допущение об изотропности материала предполагает что выберите правильное продолжение

Техническая механика

Сопротивление материалов

Основные положения сопромата

допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть фото допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть картинку допущение об изотропности материала предполагает что выберите правильное продолжение. Картинка про допущение об изотропности материала предполагает что выберите правильное продолжение. Фото допущение об изотропности материала предполагает что выберите правильное продолжение

Формула для определения нормальных напряжений σ = F/S справедлива только для достаточно удаленных от места приложения внешней нагрузки поперечных сечений стержня. Вблизи места приложения внешней нагрузки, в общем случае нагружения, гипотеза плоских сечений не выполняется, поскольку здесь распределение деформаций и напряжений носит более сложный характер и требует точных методов определения.

Основываясь на этом принципе, при расчетах принимают, что в местах приложения внешних сил внутренние силы меняются скачкообразно, т. е. вводится понятие локального напряжения, быстро (моментально) убывающего при удалении от места приложения нагрузки. Если же рассматривать на брусе реальный участок приложения внешней нагрузки, то напряжения распределяются в его близлежащих сечениях по сложным закономерностям, тем не менее, они быстро убывают по мере удаления от площадки, к которой приложена нагрузка..

Основные гипотезы и допущения, принимаемые в сопромате.

При практических расчетах различных конструкций способами и методами сопротивления материалов принимают некоторые упрощения, вызванные невозможностью установить влияние некоторых свойств реальных материалов или элементов конструкций.
Так, например, материал любой детали или конструкции не является строго однородными по структуре, поскольку в его объеме присутствуют различные дефекты, не поддающиеся учету и расчету.

По этой причине в большинстве случаев приходится условно принимать, что физические свойства материала по всему его объему остаются постоянными, пренебрегая этими дефектами и реальной неоднородностью.
Такие упрощения в сопромате называют гипотезами и допущениями.

Гипотезы и допущения принимаемые при расчетах

Гипотеза об отсутствии первоначальных внутренних усилий предполагает, что если нет причин, вызывающих деформацию тела (нагрузка, температура и т. п.), то во всех его точках внутренние усилия равны нулю. Таким образом, не принимаются во внимание силы взаимодействия между частицами ненагруженного тела.

Допущение об изотропности материала предполагает, что материал обладает одинаковыми физико-механическими свойствами во всех направлениях. Это допущение хорошо подтверждается практическими исследованиями для таких материалов, как металлы, пластмассы, камень, железобетон.
Но для некоторых материалов может приниматься лишь приближенно, а для таких материалов, как древесина или слюда приниматься не может, поскольку они явно не обладают одинаковыми свойствами в разных направлениях, т. е. анизотропны.

Допущение об идеальной упругости предполагает, что в известных пределах нагружения материал обладает идеальной упругостью, т. е. после снятия нагрузки деформации полностью исчезают.

Гипотезы и допущения, связанные с деформациями элементов конструкций

допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть фото допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть картинку допущение об изотропности материала предполагает что выберите правильное продолжение. Картинка про допущение об изотропности материала предполагает что выберите правильное продолжение. Фото допущение об изотропности материала предполагает что выберите правильное продолжение

Допущение о линейной деформируемости тел предполагает, что перемещения точек и сечений упругого тела в известных пределах нагружения прямо пропорциональны силам, вызывающим эти перемещения (по сути, это допущение характеризует закон Гука, который применим лишь в определенном интервале нагрузок).

Гипотеза о ненадавливании волокон предполагает, что если мысленно представить брус состоящим из бесконечного количества продольных волокон, то эти волокна не оказывают друг на друга силового воздействия (т. е. не давят друг на друга) в определенном интервале нагрузок и деформаций.

Виды нагрузок, возникающих в конструкциях и их элементах

В процессе работы машин и сооружений их узлы, детали и составные элементы воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменения внутренних сил и деформацию узлов, деталей и т. п.

Действующие на элементы конструкций нагрузки бывают массовыми или объемными (сила тяжести, сила инерции), либо поверхностными силами контактного взаимодействия рассматриваемого элемента с соседними элементами или прилегающей к нему средой (пар, жидкость и т. п.).

