для чего заземление нейтрали трансформатора

Нейтраль трансформатора

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

Используются следующие режимы нейтрали:

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок. при однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали.

Глухозаземленная нейтраль

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой, а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью.

Изолированная нейтраль

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью.

Компенсированная нейтраль

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью.

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью.

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

Режимы нейтрали трехфазных систем

Напряжение, кВРежим нейтралиПримечание
0,23Глухозаземленная нейтральТребования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69Изолированная нейтральДля повышения надежности электроснабжения
3,3
6
10
20
35
110Эффективно заземленная нейтральДля снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
220
330
500
750
1150

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Назначение заземления нейтрали трансформатора для повышения чувствительности защиты от однофазных замыканий на землю.

В нормальном режиме высокоомный резистор, и при необходимости дугогасящий реактор (ДГР) подключаются к нейтрали специального трансформатора заземления нейтрали (ТЗН).

Чтобы обеспечить чувствительность и селективность защиты от ОЗЗ необходимо кратковременно увеличить ток через устройство защиты. Обоснование возможности кратковременного индуктивного заземления нейтрали специальным трансформатором заземления нейтрали. При возникновении на линии ОЗЗ трансформатор через 0,5 с кратковременно подключается выключателем к сборным шинам. Благодаря глухому заземлению нейтрали создается ограниченный индуктивностью ТЗН ток однофазного короткого замыкания, достаточный для обеспечения чувствительности от ОЗЗ и создания условия гашения дуги.

Защита действует без выдержки времени на отключение линии. Выключатель с заданной выдержкой времени отключается. Отключение линии предотвращает двойные замыкания на землю (ДЗЗ) и многоместные замыкания на землю (МЗЗ), неизбежные в сетях напряжением 6-10 кВ с высокой изношенностью кабелей и оборудования.

Такой режим отключения поврежденных кабельных линий несколько лет проходит опытную эксплуатацию в ОАО «Пятигорские электрические сети». Однако, отключение линий возможно только при наличии надежного резервирования и в случаях, оговоренных правилами устройств электроустановок.

Предотвращения перехода ОЗЗ в ДЗЗ или МЗЗ осуществляется резистором Rн (см. рисунок 1), подключенным к нейтрали ТЗН. В нормальном режиме выключатель Q3) в цепи ТЗН отключен. При ОЗЗ срабатывают реле контроля изоляции KSV1 и (или) реле тока КА1, или устройство определения поврежденной фазы (см. рисунок 1).

После замыкания контактов срабатывает реле времени КТ1, замыкающиеся контакты которого включают выключатель Q3. Выключатель Q3 шунтирует сопротивление Rн и ДГР.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора Рис.1 — Поясняющая схема и схема автоматического заземления нейтрали

Замыкающиеся контакты реле КТ1 с выдержкой времени 0,3 с отключают выключатель Q3. При замыкании этих контактов срабатывает промежуточное реле KL1. Размыкающие контакты реле разрывают цепь КТ1. Возврат схемы осуществляется дежурным с помощью ключа SА. При этом реле К13 замыкает свои контакты в цепи реле КТ1. После отключения выключателя Q3 сеть вновь переходит в режим с заземленной нейтралью через высокоомное сопротивление и при необходимости через ДГР.

При увеличении тока через реле срабатывает защита от ОЗЗ с действием на сигнал с выдержкой времени 0,2 с. Отключение выключателя выполняется с выдержкой времени 0,2 с. Сеть вновь переходит в режим с нейтралью, заземленной через резистор.

Видео: Виды заземления нейтрали

Источник

Зачем и как делают заземление трансформаторов

От производителей электроэнергии передается ток высокого напряжения. Чтобы им могли пользоваться потребители на бытовом уровне, применяют понижающие трансформаторы. Согласно ПУЭ для них необходимо применять защитное заземление. Предусмотрен внешний и внутренний контур заземления. Устанавливают также защиту от ударов молнии.

Принципы устройства

Трансформатор преобразует (трансформирует) параметры переменного электрического тока. Происходит это благодаря явлению электромагнитной индукции. Основные детали прибора – катушки (обмотки) с проводами и ферромагнитный сердечник.

На одну катушку ток поступает, и она называется первичной. Вторичных катушек может быть 1, 2 и больше. С них снимается ток с уже измененными характеристиками.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

У повышающего трансформатора число витков на вторичной обмотке больше, чем на первичной. В прямой связи увеличивается индуцированное напряжение с одновременным понижением силы тока.

Устройство понижающих трансформаторов другое. Они сделаны с точностью наоборот. Число витков в первичной обмотке у них больше, чем на вторичной обмотке, поэтому индуцированное напряжение снижается.

На большие расстояния выгоднее передавать электричество высокого напряжения и низкой силы тока, поскольку потери энергии на выделения тепла наименьшие.

Так и поступают. А трансформаторы впоследствии преобразуют ток до необходимых параметров.

Способ соединения обмоток трансформатора может быть выбран «треугольник», «звезда» или «зигзаг». В случае «треугольника» обмотки соединены последовательно, образуя замкнутый контур. Способ «звезда» предполагает соединение концов фазных обмоток в одну точку. Ее называют нулевой (нейтральной) точкой.

В случае «зигзага» каждая фазная обмотка состоит из 2-х частей на разных стержнях. Соединение 2-х частей происходит навстречу друг другу. Образовавшиеся три вывода соединяют, как «звезду».

Для трансформаторов высокого напряжения применяют соединение «звезда». Заземляется нулевая точка или конец вторичной обмотки. При объединении в «звезду» заземляют фазный провод.

Применение

Для преобразования тока, который передается по электрическим сетям, применяют силовые трансформаторы. Такие устройства способны работать с большими мощностями. Они преобразуют напряжение на линиях с 35…750 кВ в напряжение 6 и 10 кВ и далее в 400 В. После этого электроэнергией могут пользоваться потребители на бытовом уровне.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Трансформаторы тока используют, чтобы снижать ток до требуемой величины. Их применяют в схемах бесконтактного управления, чтобы обезопасить людей и технику от поражения током.

Трансформаторы тока применяют также в измерительных и защитных устройствах, схемах сигнализации и в других приборах.

Особенность трансформатора тока в том, что его вторичная обмотка работает в режиме, близком к короткому замыканию. Если по какой-то причине происходит разрыв цепи на вторичной обмотке, то напряжение на ней повышается до значительных величин.

Скачек напряжения может вызвать поломку оборудования, включенного в сеть. Поэтому должно присутствовать защитное заземление.

Существуют также трансформаторы напряжения, импульсные трансформаторы, автотрансформаторы, сварочные и другие. Для каждого из них существуют своя схема и особенности подключения заземления. Чтобы правильно его выполнить, необходимо изучить техническую документацию к оборудованию.

Зачем заземлять

Заземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции.

Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током.

Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником.

В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине.

В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали).

Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях.

Дугогасящие реакторы

В сетях, рассчитанных на 110 кВ и выше, предусмотрена защита с глухозаземленной нейтралью. Если сеть рассчитана на 35 кВ и ниже, то применяется заземление с изолированной нейтралью.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатораПреимущество изолированной нейтрали в том, что если произойдет замыкание фазы на земли, то это не приведет к короткому замыканию.

На трансформаторах с системой изолированной нейтрали устанавливают дугогасящие реакторы. Они компенсируют емкостные токи, возникающие при замыкании на землю.

Дело в том, что вдоль линии электропередачи накапливается электрический заряд (емкостное электричество). И как только происходит разрыв или иное повреждение изоляции, при контакте с землей возникает ток.

Если он достигает 30 А, образуется разрядная дуга. В результате кабель нагревается, начинает разрушаться изоляция и вместе с ней проводник.

Такое явление приводит к двухфазному и трехфазному замыканию. Срабатывает защита, и трансформатор полностью отключается. Обесточенными остаются сотни и тысячи потребителей электроэнергии.

Чтобы этого не произошло, устанавливают дугогасящие реакторы. Нейтраль заземляют через них. Во время однофазного замыкания на землю возрастает индуктивность дугогасящего реактора. Индуктивная проводимость компенсирует емкостную, и электрическая дуга не возникает.

Через дугогасящие реакторы заземляют нейтраль первичной обмотки одного из трансформаторов сети, в которой соединение обмоток происходит по типу «звезда-треугольник».

Если произошло замыкание на землю, то благодаря такой системе заземления, трансформатор сможет работать на протяжении еще 2-х часов, пока неполадки не будут устранены.

Создание внешнего контура

Чтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом.

Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый.

Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м.

Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ.

Защита от молний

Чтобы выполнить молниезащиты трансформаторной подстанции с металлической крышей, необходимо соединить крышу с внешним контуром заземления.

Соединение происходит в двух противоположных точках. То есть в одной точке кровля соединяется с внешним контуром, и со стороны, расположенной напротив, также происходит соединение кровли с контуром. Соединительным проводником становится проволока толщиной 8 мм.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Если кровля не металлическая, то на ней наверху создают специальный молниеприемник.

Создание внутреннего контура

Трансформаторная подстанция разделена на 3 помещения. Отдельно делают помещения для высокого и низкого напряжения – это помещения распределительных устройств (для входа и выхода). И отдельно предусмотрена трансформаторная камера, непосредственно для трансформатора.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатораВ каждом отделении должна быть проложена заземляющая полоса. Ее прикрепляют к стенам на высоте 0,4…0,6 м, чтобы заземлить все части из металла, не предназначенные для проведения тока. Для крепления применяют дюбеля или специальные держатели круглых и плоских заземляющих проводников.

К заземляющей полосе подключают швеллер, предназначенный для установки трансформатора. Он размещен в стяжке пола. Подсоединяют и другие детали (шинный мост, металлические элементы барьера, крепежные детали, место присоединения переносного заземления). К системе заземления подключают все опорные конструкции из металла и стальные каркасы.

Для разборных соединений применяют болты, в остальных случаях элементы сваривают между собой. Для закрепления переносного заземления используют гайку с ушками «барашек».

Перемычки делают из гибкого медного провода ПВ3. Однако изоляционную оболочку с такого провода надо снять, чтобы можно было следить за целостностью жил.

Заделку в стены осуществляют посредством вставки гильз и заполнением свободного пространства негорючим материалом. Полосу окрашивают в желтый цвет с зелеными полосами. Такую окраску имеет защитный нулевой провод.

Нулевую шину подключают к заземляющему контуру. Корпус трансформатора соединяют с контуром перемычками.

При осмотре трансформатора на вход ставят оградительный барьер и навешивают табличку «Осторожно! Высокое напряжение!».

Источник

Режимы работы нейтрали трансформатора, разновидности, достоинства и недостатки.

В высоковольтных сетях возможны следующие виды заземления нейтрали трансформатора:

Также возможны комбинации из нескольких способов соединения с землей, реализуемых поочередно в комплексе. Рассмотрим по очереди все эти способы, их достоинства и недостатки и показания к применению.

Изолированная нейтраль

Это некогда еще самый распространенный способ заземления нейтрали, применяемый в сетях 6-35 кВ. Сейчас он понемногу вытесняется другими способами.

Достоинство изолированной нейтрали – наличие небольших токов однофазного замыкания на землю (ОЗЗ), с которыми сеть может работать некоторое время, необходимое для поиска и устранения повреждения.

Ток замыкания носит емкостной характер. Он обусловлен наличием емкостной связи между электрооборудованием, кабельными и воздушными линиями и землей. Активная составляющая тока почти отсутствует, так как резистивной связи между нейтралью и землей нет. Но недостатки таких сетей пересиливают ее достоинство.

При достаточной разветвленности сети емкостные токи увеличиваются, так как увеличивается количество одновременно подключенного к ней электрооборудования. Настает момент, когда ток становится настолько ощутимым, что все равно и почти сразу приводит к перерастанию ОЗЗ в междуфазное.

Режимы работы нейтрали по уровню напряжения

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатораК тому же при ОЗЗ резко повышается напряжение на неповрежденных фазах. Особенно это проявляется при замыканиях с перемежающейся дугой, погасающей при прохождении синусоидального напряжения в месте КЗ через ноль. При повторном нарастании напряжения дуга загорается вновь.

При резком погасании дуги осуществляется зарядка емкостей фаз, на которых ОЗЗ нет, до напряжения, выше номинального рабочего. Последующее зажигание дуги дает толчок к их дополнительному заряду и так далее. Результат грозит пробоем изоляции в других местах сети, имеющих ослабленную изоляцию. Дополнительно возникает риск возникновения резонансных явлений в сердечниках трансформаторов напряжения.

Это явление, называемое феррорезонансом, гарантированно выводит из строя их первичные обмотки.

Работу трансформаторов, у которых нейтраль изолирована, целесообразно использовать в неразветвленных сетях малой протяженности.

Компенсированная нейтраль

Большие емкостные токи ОЗЗ приходится снижать. Для этого сеть с изолированной нейтралью дополняется установкой компенсации. В состав ее входит силовой трансформатор с первичной обмоткой, соединенной в звезду и имеющей вывод нейтрали. Вторичная обмотка его иногда не используется, а может питать какую либо нагрузку.

Нейтраль трансформатора установки компенсации заземляется через дугогасящую катушку (катушку Петерсона), представляющую собой реактор с изменяемой индуктивностью.

Обмотка его находится на магнитопроводе и помещена в бак с маслом, как у обычного трансформатора. Регулировка индуктивности осуществляется либо переключением отводов, либо путем изменения зазора в магнитопроводе. В сетях 35кВ распространен способ подключения катушки непосредственно к нейтрали силового трансформатора. Настройка катушки возможна в резонанс с емкостью сети, но тогда ток ОЗЗ исчезает совсем. Его не зафиксировать стандартными элементами защиты, состоящими из ТТНП и токового реле, реагирующего на ток нулевой последовательности.

Чтобы защита работала, используют режим работы катушки с перекомпенсацией. Но использование компенсированного заземления не избавляет сеть от опасных перенапряжений, не устраняет проблему ферромагнитного резонанса. Оно всего лишь снижает токи ОЗЗ.

Про ферромагнитный резонанс смотрите в видео ниже:

Но и это может обратиться во вред: неразвившееся повреждение в кабельной линии в дальнейшем сложнее найти.

Тем не менее, установки компенсации встраиваются во все разветвленные и протяженные сети 6-35 кВ РФ.

Высокоомное резистивное заземление нейтрали

Парадокс в том, что многие основные руководящие документы в РФ, в том числе ПУЭ, ПТЭЭС и ПТЭЭП, не слишком подробно повествуют о резистивном заземлении нейтрали. Хотя польза от него очень ощутима. для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатораЕсть два случая высокоомного заземления:

Высокоомным заземление называется потому, что сопротивление резистора выбирается из соображений возможности длительной работы сети с ОЗЗ.

Но при этом сохраняются достоинства сети с изолированной нейтралью: есть время на поиск повреждения. Но при этом снижаются величины перенапряжений путем шунтирования емкостей фаз сети резистором.

Что приводит к ускорению их разряда при погасании дуги, что в свою очередь снижает потолочное значение, до которого они успевают зарядиться. В итоге минимизируется риск выхода из строя изоляции электрооборудования от перенапряжений, а также – уменьшается до минимума вероятность возникновения феррорезонансных явлений.

Про резистивное заземление нейтрали можно посмотреть в видео ниже:

Низкоомное заземление нейтрали

Уменьшение сопротивления резистора необходимо в случае, если требуется обеспечить быстродействующее отключение присоединения с ОЗЗ релейной защитой.

При этом еще больше снижается величина перенапряжений, что приводит к повышению степени безаварийности работы электрооборудования.

Увеличение тока КЗ через низкоомный резистор приводит к необходимости увеличения его способности отводить тепло. Если это невозможно, то предусматривается ограничение длительности протекания тока с помощью устройств РЗА. При срабатывании защиты резистор отключается, и нейтраль переводится в изолированный режим работы.

Есть и второй вариант: перевод нейтрали через заранее установленное время, необходимое для ликвидации повреждения в ней устройствами РЗА, с низкоомного заземления на высокоомное. Режим низкоомного заземления иногда применяется в комбинации с установками компенсации емкостных токов. В случае фиксации ОЗЗ к сети кратковременно подключается резистор, помогающий срабатывать устройствам защиты. для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Эффективно заземленная нейтраль

Схемы непосредственного заземления нейтралей трансформаторов используются в сетях 110 кВ и выше.

Главная задача при таком режиме работы – получение сравнительно больших токов ОЗЗ для облегчения их фиксации и отключения релейной защитой. Однако при этом увеличиваются капиталовложения на обустройство контуров заземления, по сравнению с электроустановками, имеющими изолированную нейтраль.

А при питании повреждения от нескольких источников одновременно величина тока КЗ в месте ОЗЗ значительно превышает их величины при междуфазных КЗ.

Для исключения этого недостатка нейтрали трансформаторов, подключенных к линии с нескольких сторон, не соединяют с землей одновременно: соединение выполняется на одном из них. За этим следят оперативные работники, занятые эксплуатацией сетей.

Источник

Что такое эффективно заземленная нейтраль и в чем ее преимущества

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Что собой представляет эффективно заземленная нейтраль, какой у нее принцип работы и область применения. Плюсы и минусы электрических сетей с эффективно заземленной нейтралью.

Для передачи электроэнергии на большие расстояния применяют сети высокого напряжения. Безопасная эксплуатация обеспечивается средствами защиты, которая для каждого напряжения своя. В зависимости питающего напряжения применяют различные виды заземления нейтрали. Согласно правилу эксплуатации электроустановок, в сетях до 0,4 КВ применяется глухозаземленная нейтраль. В сетях 0,6-35 кВ для увеличения надежности используется схема с изолированной нейтралью. Для исключения перенапряжения неповрежденных фаз при коротком замыкании одной фазы на землю в линиях 110-1150 кВ применяется эффективно заземленная нейтраль (ЭЗН). Что это такое и в чем особенность данной схемы, мы расскажем читателям сайта Сам Электрик в пределах этой статьи.

Определение эффективно заземленной нейтрали

ЭЗН применяется в высоковольтных сетях 110 кВ и более. В случае замыкания фазы на землю, представляет собой однофазное КЗ.

Оно сопровождается значительными токами в месте повреждения, в результате чего срабатывает система защиты с отключением напряжения. Дадим определение, что это такое.

Эффективно заземленная нейтраль — это заземленная нейтраль в сетях трехфазного напряжения выше 1000 В, коэффициент замыкания на землю которой ≤ 1,4.

На ниже приведенном рисунке представлена схема ЭЗН:

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Это значит, что при однофазном замыкании на землю, напряжение других, не поврежденных фаз, увеличится на величину, не превышающую значения 1,4.

И рассчитывается по нижеприведенной формуле:

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Это имеет большое значение для высоковольтных сетей. Т.к. при такой схеме напряжение неповрежденных фаз не значительно превышает номинальное. А это значит, что нет необходимости увеличивать изоляцию сетей и оборудования.

Эксплуатация сетей с ЭЗН будет обходиться значительно дешевле. При этом следует учитывать, что экономия увеличивается по мере возрастания напряжения в линии.

Требования ПУЭ к сетям

Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.

Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).

Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.

В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.

Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.

Как выглядит однофазное КЗ на рисунке снизу:

для чего заземление нейтрали трансформатора. Смотреть фото для чего заземление нейтрали трансформатора. Смотреть картинку для чего заземление нейтрали трансформатора. Картинка про для чего заземление нейтрали трансформатора. Фото для чего заземление нейтрали трансформатора

Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.

Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.

Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.

Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.

Достоинства и недостатки

Эффективно заземленная нейтраль применяется в сетях 110 кВ и выше. Она обладает рядом преимуществ.

Главным назначением таких схем являются:

Кроме очевидных достоинств, сети имеют и недостатки.

Заключение

Принцип работы сетей с эффективно заземленной нейтралью можно кратко описать так. Основная часть замыканий на землю сопровождающаяся большими токами КЗ, самоустраняется после отключения напряжения. После автоматического повторного включения напряжения в ЛЭП, режим работы линии восстанавливается.

Заземление только части трансформаторов позволяет уменьшить токи КЗ. Так, если на подстанции смонтированы два трансформатора, то к заземляющему устройству подключают только один.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *