днк или рнк что это
Что такое ДНК и РНК человека простыми словами
Что такое ДНК и РНК человека простыми словами: Pixabay
В клетках всех живых организмов содержится структура, название которой не выговорить с первого раза. Дезоксирибонуклеиновая кислота содержит генетический код и информацию о РНК и белки. Можно ли назвать ДНК главной структурой в организме и зачем ей сопровождение в виде РНК?
Что такое ДНК человека?
Аббревиатуру ДНК используют для обозначения молекулы под названием дезоксирибонуклеиновая кислота. Она состоит из повторяющихся блоков, называемых нуклеотидами (органические соединения), поэтому на картинке выглядит как спираль с поперечными полосками.
В этих частичках содержится генетический код, который определяет характеристики человека — телосложение, рост, цвет глаз, волос. У каждого человека уникальная ДНК. Она идентична только у однояйцевых близнецов. Своя ДНК есть у животных и растений.
Какая структура ДНК человека? Молекула дезоксирибонуклеиновой кислоты состоит из четырех видов нуклеотидов:
Эти блоки склеиваются между собой по определенным правилам: аденин может связываться только с тимином, а цитозин — только с гуанином. Притяжение между нуклеотидами связывает две нити, входящие в состав ДНК. Таким образом, по одной части цепи молекулы всегда можно восстановить вторую: напротив аденина находится тимин, напротив гуанина — цитозин. Такое взаимосоответствие называется комплементарностью.
Что такое ДНК человека: Pixabay
Именно так кодируется информация обо всех признаках организма. От комбинации нуклеотидов зависит, как будет выглядеть человек. Совокупность генетического материала называется геномом человека. Хранение, реализация и передача наследственной информации — задача хромосомы (структура в клеточном ядре).
ДНК как химическое вещество было открыто Фридрихом Мишеров в 1869 году, как указано в статье Петтера Портина. Ученые научились расшифровывать генетическую информацию только в конце ХХ века. Затем ученые сумели извлечь из хромосомы ДНК, разрезать ее на части и сшить произвольным образом, используя ферменты.
Так зародилась генная инженерия, началось производство новых организмов со встроенными чужими генами — ГМО (генетически модифицированный организм). Что касается безопасности продуктов с ГМО, то мнения ученых расходятся, как объясняет Брунильда Назарио из WebMD.
Что такое РНК человека?
РНК — рибонуклеиновая кислота, одна из трех молекул, содержащихся в клеточном ядре. Она участвует в кодировании и выражении генов. Состоит она из длинной цепи, звенья которой называются нуклеотидами. Каждый нуклеотид состоит из рибозы, азотистого основания и фосфатной группы. Генетическая информация зашифрована в последовательности нуклеотидов.
Что такое РНК человека: Pixabay
РНК синтезируется в клетках всех живых организмов. Они выполняют функцию трансляции генетической информации в белки, а также дополнительные задачи — транспортировка аминокислот в рибосомы, синтез белка и другие. Поддержку стабильности генома в процессе передачи и синтеза обеспечивают РНК-связывающие белки.
Что общего у ДНК и РНК человека? Обе структуры — это большие молекулы, состоящие из нуклеотидов. В них содержится генетическая информация. Их функции взаимосвязаны. ДНК передает генетическую информацию в цитоплазму (внутреннюю среду) клетки, где при участии РНК происходит синтез белка.
Между ДНК и РНК есть несколько отличий:
ДНК и РНК — нуклеиновые кислоты, сходные по составу, но различные по функциям. Первая структура отвечает за хранение наследственной информации, вторая — за кодирование информации и передачу информации к месту синтеза белка.
Внимание! Материал носит лишь ознакомительный характер. Не следует прибегать к описанным в нем методам лечения без предварительной консультации с врачом.
Уникальная подборка новостей от нашего шеф-редактора
Жизнь начиналась с РНК
Исследования нуклеиновых кислот являются одной из самых «горячих точек» в биологии. Благодаря уникальным свойствам РНК находят все более широкое применение в медицине и технике. Но знает об этом пока лишь узкий круг специалистов.
Рибонуклеиновой кислоте, иначе – РНК – не повезло. Она не пользуется такой широкой известностью, как ее близкий «родственник» – ДНК, несмотря на большое химическое сходство. Однако открытия последних двадцати лет радикально поменяли наши взгляды на роль и функции этих, как выяснилось, очень «умелых» молекул. Плодом этих открытий стала принципиально новая идея о том, что современной жизни предшествовал совершенно самодостаточный древний «мир РНК».
Как это обычно бывает, новое знание, расширяя горизонт, породило и массу новых вопросов. Каковы были механизмы «эволюции» в мире РНК? Зачем, откуда и как появились ДНК и белки? Как произошел переход от «мира РНК» к современному миру? О поисках, которые ведутся в этом направлении, читателям рассказывают академик Валентин Викторович Власов и его сын, кандидат химических наук, Александр Власов.
Почему в цикле статей, посвященных проблеме возникновения жизни, появляется статья об РНК, а не о других, более известных органических молекулах — ДНК или белках? Возможно, наши читатели слышали и об РНК, но вот что? Уверены, ничего примечательного — по одной простой причине: пока лишь специалисты-биологи знают, что именно РНК являются «волшебными» молекулами, давшими начало жизни. Что когда-то в древности, на только что остывшей Земле, возник и существовал загадочный «мир РНК»…
Прежде чем отправиться к «началу начал», давайте запасемся необходимыми знаниями о строении нуклеи-новых кислот — ДНК (дезоксирибонуклеиновой) и РНК (рибонуклеиновой). По своему химическому составу РНК является двойняшкой, хотя и не полным близнецом, ДНК, основного хранителя генетической информации в живой клетке. Нуклеиновые кислоты представляют собой полимерные макромолекулы, состоящие из отдельных звеньев — нуклеотидов. Скелетом макромолекулы являются молекулы пятиуглеродного сахара, соединенные остатками фосфорной кислоты. К каждой молекуле сахара присоединяется одно азотистое основание. Нуклеотиды, которые различаются между собою только разными азотистыми основаниями, обозначаются буквами A, U, G, C (в РНК) и A, T, G, C (в ДНК).
Честно говоря, насчет РНК никто не задумывался долгие годы. Существовала догма, что вот есть клетка, есть хромосомы, в которых есть ДНК — хранитель генетической информации.
В конце концов, на рибосомах синтезируются белки. А РНК — она где-то в промежутке, переносчик информации от ДНК — и только. А потом посыпались открытия, которые заставили совершенно по-другому взглянуть на РНК Главное отличие нуклеиновых кислот заключается в их углеводной компоненте. В РНК сахар — рибоза, а в ДНК — дезоксирибоза: там, где у ДНК имеется атом водорода (Н), у РНК стоит оксигруппа (ОН). Результаты таких незначительных, на неискушенный взгляд, различий поражают. Так, ДНК существуют в основном в форме всем известных жестких спиралей, в которых две цепи ДНК удерживаются вместе за счет образования водородных связей между комплементарными нуклеотидами.
РНК также могут формировать спирали из двух цепочек, похожие на спирали ДНК, однако в большинстве случаев РНК существуют в виде сложных структур-клубков. Структуры эти формируются не только за счет образования упомянутых водородных связей между разными участками РНК, но и благодаря оксигруппе рибозы, которая может образовывать дополнительные водородные связи и взаимодействовать с фосфорной кислотой и ионами металлов. Глобулярные структуры РНК не только внешне напоминают белковые структуры, но и приближаются к ним по свойствам: они могут взаимодействовать с самыми разными молекулами, как маленькими, так и полимерными.
Кого Считать «Живым»?
Почему же именно РНК мы называем праматерью ныне существующей жизни? Чтобы ответить на этот вопрос, давайте разберемся, где проходит граница между живым и неживым.
Поскольку над проблемой происхождения жизни работают ученые из разных областей, каждый оперирует терминами близкой ему науки. Химики обязательно вспомнят слово «катализатор», математики — «информация». Биологи будут считать живой систему, содержащую вещество (генетическую программу), которое может копироваться (или, по-простому, размножаться). При этом необходимо, чтобы в ходе такого копирования могли происходить некоторые изменения наследственной информации и возникать новые варианты систем, т. е. должна существовать возможность эволюции. Еще биологи обязательно заметят, что такие системы должны быть пространственно обособлены. Иначе возникшие более прогрессивные системы не смогут воспользоваться своими преимуществами, поскольку их более эффективные катализаторы и другие продукты будут беспрепятственно «уплывать» в окружающую среду.
Каким же образом первые молекулярные системы были обособлены от окружающей среды? Колонии молекул могли, например, удерживаться вместе за счет адсорбции на какой-нибудь минеральной поверхности или пылевых частицах. Однако возможно, что уже самые примитивные системы располагали, подобно современным живым клеткам, настоящей мембранной оболочкой. Дело в том, что такая «протоклетка» с липидной мембраной может образоваться очень просто. Многие молекулы с заряженными группами (например, жирные кислоты) в водной среде образуют микроскопические пузырьки — липосомы. Это слово должно быть хорошо известно прекрасной половине наших читателей: липосомы широко используются в косметических кремах — крохотные жировые капсулы начиняются витаминами и другими биологически активными веществами. А вот чем были наполнены древние «протоклетки»? Оказалось, что на роль «начинки» претендуют именно РНК.
РНК умеет все?
Жизнь, без сомнения, должна была начаться с образования «умелых» молекул, которые могли бы сами себя размножать и выполнять все другие «хозяйственные работы», необходимые для существования клетки. Однако на роль таких умельцев не подходит ни ДНК, ни белок. ДНК — отличный хранитель генетической информации, но сама себя размножать не умеет. Белки — непревзойденные катализаторы, но не могут работать в качестве «генетических программ». Возникает парадокс курицы и яйца: ДНК не может образоваться без белка, а белок — без ДНК. И только РНК, как выяснилось, может ВСЕ. Но не будем забегать вперед.
Рассмотрим давно известные функции РНК, связанные с работой (экспрессией) гена в клетке. При включении гена сначала происходит локальное расплетение ДНК и синтезируется РНК-копия генетической программы. В результате сложных обработок ее специальными белками получается матричная РНК (мРНК), которая и явля-ется программой для синтеза белка. Эта РНК переносится из ядра в цитоплазму клетки, где она связывается со специальными клеточными структурами — рибосомами, настоящими молекулярными «машинами» для синтеза белка. Белок синтезируется из активированных аминокислот, присоединенных к особым транспортным РНК (тРНК), причем каждая из аминокислот присоединена к своей специфической тРНК. Благодаря тРНК аминокислота фиксируется в каталитическом центре рибосомы, где она «пришивается» к синтезируемой белковой цепи. Из рассмотренной последовательности событий видно, что молекулы РНК играют ключевую роль в декодировании генетической информации и биосинтезе белка.
Чем больше углублялись в изучение различных биосинтетических процессов, тем чаще обнаруживали ранее неизвестные функции РНК. Оказалось, что кроме процесса транскрипции (синтеза РНК путем копирования участка ДНК) в ряде случаев, наоборот, может происходить синтез ДНК на РНК-матрицах. Этот процесс, названный обратной транскрипцией, используют в ходе своего развития многие вирусы, в том числе печально известные онкогенные вирусы и ВИЧ-1, вызывающий СПИД.
Таким образом, выяснилось, что поток генетической информации не является, как первоначально считалось, однонаправленным — от ДНК к РНК. Роль ДНК как изначально главного носителя генетической информации стала подвергаться сомнению. Тем более что многие вирусы (гриппа, клещевого энцефалита и другие) вообще не используют ДНК в качестве генетического материала, их геном построен исключительно из РНК. А далее посыпались одно за другим открытия, которые заставили совершенно по-другому взглянуть на РНК.
На Все «Молекулы» Мастер
Наиболее удивительным было открытие каталитической способности РНК. Прежде считалось, что катализировать реакции умеют только белки, ферменты. Ученые, например, никак не могли выделить ферменты, осуществляющие разрезание и сшивание некоторых РНК. После длительных исследований выяснилось, что РНК прекрасно справляются с этим сами. Структуры РНК, действующие подобно ферментам, назвали рибозимами (по аналогии с энзимами, белками-катализаторами). Вскоре было обнаружено множество разнообразных рибозимов. Особенно широко их используют для манипулирования своими РНК вирусы и другие простые инфекционные агенты. Таким образом, РНК оказались мастерами на все руки: они могут выступать в роли носителей наследственной информации, могут служить катализаторами, транспортными средствами для аминокислот, образовывать высокоспецифичные комплексы с белками.
Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа. Ученые рассчитывали обнаружить там белок, катализирующий сшивание аминокислот в белковую последовательность. Каково же было их удивление, когда выяснилось, что в каталитическом центре рибосом белковых структур нет совсем, что он полностью построен из РНК! Оказалось, что все ключевые стадии биосинтеза белка осуществляются молекулами РНК. Точка в дискуссии о возможности существования «мира РНК» как особой стадии биологической эволюции была поставлена.
Конечно, полную картину еще предстоит реконструировать — осталось много нерешенных вопросов. Например, в современной клетке активацию аминокислот и их присоединение к соответствующим тРНК осуществляют специфичные белки-ферменты. Возникают вопросы: могла ли эта реакция осуществляться без участия белков, только с помощью РНК? Могли ли сами РНК катализировать синтез РНК из нуклеотидов или присоединение азотистых оснований к сахару? В общем-то, после открытия рибозимов такие потенциальные способности РНК уже не вызывали особых сомнений. Но наука требует, чтобы гипотезы экспериментально подтверждались.
Дарвиновская Эволюция в Пробирке
Хороший метод зачастую позволяет осуществить революцию в науке. Именно так можно сказать о методе полимеразной цепной реакции (ПЦР), который позволяет размножать нуклеиновые кислоты в неограниченных количествах. Кратко опишем суть метода. Для размножения ДНК в методе ПЦР используются ферменты ДНК- полимеразы, т. е. те самые ферменты, которые при размножении клеток синтезируют из активированных мономеров-нуклеотидов комплементарные цепочки ДНК.
При методе ПЦР в пробирку с ДНК вносят смесь активированных нуклеотидов, фермент ДНК-полимеразу и так называемые праймеры — олигонуклеотиды, комплементарные концам размножаемой ДНК. При нагревании раствора цепи ДНК расходятся. Затем, при охлаждении, с ними связываются праймеры, образуя короткие фрагменты спиральных структур. Фермент присоединяет к праймерам нуклеотиды и собирает цепочку, комплементарную цепочке исходной ДНК. В результате реакции из одной двуцепочечной ДНК получается две. Если повторить процесс, получится четыре цепочки, а после n повторений — 2 n молекул ДНК. Все очень просто.
Изобретение ПЦР и разработка методов химического синтеза ДНК позволили создать потрясающую технологию молекулярной селекции. Принцип молекулярной селекции тоже прост: сначала синтезируется множество молекул, обладающих разными свойствами (так называемая молекулярная библиотека), а затем из этой смеси отбираются молекулы с желаемым свойством.
Библиотеки нуклеиновых кислот — это смеси молекул, имеющих одинаковую длину, но отличающихся последовательностью нуклеотидов. Получить их можно в том случае, если при химическом синтезе на авто-матическом синтезаторе добавлять на каждой стадии удлинения нуклеотидной последовательности одно-временно все четыре нуклеотида. Каждый из них будет включаться в растущую нуклеиновую кислоту с равной вероятностью, в результате чего на каждом этапе присоединения будет получаться 4 варианта последовательностей. Если таким образом синтезировать нуклеиновую кислоту длиной в n звеньев, то разнообразие полученных молекул составит 4 в степени n. Поскольку обычно используются участки длиной 30—60 мономеров, то в результате синтеза получается от 4 30 до 4 60 разных молекул! Цифры, привычные разве что для астрономов.
Так как в зависимости от состава нуклеиновые кислоты сворачиваются в разные пространственные структуры, синтез статистических последовательностей дает огромное множество молекул, различающихся по свойствам. С образовавшихся ДНК — с помощью фермента РНК-полимеразы — считывается РНК. В результате получается библиотека уже одноцепочечных РНК. Далее производится процедура отбора: раствор РНК пропускается через колонку, в которой находится нерастворимый носитель с химически присоединенными молекулами-мишенями, чтобы «выловить» так называемый будущий аптамер, т. е. РНК, способную связывать определенные молекулы. Затем колонку промывают для удаления несвязавшихся РНК, а затем смывают РНК, задержавшиеся на колонке за счет связывания с целевыми молекулами (это можно сделать, например, нагревая колонку).
С выделенных РНК с помощью обратной транскрипции делают ДНК-копии и получают из них обычные двуцепочечные молекулы ДНК. С последних же можно считывать искомые РНК-аптамеры, а затем — размножать их методом ПЦР в неограниченных количествах. Конечно, так происходит в идеальном случае, на практике все получается сложнее. Обычно исходный препарат РНК содержит огромный избыток «по-сторонних» молекул, избавиться от которого трудно. Поэтому полученную РНК вновь и вновь пропускают через колонку, чтобы выделить РНК, образующие самые прочные комплексы с целевыми молекулами.
С помощью такого метода были получены тысячи разных РНК-аптамеров, которые образуют специфические комплексы с различными органическими соединениями и молекулами.
Рассмотренная схема молекулярной селекции может быть применена для получения молекул с любыми свойствами. Например, были получены РНК, способные катализировать реакции синтеза РНК и белков: присоединение азотистых оснований к рибозе, полимеризацию активированных нуклеотидов на цепочках РНК, присоединение аминокислот к РНК. Эти исследования еще раз подтвердили, что в условиях предбиологической эволюции из случайных полимеров могли возникать молекулы РНК
со специфическими структурами и функциями.
Делайте Ваш Заказ!
Метод молекулярной селекции обладает очень большими возможностями. С его помощью можно решать задачи поиска нужных молекул даже в том случае, если исходно нет идеи, как такие молекулы должны быть устроены. Однако, если придумать процедуру отбора, их можно выделить по принципу требуемых свойств, а затем уже заняться и вопросом, как эти свойства достигаются. Продемонстрируем это на примере выделения РНК, способных связываться с клеточными мембранами и модулировать их проницаемость.
Древние рибоциты должны были поглощать «питательные» вещества из окружающей среды, удалять продукты метаболизма и делиться в ходе размножения.
И все эти процессы требуют управления проницаемостью мембран. Поскольку мы полагаем, что никаких других функциональных молекул, кроме РНК, в рибоцитах не было, какие-то РНК обязательно должны были взаимодействовать с мембранами. Однако с химической точки зрения они совершенно не подходят для роли регуляторов проницаемости мембран.
Мембраны современных клеток и липосом, построенные из жирных кислот, несут отрицательный заряд. Поскольку РНК также заряжены отрицательно, то по закону Кулона они должны отталкиваться от липидной поверхности и тем более не могут проникать в глубь липидного слоя. Единственный известный способ взаимодействия нуклеиновых кислот с поверхностью мембран — через двухзарядные ионы металлов. Эти положительно заряженные ионы могут играть роль мостиков, располагаясь между отрицательно заряженными группами на поверхности мембраны и фосфатными группами нуклеиновой кислоты. Поскольку такие мостиковые взаимодействия достаточно слабые, с мембраной может связаться только очень большая нуклеиновая кислота благодаря множеству слабых связей с поверхностью мембраны. Так маленькие враги привязали Гулливера к земле множеством тоненьких веревок.
Тут и помог исследователям метод молекулярной селекции. Из библиотеки РНК удалось выделить не-сколько молекул, которые очень успешно связывались с мембранами, а при достаточно высокой концентрации — даже разрывали их! Эти РНК обладали необычными свойствами. Они как бы помогали друг другу: смесь молекул разных сортов связывалась с мембранами гораздо лучше, чем молекулы одного сорта. Все стало ясным после изучения вторичных структур этих РНК. Оказалось, что в них имеются петли с комплементарными участками. За счет этих участков «мембранные» РНК могут формировать комплексы-сообщества, которые способны образовывать множественные контакты с мембраной и делать то, что одной молекуле РНК не под силу.
Этот селекционный эксперимент подсказал, что у РНК есть дополнительный способ приобретения новых свойств путем образования сложных надмолекулярных комплексов. Этот механизм мог использоваться и для удерживания эволюционирующих систем РНК в виде колоний на поверхностях еще до того, как эти системы обзавелись изолирующей мембраной.
«Мир РНК»: Был, Есть и Будет!
Множество данных свидетельствует о том, что «мир РНК» действительно существовал. Правда, не совсем ясно — где. Некоторые специалисты полагают, что начальные этапы эволюции происходили не на Земле, что на Землю были занесены уже функционально активные системы, которые приспособились к местным условиям. Однако с химической
и биологической точки зрения это не меняет сути дела. В любом случае остается загадкой — в результате каких процессов в окружающей среде рибоциты образовались и за счет каких компонентов существовали. Ведь требуемые для жизни рибоцитов нуклеотиды — сложные молекулы. Трудно представить, что эти вещества могли образовываться в условиях пребиотического синтеза.
Вполне возможно, что древние РНК значительно отличались от современных. К сожалению, следов этих древних РНК экспериментально обнаружить нельзя, речь идет о временах, удаленных от нас на миллиарды лет. Даже скалы тех времен давно «рассыпались в песок». Поэтому речь может идти только об экспериментальном моделировании процессов, которые могли протекать на самых ранних стадиях молекулярной эволюции.
Почему произошел переход от «мира РНК» к современному миру? Белки, располагающие гораздо большим набором химических групп, чем РНК, являются лучшими катализаторами и структурными элементами. По-видимому, некоторые древние РНК стали использовать белковые молекулы в качестве «орудий труда». Такие РНК, способные к тому же синтезировать для своих целей полезные молекулы из окружающей среды, получали преимущества в размножении. Естественным путем отбирались соответствующие аптамеры и рибозимы.
А затем эволюция сделала свое дело: возник аппарат трансляции, и постепенно ответственность за катализ перешла к белкам. Орудия оказались столь удобными, что вытеснили своих «хозяев» из многих сфер деятельности.
Читатель вправе спросить: а зачем вообще нужно исследовать эволюцию РНК, ведь древний «мир РНК» исчез? Неужели только ради «чистого искусства», удовлетворения интересов фанатичных исследователей? Однако, не зная прошлого, нельзя понять настоящее. Изучение эволюции и возможностей РНК может подсказать новые направления поиска процессов, протекающих в современных живых клетках. Например, совсем недавно были обнаружены мощные системы регуляции активности генов с участием двуцепочечных РНК, с помощью которых клетка защищает себя от вирусных инфекций. Эта древняя система клеточной защиты, вероятно, скоро найдет применение в терапии.
Поэтому неудивительно, что в наше время исследования нуклеиновых кислот продолжают оставаться одной из самых «горячих точек» в молекулярной биологии. Благодаря уникальным свойствам РНК находят все более широкое применение в медицине и технике. Возникший в незапамятные времена «мир РНК» будет не только продолжать незримо существовать
в наших клетках, но и возрождаться в виде новых биотехнологий.
Редакция благодарит сотрудников Института химической биологии и фундаментальной медицины
СО РАН к. х. н. В. В. Коваля, к. х. н. С. Д. Мызину и к. х. н. А. А. Бондаря за помощь в подготовке статьи
Биологическая роль ДНК и РНК
ДНК – самая важная молекула для всех живых существ, даже растений. Она определяет наследование, кодирования белков и содержит инструкции для развития и размножения всего организма и каждой его клетки в отдельности. Достижения генетики позволили раскрыть информацию, содержащуюся в ДНК, и использовать ее с пользой для людей. Теперь каждый может сделать конфиденциальный ДНК-тест, чтобы получить ответы на самые сложные вопросы. Давайте узнаем больше, как работает и какова биологическая роль ДНК.
Какие функции выполняет ДНК в организме
ДНК несет ответственность за рост и поддержание жизни, что выражается в выполнении этой молекулой трех функций.
Таким образом, на что влияет ДНК в организме? Размеры ее влияния огромны – эта молекула содержит инструкции, необходимые организму для развития, жизни и размножения. Эти инструкции находятся внутри каждой клетки и передаются от обоих родителей их детям.
ДНК помогает синтезу РНК
Матричная РНК, или мРНК, – это одноцепочечная промежуточная молекула, которая переносит генетическую информацию от ДНК в ядре к цитоплазме, где она служит шаблоном в образовании полипептидов. мРНК синтезируется в ядре с использованием нуклеотидной последовательности ДНК в качестве матрицы.
Процесс создания мРНК из ДНК называется транскрипцией и происходит в ядре. мРНК направляет синтез белков, который происходит в цитоплазме. мРНК, образованная в ядре, транспортируется из ядра в цитоплазму, где она присоединяется к рибосомам. Белки собираются на рибосомах с использованием нуклеотидной последовательности мРНК в качестве инструкции. Таким образом, мРНК несет «сообщение» от ядра к цитоплазме. Сообщение закодировано в нуклеотидной последовательности мРНК, которая комплементарна нуклеотидной последовательности ДНК, служившей матрицей для синтеза мРНК. Создание белков из мРНК называется трансляцией. В этом заключается биологическая роль РНК.
Молекулярные болезни и связь молекул ДНК
Молекулярное, или генетическое, заболевание – это любое заболевание, вызванное сбоем на молекулярном уровне, то есть в молекуле ДНК. Генетическая аномалия может варьироваться от незначительной до крупной – от одной мутации в единственном основании в ДНК до грубой хромосомной аномалии, включающей изменение количества или набора хромосом. Мутации могут происходить либо случайно, либо из-за воздействия окружающей среды.
Существует ряд различных типов генетических нарушений обмена, в том числе:
Однако далеко не все мутации в генах – это приговор. Гены могут включаться и выключаться при определенных условиях среды. Поэтому даже имея предрасположенность к тому или иному заболеванию, для предупреждения их развития человек может соблюдать назначенный врачом план питания и тренировок, отказываясь от вредных привычек.
Строение и действие гена РНК
ДНК – дезоксирибонуклеиновая кислота, а РНК – рибонуклеиновая кислота. Хотя и ДНК, и РНК несут генетическую информацию и имеют связь между собой, между ними довольно много различий. Что общего между ДНК и РНК и в чем отличия?
Функции ДНК и РНК в организме разные. ДНК отвечает за хранение и передачу генетической информации, в то время как РНК непосредственно кодирует аминокислоты и выступает в качестве посредника между ДНК и рибосомами для производства белков.
Преимущества проведения анализов в лаборатории Медикал Геномикс Украина
Лаборатория Медикал Геномикс Украина – крупнейшая в стране английская лаборатория генетических исследований. Здесь вы можете пройти любой генетический тест, в том числе для установления родственных отношений, а также медицинские, генеалогические исследования.
Мы работаем быстро и качественно, гарантируя конфиденциальность и высокую точность результата, поскольку используем передовое оборудование, а каждый тест проверяется двумя независимыми группами ученых.
Позвоните нам, если у вас есть вопросы – наши консультанты ответят на них и помогут оформить заказ. Сдать биоматериалы можно в одном из наших 78 пунктов приема образцов по всей Украине или заказав набор для домашнего забора материала.