоянно совершенствовались, чтобы сделать их более безопасными и эффективными.
Pressurized Water Reactor
Наиболее распространенным типом реактора является реактор с водой под давлением (PWR), который первоначально был разработан в США для питания атомных подводных лодок, а в настоящее время используется в более чем 20 странах. Это конструкция, описанная выше, в которой вода используется и как замедлитель, и как теплоноситель.
В современных конструкциях реакторов PWR топливо обогащается примерно до 3,2 процента урана-235 и формируется в таблетки весом около 10 граммов, которые запечатываются в стержни из циркониевого сплава. Контейнер из нержавеющей стали, окружающий реактор, предназначен как для герметизации всех ядерных продуктов, так и для использования в качестве сосуда под давлением, который поддерживает жидкую воду при более высокой температуре, как в скороварке, для большей эффективности. Контейнер, в свою очередь, закрыт стальным и бетонным щитом, чтобы удержать содержимое реактора даже в случае расплавления.
В старых конструкциях реакторов PWR вода с теплоносителем выходила из защитного экрана и использовалась для выработки электроэнергии. Чтобы поддерживать активную зону реактора холодной, вода должна была постоянно активно прокачиваться. Оба варианта создавали проблемы с безопасностью, как это было во время катастрофы на острове Три-Майл, поэтому в более поздних реакторах использовалась серия контуров теплообменников и резервные пассивные системы циркуляции воды для поддержания охлаждения активной зоны даже в случае полной остановки.
Кипящий водо-водяной реактор (BWR)
Boiling water reactor
Следующий по распространенности реактор, известный как реактор с кипящей водой (BWR), является более простым и практически менее безопасным, чем PWR. Как следует из названия, воде в контуре теплоносителя дают возможность закипеть, и пар поступает непосредственно в турбину из защитной оболочки, а после повторной конденсации возвращается в реактор. Это обеспечивает большую вероятность радиоактивного заражения.
Схема кипящего водо-водяного реактора
Heavy Water Reactor
Улучшенный реактор с газовым охлаждением AGR
Для охлаждения в этих реакторах используется двуокись углерода. Поскольку прежний реактор Магнокс был предназначен в основном для производства плутония, он был не очень эффективен, поэтому был создан реактор AGR, который работает при более высокой температуре для лучшего производства пара и работы турбин.
Реактор большой мощности канальный
Реактор большой мощности канальный, РБМК был разработан в СССР примерно в то же время, что и Magnox, и имеет некоторые общие конструктивные особенности, хотя это совершенно другая машина. В РБМК используется очень мощная графитовая активная зона с водяным охлаждением, состоящая примерно из 1700 вертикальных каналов, содержащих оксид урана, обогащенный до 1,8 процента урана-235. Вода циркулирует под давлением и затем используется для выработки пара.
Хотя большое количество РБМК все еще работает в бывших странах СССР, их печально известная небезопасная конструкция была продемонстрирована Чернобыльской катастрофой в 1986 году, когда инженеры нарушили протоколы безопасности во время имитации испытания на отключение электроэнергии, в результате чего активная зона одного из реакторов комплекса была разорвана паром, после чего произошло возгорание графитового замедлителя.