доза мзв что это
Чему соответствуют различные дозы облучения в зивертах.
– 0,005 мЗв (0,5 мбэр) – ежедневный в течение года трехчасовой просмотр телепередач;
– 10 мкЗв (0,01 мЗв или 1 мбэр) – перелет самолетом на расстояние 2400 км;
– 1 мЗв (100 мбэр) – фоновое облучение за год;
– 5 мЗв (500 мбэр) – допустимое облучение персонала в нормальных условиях;
– 0, 03 Зв (3 бэр) – облучение при рентгенографии зубов (местное);
– 0, 05 Зв (5 бэр) – допустимое облучение персонала атомных электростанций в нормальных условиях за год;
– 0,1 Зв (10 бэр) – допустимое аварийное облучение населения (разовое);
– 0,25 Зв (25 бэр) – допустимое облучение персонала (разовое);
– 0,3 Зв (30 бэр) – облучение при рентгеноскопии желудка (местное);
– 0,75 Зв (75 бэр) – кратковременное незначительное изменение состава крови;
– 1 Зв (100 бэр) – нижний уровень развития легкой степени лучевой болезни;
– 4,5 Зв (450 бэр) – тяжелая степень лучевой болезни (погибает 50% облученных);
– 6 – 7 Зв (600 – 700 бэр) и более – однократно полученная доза считается абсолютно смертельной. (Вместе с тем в медицинской практике имеются случаи выздоровления больных, которые получили радиационное облучение в 6 – 7 Зв (600 – 700 бэр)).
Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу
Между 2000 и 10000 мЗв (2 – 10 Зв) ‑ При кратковременном облучении причинили бы острую лучевую болезнь с вероятным фатальным исходом
1000 мЗв (1 Зв) ‑ При кратковременном облучении, вероятно, причинили бы временное недомогание, но не привели бы к смерти. Поскольку доза облучения накапливается в течение времени, то облучение в 1000 мЗв, вероятно, привело бы к риску появления раковых заболеваний многими годами позже
50 мЗв/в год ‑ Самая низкая мощность дозы, при которой возможно появление раковых заболеваний. Облучение при дозах выше этой приводит к увеличению вероятности заболевания раком
20 мЗв/в год ‑ Усредненный более чем за 5 лет – предел для персонала в ядерной и горнодобывающих отраслях промышленности.
10 мЗв/в год ‑ Максимальный уровень мощности дозы, получаемый шахтерами, добывающими уран
3 – 5 мЗв/в год ‑ Обычная мощность дозы, получаемая шахтерами, добывающими уран
3 мЗв/в год ‑ Нормальный радиационный фон от естественных природных источников ионизирующего излучения, включая мощность дозы почти в 2 мЗв/в год от радона в воздухе. Эти уровни радиации близки к минимальным дозам, получаемым всеми людьми на планете.
0.3 – 0.6 мЗв/в год ‑ Типичный диапазон мощности дозы от искусственных источников излучения, главным образом медицинских
0.05 мЗв/в год ‑ Уровень фоновой радиации, требуемый по нормам безопасности, вблизи ядерных электростанций. Фактическая доза вблизи ядерных объектов намного меньше.
Сколько миллизивертов убивает человека или что такое радиация
Константин Катамадзе
Вернемся к пружинкам в пластилине. Если пружинки слабо сжаты, а пластилина много, то такой комок может никогда и не развалиться. Такие ядра называются стабильными. Но есть и нестабильные ядра. Например, с краю ядра отпрыгивает одна слабо закрепленная частица. Так происходит альфа- и бета-излучение. Другой вариант —когда ядро раскалывается на два больших куска, и из него вылетают маленькие частицы. Это называется спонтанным делением. При этом осколки приобретают большую скорость, а значит увеличивается и температура вещества. Такие реакции происходят в атомных электростанциях.
Рентгеновское излучение — тоже радиация. Это электромагнитные волны, частота которых больше ультрафиолета, но меньше гамма-излучения. Они возникают, когда летящий электрон начинает тормозить. Источниками такого излучения служат специальная рентгеновская трубка, ускорители элементарных частиц и старые ЭЛТ мониторы.
А бывает, что какая-нибудь пружинка распрямляется, но не вылетает из комка. Тогда мы услышим характерный звук типа «пеум-м-м-м». То есть энергия пружины переходит в звук – колебания воздуха. Подобное может происходить и с ядром. Его энергия может уменьшиться, ядро перейдет в стабильное состояние, а разница энергий перейдет в энергию колебаний, только не воздуха, а электромагнитного поля. Это называется гамма-излучением. Вот все это альфа-, бета-, гамма-излучение и называется радиацией.
Понятно, что единственное, что интересует людей относительно радиации, — это то, насколько она опасна. Радиационное излучение может выбивать электроны из молекул или атомов. Этот процесс, когда из нейтральной молекулы выбивают электрон и она становится положительно заряженной, называется ионизацией. Если это происходит в нашем организме, то такие положительно заряженные молекулы становятся химически активными, начинают прицепляться к другим молекулам, и химические реакции у нас внутри идут неправильно. Это может привести к раку, мутациям и лучевой болезни, поэтому от радиации лучше держаться подальше.
Радиоактивное излучение все время дейстует на человека и в малых дозах не причиняет вреда. Сама Земля, пыль и космические тела — источники радиации. Космические источники самые мощные, и спасает то, что все эти источники далеко, и большая часть радиации поглощается атмосферой Земли. На высоте, где летают самолеты, уровень радиации выше, и за 5 часов полета можно получить такую же дозу, что и при рентгеновском обследовании.
Дозы поглощенной организмом радиации измеряются в миллизивертах (мЗв). Нормальный радиационный фон составляет 1-10 мЗв в год. При флюорографии мы получаем около 0,5 мЗв, за час полета на самолете — 0,1 мЗв. Если получать больше 50 мЗв в год, то возникает серьезный риск заболевания раком, а если за раз получить 300 мЗв, может начаться лучевая болезнь. Максимальный уровень радиации, зафиксированный вблизи реактора Фукусимы-1, составил 1000 мЗв в час, а на ее границе — 4 мЗв в час. То есть, чтобы заболеть лучевой болезнью, достаточно было 18 минут провести рядом с реактором или трое суток неподалеку от границы.
Доза мзв что это
В предыдущей статье я попробовал внести ясность в путаницу среди обилия дозиметрических единиц измерения. Теперь же я хочу в доступном виде объяснить как расшифровывать показания дозиметра.
В дозиметрии используются только показатели поглощённой эквивалентной эфективной дозы. Она измеряется в зивертах. Среди важных режимов измерений выделяют определение накопленной поглощённой дозы.
Дело в том, что организм способен накоплять всю поглощённую за свою жизнь радиацию в виде необратимых изменений тканей и органов а так же радионуклидов, оседающих во внутренних тканях. Поскольку в природе постоянно присутствует некоторое фоновое излучение, то человек за свою жизнь накопляет дозу от 100 до 700 мЗв (милизивертов). Этот показатель рассчитан на 70 лет жизни. При таком раскладе совсем не трудно рассчитать норму полученой накопленой дозы за год или в сутки. Получается, что в год мы «должны» собрать норму в 1,43 — 10 мЗв, а за сутку, соответственно 0,004 — 0,027 мЗв. Накопленый эквивалент дозы измерятся после включения дозиметра и до тех пор, пока его не выключат или пока не обнулят результаты измерений.
Согласно показаниям моего дозимерта, за 32 часа и 48 минут я поймал 0,005 мЗв (милизиверта) радиации, что вполне даже соответствует норме.
Но при некоторых «нестандартных ситуациях» бывает, что человек может поймать дозу излучения, во многие разы превышающую естественные фоновые показатели. Эту дозу можно накопить за раз (разовое облучение), кратковременно (облучение до 4-х суток подряд) или на протяжении многих лет.
Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени.
3 мЗв/год — считается абсолютно безопасной нормальной дозой радиационного фона.
20 мЗв/год — предел годовой дозы облучения для работников ядерной и других видов радиационно-опасных работ.
150 мЗв/год — увеличивает вероятность возникновения онкологических заболеваний.
250 мЗв — после достижения этого порога накопленной дозы ликвидатора аварии на ЧАЭС больше не допускали до опасной работы и отправляли из Чернобыля.
Это были варианты получения накопленных доз за длительное время.
При кратковременном облучении граница предельно допустимой накопленой дозы поднимается.
До 0,01 мЗв — эту дозу можно не учитывать.
Если за одну смену рабочий имеет риск превысить порог в 0,2 мЗв, такая работа относится к радиационно опасным и предполагает ношение дозиметра.
До 100 мЗв — допустимое разовое(!) аварийное облучение населения. Медицинскими методами каких-либо заметных отклонений в строении тканей и органов не наблюдается.
Разовое облучение свыше 200 мЗв считается потенциально опасным, критическим для здоровья.
Облучение дозой 500-1000 мЗв вызывает чувство усталости, наблюдаются умеренные изменения в составе крови. Состояние нормализуется через некоторое время. Но появляется вероятность появления в будущем онкологических заболеваний.
1000-1500 мЗв (1-1,5 Зв) за раз могут вызвать симптомы, указывающие на реакцию органов и систем — тошнота, рвота, нарушение работспособности. Возникают различные формы лучевой болезни.
После значения доз 1500 мЗв (1,5 Зв) и выше (высокие уровни облучения) принято измерять поглощённую дозу в грэях (1 Зв = 1 Гр). Очевидно, что облучённый объект уже не воспринимают как «биологический» (вот такой у нас, медиков, чёрный юмор).
1,5-2,5 Гр (1500-2500 мЗв) — наблюдается кратковременная лёгкая форма лучевой болезни, которая появляется в виде выраженной, продолжающейся длительное время лейкопении (снижения числа лейкоцитов). В 30-50% случаев может наблюдаться рвота в первые сутки после облучения. При дозах больше 2 грэй — высок риск летального исхода.
2,5-4 Гр (2500-4000 мЗв) — возникает лучевая болезнь средней степени тяжести. У всех облученных в первые сутки после облучения наблюдается тошнота и рвота, резко снижается содержание лейкоцитов и появляются подкожные кровоизлияния. Такие дозы — вызывают существенный, непоправимый ущерб здоровью, облысение и белокровие.
Смертельные дозы проникающей радиации:
4-7 Гр (4000-7000 мЗв) — развивается тяжелая форма лучевой болезни и высока смертность.
Свыше 7 Гр (7000 мЗв) — крайне тяжелая форма острой лучевой болезни. В крови полностью исчезают лейкоциты. Появляются множественные подкожные кровоизлияния. Смертность 100%. Причиной смерти, чаще всего являются инфекционные заболевания и кровоизлияния.
15 Гр — 1-5 суток и всё.
Таким образом, накопленная эквивалентная эфективная доза является числом «показательным«. Она уже имеется и ничего с ней не сделаешь. Но есть ещё и показатель «предсказательный«. Он называется мощностью дозы эквивалентного эфективного облучения. Он тоже измеряется в зивертах/час, но показывает «будущее».
На моём дозиметре состоянием на 21:42 (29.01.2012) видно, что мощность эквивалентной эфективной дозы гамма-излучения на текущий момент составляет 0,16 мкЗв/час (микрозиверта в час) с погрешностью 20% (измерить настолько непостоянную величину, как радиоактивный распад можно лишь с погрешностью). Порог срабатывания сигнализации установлен на значение 0,3 мкЗв/час. Это значит, что можно быть увереным в том, что при текущем положении дел через один час я поймаю дозу в 0,16 мкЗв = 0,00016 мЗв. Этот показатель является в пределах допустимого фонового излучения.
20 микрорентген/час) — наиболее безопасный уровень мощности фонового излучения.
30 мкР/час) — предел безопасного фонового излучения, установленый санитарными нормами в Укранине.
50 мкР/час) — верхний предел допустимой безопасной мощности дозы фонового излучения.
Сократив время непрерывного нахождения до нескольких часов — люди могут без особого вреда своему здоровью перенести излучение мощностью в 10 мкЗв/час, а при времени экспозиции до нескольких десятков минут — относительно безвредно облучение с интенсивностью до нескольких миллизивертов в час (при медицинских исследованиях — флюорография, небольшие рентгеновские снимки и др.).
В качестве базовой использовалась эта статья. В ней ещё очень много интересного. Описаны методы защиты от радиации а так же способ создания радиометра «из подручных средств».
Доза облучения при рентгене, КТ, МРТ и УЗИ: ну сколько можно?
Обзор
Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.
Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.
Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:
Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.
Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине. Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач. Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?
Учет доз облучения
По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.
На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».
Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.
Доза излучения зависит от многих факторов: площади тела, которую облучали, жесткости рентгеновских лучей, расстояния до лучевой трубки и, наконец, технических характеристик самого аппарата, на котором проводилось исследование. Эффективная доза, полученная при исследовании одной и той же области тела, например, грудной клетки, может меняться в два и более раза, поэтому постфактум подсчитать, сколько радиации вы получили можно будет лишь приблизительно. Лучше выяснить это сразу, не покидая кабинета.
Какое обследование самое опасное?
Для сравнения «вредности» различных видов рентгеновской диагностики можно воспользоваться средними показателями эффективных доз, приведенных в таблице. Это данные из методических рекомендаций № 0100/, утвержденных Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удается постепенно уменьшать. Возможно в клиниках, оборудованных новейшими аппаратами, вы получите меньшую дозу облучения.
Часть тела, орган | Доза мЗв/процедуру | |
---|---|---|
пленочные | цифровые | |
Флюорограммы | ||
Грудная клетка | 0,5 | 0,05 |
Конечности | 0,01 | 0,01 |
Шейный отдел позвоночника | 0,3 | 0,03 |
Грудной отдел позвоночника | 0,4 | 0,04 |
Поясничный отдел позвоночника | 1,0 | 0,1 |
Органы малого таза, бедро | 2,5 | 0,3 |
Ребра и грудина | 1,3 | 0,1 |
Рентгенограммы | ||
Грудная клетка | 0,3 | 0,03 |
Конечности | 0,01 | 0,01 |
Шейный отдел позвоночника | 0,2 | 0,03 |
Грудной отдел позвоночника | 0,5 | 0,06 |
Поясничный отдел позвоночника | 0,7 | 0,08 |
Органы малого таза, бедро | 0,9 | 0,1 |
Ребра и грудина | 0,8 | 0,1 |
Пищевод, желудок | 0,8 | 0,1 |
Кишечник | 1,6 | 0,2 |
Голова | 0,1 | 0,04 |
Зубы, челюсть | 0,04 | 0,02 |
Почки | 0,6 | 0,1 |
Молочная железа | 0,1 | 0,05 |
Рентгеноскопии | ||
Грудная клетка | 3,3 | |
ЖКТ | 20 | |
Пищевод, желудок | 3,5 | |
Кишечник | 12 | |
Компьютерная томография (КТ) | ||
Грудная клетка | 11 | |
Конечности | 0,1 | |
Шейный отдел позвоночника | 5,0 | |
Грудной отдел позвоночника | 5,0 | |
Поясничный отдел позвоночника | 5,4 | |
Органы малого таза, бедро | 9,5 | |
ЖКТ | 14 | |
Голова | 2,0 | |
Зубы, челюсть | 0,05 |
Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее. Компьютерная томография предполагает серию снимков: чем больше срезов — тем выше нагрузка, это плата за высокое качество получаемой картинки. Еще выше доза облучения при сцинтиграфии, так как в организм вводятся радиоактивные элементы. Вы можете прочитать подробнее о том, чем отличаются флюорография, рентгенография и другие лучевые методы исследования.
Чтобы уменьшить потенциальный вред от лучевых исследований, существуют средства защиты. Это тяжелые свинцовые фартуки, воротники и пластины, которыми обязательно должен вас снабдить врач или лаборант перед диагностикой. Снизить риск от рентгена или компьютерной томографии можно также, разнеся исследования как можно дальше по времени. Эффект облучения может накапливаться и организму нужно давать срок на восстановление. Пытаться пройти диагностику всего тела за один день неразумно.
Как вывести радиацию после рентгена?
Какова допустимая доза облучения при медицинских исследованиях?
Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?
Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.
Опасная доза облучения
Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.
Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.
Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли
Есть ли польза от радиации?
Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.
В среднем человек получает около 2–3 мЗв естественной радиации за год. Для сравнения, при цифровой флюорографии вы получите дозу, эквивалентную естественному облучению за 7–8 дней в году. А, например, полет на самолете дает в среднем 0,002 мЗв в час, да еще работа сканера в зоне контроля 0,001 мЗв за один проход, что эквивалентно дозе за 2 дня обычной жизни под солнцем.
Все материалы сайта были проверены врачами. Однако, даже самая достоверная статья не позволяет учесть все особенности заболевания у конкретного человека. Поэтому информация, размещенная на нашем сайте, не может заменить визита к врачу, а лишь дополняет его. Статьи подготовлены для ознакомительных целей и носят рекомендательный характер. При появлении симптомов, пожалуйста, обратитесь к врачу.