При расчете конструкций методами сопротивления материалов в число внешних нагрузок включаются реакции связей и силы инерции (при достаточно быстром ускорении).

Виды деформаций, возникающих в конструкциях и их элементах

Основные деформации, возникающие в процессе эксплуатации конструкций:

Растяжение (тросы, цепи, вертикально подвешенные брусья и т. п.).

Сжатие (колонны, кирпичная кладка, пуансоны штампов и т. п.).

Смятие (заклепки, болтовые соединения деталей)

Кручение (валы, передающие мощность при вращательном движении и т. п.).

На практике очень часто элементы конструкций подвергаются действию нагрузок, вызывающих одновременно несколько основных деформаций.

Материалы раздела «Сопротивление материалов»:

Источник

Допущения и ограничения, принятые в сопротивлении материалов

Реальные строительные материалы, из которых воз­водятся различные здания и сооружения, представляют собой довольно сложные и неоднородные твердые тела, обладающие различными свойствами. Учесть это разно­образие свойств трудно, поэтому в сопротивлении мате­риалов используются не все характеристики твердых тел, а, только общие признаки, присущие всем телам суста­новившимися внутренними связями между ними. Иными словами, в сопротивлении материалов изучается поведе­ние конструкции из идеализированного материала, с со­хранением главных физико-механических характеристик.

1.1 Допущение о непрерывном (сплошном) строении материала.По этому допущению принимается, что весь объем любого элемента конструкции заполнен вещест­вом без каких-либо пустот, т. е. не учитывается действи­тельная дискретная атомистическая структура материа­лов. Это допущение позволяет выделять из любой части сооружения бесконечно малый элемент и, приписывая ему свойства материала всего сооружения, пользоваться при исследовании напряженно-деформированного состояния математическими методами анализа бесконечно малых величин.

2. Допущение о ненапряженном состоянии тела.Со­гласно этому допущению, в материале элемента до его нагружения нет никаких напряжений, т. е. действитель­ные (начальные) напряжения, характер и величина ко­торых зависят от причин возникновения, принимаются равными нулю. Иными словами, возникающие напряже­ния врезультате нагружения тела внешними силами принимаются за фактические напряжения в то время как они в действительности составляют лишь прирост напря­жение, вызванных этими силами.

3.Допущение об однородности материала. Согласно этому допущению принимается, что материал во всех точках любого объема имеет одинаковые физико-механи­ческие характеристики.

4.Допущение об изотропности материала. Согласно этому допущению, материал в любой точке и по всем на­правлениям, проведенным через эту точку, имеет одина­ковые физико-механические характеристики. Реальные материалы не являются абсолютно изотропными. Напри­мер, у технических сплавов стали физико-механические характеристики не одинаковы по разным направлениям, что обусловлено ее структурой и условиями обработки, но этими различиями обычно пренебрегают и считают сплавы стали изотропными. Если различия характерис­тик материала в разных направлениях будут значитель­ными, то такие конструкции следует рассчитывать по теории анизотропных тел. В данном случае материал наделяется свойствами абсолютной изотропии.

5.Допущение об идеальной упругости материала. Со­гласно этому допущению предполагается, что материал обладает способностью полностью восстанавливать свою первоначальную форму и размеры тела после устранения причин, вызвавших его деформацию. Деформация иде­ально упругого тела зависит лишь от тех нагрузок, ко­торые в данный момент действуют на тело и не зависят от того, каковы были нагрузки в предшествовавшие мо­менты времени. Данная гипотеза применима только при напряжениях, не превышающих предела упругости мате­риала.

6.Допущение о линейной зависимости между напря­жение и деформациями. Согласно этому допущению, упругое тело наделяется наиболее простой, а именно ли­нейной зависимостью между напряжениями и деформа­циями в данной точке, которая носит название закона Гука. Для такого материала диаграмма растяжения-сжатия, построенная в координатах «напряжение-де­формация», имеет вид наклонной прямой линии, прохо­дящей через начало координат. Для реальных материа­лов диаграмма имеет нелинейный характер, но на начальном этапе нагружения при сравнительно неболь­ших напряжениях, соответствующих действительной работе материала в конструкции, диаграмму с неболь­шой кривизной заменяют прямолинейной зависимостью Таким образом, в сопротивлении материалов закон Гука применим при напряжениях, не превосходящих некото­рого предела, называемого пределом пропорционально­сти. Если же исследуется поведение конструкции за пре­делом пропорциональности или же криволинейность диаграммы значительна, то расчеты проводят по физи­чески нелинейной теории.

7. Допущение о малости перемещений по сравнению с геометрическими размерами элементов сооружений. Со­гласно этому допущению, не учитываются изменения геометрических размеров элементов и местоположения нагрузок из-за искривления, растяжения, сжатия и сдви­га после приложения к ним внешних сил. Поскольку в со­противлении материалов исследуются элементы в виде бруса, то сравнение перемещений производится с его длиной. Таким образом, реакции и внутренние силовые факторы определяются по заданной, начальной геомет­рии, что значительно упрощает расчет, так как все урав­нения приобретают линейный вид. В тех же случаях, когда перемещения сравнимы с длинами элементов, рас­чет следует производить по деформированной схеме, пользуясь геометрически нелинейной теорией.

8. Следствием трех последних допущений об идеаль­ной упругости материала, линейной зависимости между напряжениями и деформациями и малости перемещений является принцип независимости действия сил или прин­цип суперпозиции.

Согласно этому принципу, эффект от действия суммы сил равен сумме эффектов действия каждой силы от­дельно. Иными словами, в сопротивлении материалов можно вычислять реакции, внутренние силовые факто­ры, напряжения и перемещения как алгебраическую сум­му этих факторов от раздельного действия внешних сил независимо от порядка их приложения к жен­жению.

9. Гипотеза плоских сечений (гипотеза Бернулли). Со­гласно этой гипотезе, поперечное сечение элемента (бал­ки, стержня), плоское и перпендикулярное к его оси до приложения к элементу внешних сил, остается плоским и перпендикулярным к оси и после приложения к эле­менту нагрузок.

10. Гипотеза Сен-Венана. Согласно этой гипотезе, в достаточно удаленных точках элемента от места приложения нагрузки внутренние силовые факторы весьма мало зависят от способа приложения этой нагрузки.

Источник

Сопротивление материалов есть наука о прочности и

деформируемости материалов и элементов машин и сооружении.

Прочностью называется способность материала конструкций и их элементов сопротивляться действию внешних сил, не разрушаясь.

В сопротивлении материалов рассматривают методы расчета элементов конструкций на прочность, жесткость и устойчивость.

Расчеты на прочность дают возможность определить размеры и форму деталей, выдерживающих заданную нагрузку при наименьшей затрате материала.

Под жесткостью понимается способность тела или конструкции сопротивляться образованию деформации.

Расчеты на жесткость гарантируют, что изменения формы и размеров конструкций и их элементов не превзойдут допустимых норм.

Под устойчивостью понимается способность конструкции сопротивляться усилиям, стремящимся вывести ее из исходного состояния равновесия.___

Расчеты на устойчивость предотвращают возможность внезапной потери устойчивости и искривление длинных или тонких деталей. Примером потери устойчивости служит внезапное искривление длинного прямолинейного стержня при сжатии вдоль оси.

На практике в большинстве случаев приходится иметь дело с конструкциями сложной формы, но их можно представить себе состоящими из отдельных простых элементов, например, брусьев, пластин, оболочек и массивов.

Основным расчетным элементом в сопротивлении материалов является брус, т. е. тело, поперечные размеры которого малы по сравнению с длиной. Брусья бывают прямолинейные и криволинейные, постоянного и переменного сечения. В зависимости от их назначения в конструкции брусья называют колоннами, балками, стержнями.

Кроме расчета брусьев, сопротивление материалов занимается расчетом пластин и оболочек, т. е. тел, имеющих малую толщину по сравнению с другими размерами (например, резервуары, трубы, обшивка кораблей и самолетов). Тела, у которых все три измерения одинакового порядка, называются массивами (например, фундаменты, станины станков). Расчеты пластин, оболочек и массивов в настоящем учебном пособии не рассматриваются.

При деформации тела под действием внешних сил внутри него возникают силы упругости, которые препятствуют деформации и стремятся вернуть частицы тела в первоначальное положение. Силы упругости возникают в результате существования в теле внутренних сил молекулярного взаимодействия.

В сопротивлении материалов изучают деформации тел и возникающие при этих деформациях внутренние силы.

После прекращения действия внешних сил вызванная ими деформация может полностью или частично исчезнуть. Способность материала устранять деформацию после прекращения действия внешних сил называется упругостью. Деформация, исчезающая после прекращения действия внешних сил, называется упругой; деформация, не исчезающая после прекращения действия внешних сил, называется остаточной или пластической. Способность материала иметь значительные остаточные деформации, не разрушаясь при этом, носит название пластичности, а сами материалы называются пластичными, К числу таких материалов относятся низкоуглеродистая сталь, алюминий, медь, латунь и др.

Материалы, обладающие весьма малой пластичностью, называются хрупкими. В отличие от пластичных материалов хрупкие материалы разрушаются без заметных остаточных деформаций. К хрупким материалам относят чугун, твердые сплавы, стекло, кирпич и др.

Наука о сопротивлении материалов опирается на законы теоретической механики, в которой тела полагались абсолютно жесткими, т. е. не способными деформироваться. Пользуясь рассмотренным в теоретической механике, принципом отвердевания в сопротивлении материалов мы будем применять к деформированным телам условия равновесия статики для определения реакций связей и действующих в сечениях деталей внутренних сил.

Силы, приложенные к небольшой поверхности тела, как и в теоретической механике, мы будем считать сосредоточенными, т. е. приложенными в точке: распределенные реактивные силы, приложенные к защемленному концу балки, мы по-прежнему будем заменять реактивной силой и реактивным моментом. Такие замены не вносят существенных изменений в условия деформации тела. Это положение носит название принципа смягченных граничных условий или принципа Сен-Венана, по имени французского ученого Сен-Венана (1797—1886).

Принцип Сен-Венана можно сформулировать следующим образом: в точках тела, достаточно удаленных от мест приложения внешних сил, модуль внутренних сил весьма мало зависит от конкретного способа приложения сил.

Основные гипотезы и допущения

Конструкционные материалы, из которых изготовляют детали машин и сооружений, не являются, строго говоря, непрерывными, однородными во всех точках и изотропными (имеющими одинаковые свойства во всех направлениях).

В процессе изготовления заготовок и получения из них готовых деталей в материале появляются различные, не поддающиеся учету поверхностные и внутренние дефекты, например, раковины, трещины и неоднородность структуры в литых деталях, волосовины у штампованных деталей, первоначальные внутренние усилия, вызванные неравномерностью остывания литых и кованых деталей, неравномерностью высыхания и неоднородностью древесины, неравномерностью затвердевания и неоднородностью бетона и т.д.

Так как закономерности возникновения указанных явлений установить невозможно, то в сопротивлении материалов принимается ряд гипотез и допущений, которые позволяют исключить из рассмотрения эти явления. В результате объектом изучения в сопротивлении материалов становится не само реальное тело, а его приближенная модель. Экспериментальная проверка выводов, полученных на основании приведенных ниже гипотез и допущений, показывает, что эти выводы вполне пригодны для применения в практике инженерных расчетов.

Перейдем к рассмотрению основных гипотез и допущений, касающихся физико-механических свойств материалов.

· Гипотеза об отсутствии первоначальных внутренних усилий. Согласно этой гипотезе предполагается, что если нет причин, вызывающих деформацию тела (нагружение, изменение температуры), то во всех его точках внутренние усилия равны нулю. Таким образом, не принимаются во внимание силы взаимодействия между частицами ненагруженного тела.

· Допущение об однородности материала. Физико- механические свойства тела могут быть неодинаковыми в разных точках. В сопротивлении материалов этими различиями пренебрегают, полагая, что материал во всех точках теля обладает одинаковыми свойствами.

· Допущение о непрерывности материала. Согласно этому допущению, материал любого тела имеет непрерывное строение и представляет собой сплошную среду. Допущение о непрерывном строении материала позволяет применять при расчетах методы высшей математики (дифференциальное и интегральное исчисления).

· Допущение об изотропности материала. Это допущение предполагает, что материал тела обладает во всех направлениях одинаковыми свойствами.

Многие материалы состоят из кристаллов, у которых физико-механические свойства в различных направлениях существенно различны. Однако, благодаря наличию в теле большого количества беспорядочно расположенных кристаллов, свойства всей массы материала в различных направлениях выравниваются.

допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть фото допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть картинку допущение об изотропности материала предполагает что выберите правильное продолжение. Картинка про допущение об изотропности материала предполагает что выберите правильное продолжение. Фото допущение об изотропности материала предполагает что выберите правильное продолжение
допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть фото допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть картинку допущение об изотропности материала предполагает что выберите правильное продолжение. Картинка про допущение об изотропности материала предполагает что выберите правильное продолжение. Фото допущение об изотропности материала предполагает что выберите правильное продолжение

Допущение об изотропности хорошо подтверждается практикой для большинства материалов и лишь приближенно для таких материалов, как камень, пластмассы, железобетон.

Материалы, имеющие неодинаковые свойства в разных направлениях, называются анизотропными, например, древесина.

· Допущение об идеальной упругости. Это допущение предполагает, что в известных пределах нагружение материал обладает идеальной упругостью, т. е. после снятия нагрузки деформации полностью исчезают.

Рассмотрим теперь гипотезы и допущения, связанные с деформациями элементов конструкций.

Изменение линейных и угловых размеров тела называется соответственно линейной и угловой деформацией. Изменение положения (координат) точек тела, вызванное деформацией, называется перемещением.

· Допущение о малости перемещении или принцип начальных размеров. Согласно этому допущению, деформации тела и связанные с ними перемещения точек и сечений весьма малы по сравнению с размерами тела. На основании этого мы будем пренебрегать изменениями в расположении внешних сил, вызванными деформацией. Так, например, не будем принимать во внимание смещение ∆zлинии действия силы F, показанное на рис. 1.1.

· Допущение о линейной деформируемости тел. Согласно этому допущению, перемещения точек и сечений упругого тела в известных пределах нагружения прямо пропорциональны силам, вызывающим эти перемещения.

К основным гипотезам сопротивления материалов относится также принцип независимости действия сил: результат действия группы сил не зависит от последовательности нагружения или конструкции и равен сумме результатов действия каждой из сил в отдельности, (принцип суперпозиции).

Этот принцип применим только для конструкций, деформации которых малы по сравнению с размерами и пропорциональны действующим нагрузкам.

Источник

Основные положения сопротивления материалов

допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть фото допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть картинку допущение об изотропности материала предполагает что выберите правильное продолжение. Картинка про допущение об изотропности материала предполагает что выберите правильное продолжение. Фото допущение об изотропности материала предполагает что выберите правильное продолжение

Основные положения сопротивления материалов

9 ОСНОВНЫЕ ПОЛОЖЕНИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

9.1 Исходные понятия, требования к деталям и конструкциям

и виды расчетов в сопротивлении материалов

Сопротивление материалов – это наука, изучающая основы и методы расчета наиболее распространенных элементов конструкций на прочность, жесткость и устойчивость.

Любые создаваемые конструкции должны быть не только прочными и надежными, но и недорогими, простыми в изготовлении и обслуживании, с минимальным расходом материалов, труда и энергии.

В сопромате изучаются механические свойства материалов, такие как.

Прочность – способность не разрушаться под нагрузкой.

Жесткость – способность незначительно деформироваться под действием нагрузки.

Выносливость – способность длительное время выдерживать переменные нагрузки.

Устойчивость – способность сохранять первоначальную форму упругого равновесия.

Вязкость – способность воспринимать ударные нагрузки.

В сопротивлении материалов рассматриваются следующие виды расчетов.

Расчет на прочность обеспечивает неразрушение конструкции.

Расчет на жесткость обеспечивает деформации конструкции при действии нагрузки в пределах допустимых норм.

Расчет на выносливость обеспечивает необходимую долговечность элементов конструкции.

Расчет на устойчивость обеспечивает сохранение необходимой формы равновесия и предотвращает внезапное искривление длинных стержней.

9.2 Основные гипотезы и допущения

Гипотезы и допущения, касающиеся физико-механических свойств материалов.

Гипотеза об отсутствии первоначальных внутренних усилий – предполагается, что если нет причин вызывающих деформацию тела, то во всех его точках внутренние усилия равны нулю.

Допущение об однородности материала – предполагается, что материал во всех точках тела обладает одинаковыми свойствами.

Допущение о непрерывности материала – предполагается, что материал любого тела имеет непрерывное строение и представляет собой сплошную среду.

Допущение об идеальной упругости – предполагается, что в известных пределах нагружения материал обладает идеальной упругостью, т. е. после снятия нагрузок деформации исчезают.

Гипотезы и допущения связанные с деформациями элементов конструкций.

Изменение линейных и угловых размеров тела называется соответственно линейной и угловой деформациями. Изменение положения точек тела (координат), вызванное деформацией, называется перемещением.

Допущение о линейной деформируемости тел – предполагается, что перемещения точек и сечений упругого тела прямо пропорциональны силам, вызывающим эти перемещения.

Гипотеза плоских сечений (гипотеза Бернулли) – предполагается, что плоские поперечные сечения, проведенные в теле до деформации, остаются плоскими и нормальными к оси после деформации.

9.3 Виды деформаций и нагрузок

Тела могут деформироваться, т. е. изменять свою форму и размер. Деформации происходят вследствие их нагружения внешними силами или изменения температуры.

Существуют упругие деформации, которые исчезают после прекращения действия вызвавших их сил, а также пластические или остаточные деформации, не исчезающие после снятия нагрузки.

В сопротивлении материалов изучаются следующие вилы деформации: растяжение или сжатие; сдвиг или срез; кручение и изгиб.

Растяжение или сжатие (рисунок 9.1) возникает при приложении к стержню вдоль его оси противоположно направленных сил.

допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть фото допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть картинку допущение об изотропности материала предполагает что выберите правильное продолжение. Картинка про допущение об изотропности материала предполагает что выберите правильное продолжение. Фото допущение об изотропности материала предполагает что выберите правильное продолжение, (9.1)

где допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть фото допущение об изотропности материала предполагает что выберите правильное продолжение. Смотреть картинку допущение об изотропности материала предполагает что выберите правильное продолжение. Картинка про допущение об изотропности материала предполагает что выберите правильное продолжение. Фото допущение об изотропности материала предполагает что выберите правильное продолжение— среднее относительное удлинение (укорочение);

Сдвиг (срез) (рисунок 9.2) – возникает при смещении двух плоских параллельных сечений стержня одно относительно другого при неизменном расстоянии между ними.

Кручение (рисунок 9.3) возникает при воздействии на стержень внешних сил образующих момент относительно его оси. Деформация кручения сопровождается поворотом поперечных сечений стержня друг относительно друга вокруг его оси.

В процессе работы машин и сооружений их узлы и детали воспринимают и передают друг другу различные нагрузки, вызывающие изменение внутренних сил и деформации узлов и деталей.

Поверхностные силы делятся на сосредоточенные и распределенные. Сосредоточенной считается сила, приложенная к элементу конструкции в одной точке, (Н). К распределенным относятся силы, которые непрерывно распределены по некоторой площади или длине элемента (Н/м2).

По времени действия нагрузки распределяются на постоянные и временные. Постоянной считается нагрузка, которая действует на элемент конструкции в течение всего периода эксплуатации. Временной считается нагрузка, действующая только в течение некоторого промежутка времени.

По характеру действия нагрузки подразделяют на статические и динамические. Статическими называются нагрузки, числовое значение, направление и место приложения которых остаются постоянными или меняются медленно и незначительно. Динамическими называются нагрузки, характеризующиеся быстрым изменением во времени их значения, направления или места приложения. К динамическим относятся ударные, внезапно приложенные и повторно-переменные нагрузки.

9.4 Формы элементов конструкций

При большом разнообразии конструктивных элементов, встречающихся в сооружениях и машинах их можно свести к небольшому числу основных форм (объектов), таким как: стержни, пластины (оболочки) и массивные тела.

Стержень или брус (рисунок 9.5) – тело, у которого длина значительно превышает два других (поперечных) размера. Стержни бывают криволинейные, постоянного поперечного сечения и ступенчатые.

Пластина (оболочка) (рисунок 9.6) – любое тело, у которого толщина значительно меньше других размеров.

Тела, у которых все три размера одного порядка называются массивными телами (рисунок 9.7).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *