двухтрубный амортизатор что это
Небольшой ликбез по амортизаторам/стойкам
Всем доброго времени суток! На данную запись меня натолкнули вопросы, которые я часто слышу на работе:
— А это односторонний амортизатор или двухсторонний?
— А что лучше? масляный, газовый или газо-масляный?
— А как добавить авто плавность хода?
— Я хотел управляемость картинга, поставил самые жесткие амортизаторы, а получил шляпу! Почему?
и т.д. Узнали себя в одном из этих вопросов? тогда читаем дальше…
Мне кажется, эта тема могла бы подойти и для БЖ, но не будем нарушать правил Д2)
Чтобы Вы понимали: я работаю в одной из отечественных фирм по производству автокомпонентов подвески как для отечественных авто, так и для иномарок. Занимаюсь 50/50 как инженеринговыми разработками, так и непосредственным внедрением разработок в производство и на авто, в частности, в рамках натурных испытаний, а также стендовыми испытаниями опытных и предсерийных образцов. В своей работе, в основном, руководствуюсь вот таким толмутом:
Да, не совсем современный, но до сих пор актуальный труд) Есть в открытом доступе в сети, кому интересно. Большинство из того, что будет в этом посте-это упрощенное изложение книги.
Итак. Что такое амортизатор и с чем его едят?
Амортизатор(стойка) — это демпфирующий элемент подвески. Относится к неподрессоренным массам. Необходим для гашения колебаний пружины. Стойка отличается от амортизатора своей несущей способностью. Иными словами: если можно ее выкинуть и при этом авто сможет ехать(задний амортизатор ФФ2, классика ВАЗ и т.д.) — это амортизатор, если нет — стойка. Помимо демпфирования колебаний пружины и несущей способности (для стоек) у амортизатора нет других функций.
Конструктивно амортизаторы делятся на однотрубные и двухтрубные.
Сильно углубляться в конструктив не будем. Основное: двухтрубные-наиболее распространенный вид из-за простоты проектирования и сборки, допускает повреждения основного корпуса(при условии сохранности внутреннего рабочего цилиндра), дешевле в производстве. Однотрубные-применяются в условиях ограниченного монтажного пространства, более стабильные характеристики, не имеет значения угол установки(двухтрубные устанавливаются строго вертикально).
Друхтрубные (далее речь пойдет только о них) могут быть с газовым подпором и без него. Все! Нет никаких чисто зазовых амортизаторов. Это упоры капота/багажника, но не амортизаторы и стойки!) Газовый подпор обеспечивает более стабильную работу клапанной системы амортизатора и заметно снижает вспениваемость гидрожидкости, используемой в амортизаторах/стойках.
Ход штока наверх — ход отбоя, вниз — сжатия. Качественной характеристикой амортизаторов является их сопротивляемость перемещениям штока. Т.е. усилия которые возникают на штоке при его движении с определенной скоростью.
В зависимости от скорости перемещения штока различают дроссельный и клапанный режимы работы. Дроссельный соответствует небольшой скорости перемещения штока(вхождение в поворот на небольшой скорости), клапанный соответствует попаданию в ямы и быстрому передвижению по пересеченной местности.
Визуальная характеристика амортизатора представлена на диаграмме Монро:
Думаю, на ней все понятно без пояснений.
Любой амортизатор имеет клапан отбоя, клапан сжатия и перепускной клапан. Каждый из которых имеет свои дроссельные и клапанные усилия, а соответственно не бывает односторонних амортизаторов. Все амортизаторы сопротивляются как на отбой, так и на сжатие, только усилия на отбой значительно выше чем усилия на сжатие.
А вот так выглядят клапанные системы изнутри:
Двухтрубный амортизатор что это
Амортизатор можно с уверенностью назвать важнейшим компонентом подвески любого автомобиля. Без этого небольшого узла езда была бы просто невыносимой по причине непрерывной вертикальной раскачки кузова автомобиля. Автомобильный амортизатор играет роль своеобразного демпфера, гасящего колебания пружин, рессор или торсионов. Масса кузова автомобиля распределяется на пружины подвески таким образом, что последние постоянно сжаты на определенную величину в зависимости от веса машины и жесткости пружин. Таким образом, каждое колесо автомобиля имеет возможность перемещаться как вверх, так и вниз относительно кузова. За счет этого достигается постоянный контакт каждого колеса с дорожным покрытием независимо от того попадает колесо на кочку или в яму. Но если бы не было амортизатора, то контакт с дорогой не был бы постоянным из-за колебаний пружин. Многим автолюбителям, наверное, знакомы ощущения, когда колеса машины начинают подпрыгивать на малейшей неровности и даже на скорости от 30 км/ч чувствуется ухудшение контроля над автомобилем. Такие симптомы как раз говорят о вышедшем из строя амортизаторе. Из всего вышесказанного можно понять, что амортизатор служит для гашения излишних колебаний пружин и обеспечения постоянного контакта колес с дорожным покрытием.
Разновидности амортизаторов
Если спросить любого водителя о том, какие типы амортизаторов ему известны, то ответ будет примерно таков: масляные, газо-масляные и газовые. И это в корне неверно, так как абсолютно во всех автомобильных амортизаторах присутствует масло или другая жидкость (об этом позже). Более корректно амортизаторы можно разделить на масляные и газовые. И если не затрагивать всевозможные пневматические и регулируемые подвески, то амортизаторы бывают одно- и двухтрубные.
Двухтрубный масляный (гидравлический) амортизатор
Гидравлический двухтрубный амортизатор является самым простым, самым дешевым и, к сожалению, самым нестабильным. Двухтрубный амортизатор состоит из следующих компонентов:
— цилиндрический корпус (резервуар);
-клапан прямого хода (сжатия) встроенный в рабочий цилиндр;
— поршень; клапан обратного хода (отбоя) встроенный в поршень;
Рабочий цилиндр расположен в корпусе амортизатора, который служит одновременно резервуаром и наполнен определенным количеством масла. Поршень соединен со штоком и располагается в рабочем цилиндре. Принцип работы такого амортизатора весьма прост. При работе на сжатие, поршень со штоком движется вниз и вытесняет масло через клапан прямого хода из рабочего цилиндра в корпус амортизатора. При этом воздух, который находится в верхней части резервуара, немного сжимается. При работе на отбой, поршень движется в обратном направлении и через клапан обратного хода перепускает масло из корпуса в рабочий цилиндр.
Как видно, ни конструкция, ни принцип работы не вызывают вопросов – все предельно просто. Но не может быть все одновременно просто и эффективно. У гидравлического амортизатора имеется ряд серьезных недостатков. Главным недостатком является нагрев. Как известно гашение одной энергии порождает возникновение другой, так и в амортизаторе – компенсированные колебания пружины превращаются в тепловую энергию и масло соответственно нагревается.
Из-за двухтрубной конструкции и сравнительно малого объема, масло быстро нагревается, но плохо охлаждается. Данная проблема автоматически порождает следующую – вспенивание масла. Бороться с этим никак нельзя, но бывалые автолюбители очень часто пытаются избавиться от аэрации, путем заполнения нового амортизатора маслом что называется «под завязку». Конечно же, это в корне неправильно и лишнее масло определенно отыщет путь на волю, что приведет к преждевременному выходу из строя амортизатора. Аэрация – это болезнь масляных амортизаторов и с этим остается только смириться.
Двухтрубный газовый амортизатор
Такие амортизаторы, как правило, и называют «газо-масляными». Никаких конструктивных отличий от простого гидравлического амортизатора нет. Разница состоит лишь в том, что в полость корпуса амортизатора закачивается газ (чаще азот) вместо воздуха. Газ является своеобразным аккумулятором давления и препятствует вспениванию масла. Но проблема нагрева и как следствие – разжижения масла остается неизменной. Покупая в магазине газонаполненный амортизатор, его очень легко отличить от гидравлического. Шток газонаполненного амортизатора постоянно стремится выйти наружу.
Однотрубный газовый амортизатор
Это и есть те самые «газовые» амортизаторы, которые всегда в особом почете у всех водителей. Но и в них имеется все тоже масло, которое правда не контактирует с газом. Конструкция однотрубного амортизатора несколько отличается от старшего собрата и включает в себя следующие компоненты:
— поршень, соединенный со штоком и оснащенный двумя клапанами – прямого и обратного хода;
— поршень-поплавок, отделяющий масло от газа.
Различия налицо – в этом амортизаторе отсутствует рабочая камера, потому как ее роль исполняет корпус. Однотрубный амортизатор делится на две камеры при помощи поршня-поплавка. В нижней части закачан все тот же азот, но уже под большим давлением, а верхняя часть заполнена маслом, в котором и перемещается основной поршень со штоком. Так как рабочая камера была исключена из конструкции, то клапан прямого хода расположился на поршне рядом с клапаном отбоя.
Однотрубная конструкция позволила значительно увеличить объем масла и газа при этом, не меняя размеров самого амортизатора. Данное усовершенствование помогло избавиться от нагрева, а разделение газа и масла избавило от вспенивания последнего. Но данный тип амортизатора, конечно же, имеет некоторые недостатки. Жесткость амортизатора изменяется в зависимости от нагрева газа – чем горячее газ, тем жестче подвеска. Но главным недостатком является то, что при повреждении корпуса (вмятина), поршень просто заклинит внутри и амортизатор мгновенно придет в негодность. Тем не менее, как показывает практика, такие случаи встречаются крайне редко.
Из последних новинок можно отметить весьма интересный амортизатор представленный концерном General Motors. Конструкция этого амортизатора практически ничем не отличается от стандартного однотрубного, но вместо масла он заполнен особой жидкостью, содержащей магнитные частицы. Уникальность данной жидкости состоит в том, что она под воздействием магнитного поля, генерируемого электромагнитами способна изменять вязкость. Причем вязкость меняется за доли секунды, что позволяет подвеске мгновенно подстраиваться под особенности дорожного покрытия.
Новый амортизатор успешно прошел ряд тестов и уже устанавливается на Chevrolet Corvette и Cadillac Seville. Вполне возможно, что за такими амортизаторами стоит будущее, потому как конструкция предельно проста и одновременно весьма эффективна. Недостатком является лишь слишком высокая стоимость жидкости но, как известно, все новые разработки вначале были недоступны рядовому потребителю.
Противники колебаний: что представляют собой современные амортизаторы
Двухтрубные и однотрубные, «масляные» и «газовые», регулируемые и адаптивные — все это современные амортизаторы. Будем разбираться в конструкциях, их достоинствах и недостатках.
Напомним, что амортизатор представляет собой специальный компонент ходовой части, предназначенный для гашения колебаний кузова, вызываемых работой упругих элементов подвески — листовых рессор, пружин или пневмобаллонов. Комфортность езды и управляемость автомобиля напрямую зависят от работы и характеристик амортизаторов, что во многом определяется их конструкцией. Попробуем рассмотреть основные виды амортизаторов: от проверенных временем до технологических новшеств.
Гидравлический двухтрубный
Конструкция, появившаяся еще в 30-е годы прошлого столетия и до сих пор не потерявшая актуальность. Телескопический гидравлический двухтрубный амортизатор (он же «масляный») состоит из двух полостей в виде труб, вставленных одна в другую. Во внутренней трубе располагается шток с поршнем, прикрепляемый к кузову.
При наезде колесом на препятствие происходит процесс сжатия амортизатора — шток с поршнем во внутренней (рабочей) трубе перемещается вниз, выдавливая специальную жидкость определенной вязкости во внешнюю (компенсационную) трубу. При прохождении препятствия можно наблюдать обратный процесс — отбой амортизатора, при котором жидкость возвращается в рабочую полость. Гашение колебаний кузова происходит за счет вязкости жидкости — при перекачивании из одной полости амортизатора в другую она поглощает кинетическую энергию.
На основе данной конструкции и по тому же принципу к настоящему времени разработано множество других амортизаторов, таких как трехтрубные, регулируемые и адаптивные. Но о них поговорим чуть позже.
Двухтрубный с газовым подпором низкого давления
Конструктивно практически полностью схож с «масляным». Единственная разница: во внешней трубе у такого амортизатора закачан газ (как правило, азот). Такое решение позволяет уменьшить вредное пенообразование в жидкости амортизатора, из-за которого масло перекачивается неравномерно и амортизатор теряет в функциональности.
Рынок амортизаторов: основные игроки
Формально двухтрубные газовые амортизаторы считаются средними по жесткости. Благодаря наличию газового подпора они оказываются более жесткими, чем двухтрубные гидравлические. Но при этом за счет двухтрубной конструкции и невысокого давления газа такие амортизаторы мягче, чем однотрубные «газовые».
Однотрубный с газовым подпором высокого давления
Конструкция имеет одну трубу, где перемещается поршень с клапаном, через который перекачивается рабочая жидкость. Также в трубе амортизатора находится механически не связанный ни с чем плавающий поршень, разделяющий рабочую жидкость и газ под высоким давлением.
По сравнению с двухтрубной однотрубная конструкция считается более совершенной, обеспечивающей лучшую теплоотдачу и демпфирующие свойства. Единственный серьезный недостаток — полная непереносимость механических воздействий. Если стенку однотрубного амортизатора даже совсем немного замять, его сразу заклинит и он выйдет из строя. При этом гидравлический двухтрубный небольшой вмятины даже не заметит.
Однотрубные амортизаторы считаются самыми жесткими, так как обеспечивают большее усилие сжатия. На практике это означает, что автомобиль с такими амортизаторами меньше кренится при скоростном прохождении поворотов. Но при езде по грунтовке с множеством мелких ям вибрация и толчки на кузов будут передаваться сильнее, чем у двухтрубных амортизаторов.
Амортизаторы с ручной регулировкой
Возможность изменять характеристики амортизатора в зависимости от дорожного покрытия привлекала конструкторов достаточно давно, и уже к 80-м годам прошлого столетия было предложено несколько систем. Так появились амортизаторы с выносной камерой, соединяемой с рабочей полостью через трубку или канал, в котором находится клапан. Поворачивая его в то или иное положение, можно изменять жесткость амортизатора.
Также были разработаны трехтрубные амортизаторы, у которых одна рабочая полость (где перемещается поршень) и две компенсационные (куда выдавливается жидкость). Компенсационные полости соединены между собой через клапан, задав положение которого также можно менять жесткость амортизатора.
Амортизаторы с внешней выносной компенсационной камерой
На практике это выглядит так: нужно остановиться, залезть под машину и повернуть регулировочные болты на каждом из амортизаторов. Поэтому в серийных версиях автомобилей такие амортизаторы не устанавливаются и являются компонентом для тюнинга.
Кроме того, для спорта и тюнинга предназначаются байпасные (от англ. bypass — обводная трубка) амортизаторы и койловеры. В первых перетекание рабочей жидкости происходит не внутри корпуса амортизатора, а по внешним трубкам, снабженным регулируемыми клапанами. При этом здесь можно отдельно настроить характеристики амортизатора на сжатие и отбой.
В свою очередь, койловер ( от англ. сoil-over) представляет собой амортизатор с надетой на него пружиной. Некоторые модели позволяют отрегулировать высоту амортизатора и, соответственно, клиренс автомобиля.
Амортизаторы с внешней пружиной и возможностью ручной регулировки по высоте
Амортизаторы с автоматической регулировкой
Настраивать жесткость амортизатора, не выходя из машины, — вот основной современный тренд разработчиков подвесок. Весьма интересно здесь выглядит гидромеханическая адаптивная система с дополнительным клапаном, предложенная Koni. В зависимости от частоты колебаний подвески клапан открывается, перепуская жидкость и делая амортизатор более мягким. Таким образом, на ровной дороге амортизаторы сохраняют жесткость, не давая кузову крениться в поворотах, а при въезде на разбитую грунтовку, где колеса начинают прыгать, клапаны в амортизаторах открываются, обеспечивая более плавную езду.
Другой вариант — изменение давления газового подпора. Здесь применяются амортизаторы с выносными камерами, в которых установлены вентили и подведены пневматические магистрали. Нагнетая компрессором или сбрасывая давление, можно регулировать жесткость амортизаторов, а в некоторых системах — и клиренс автомобиля. Регулировка давления осуществляется из салона через специальный электронный блок управления компрессором. Используется данная система для тюнинга, в продаже множество комплектов для установки в гаражных условиях.
Элеуктронно-управляемые амортизаторы, в которых жесткость меняется постредством изменения степени пропускания жидкости перепускными клапанами
Свое видение автоматически регулируемого амортизатора предложила компания Monroe. Конструкторы фирмы разработали систему с управляемыми электроникой перепускными клапанами. Получая сигнал, встроенный в клапан соленоид меняет его сечение, делая амортизатор более жестким или мягким. В зависимости от модели система либо управляется вручную, когда водитель может выбрать один из нескольких режимов, либо работает как адаптивная, автоматически меняя жесткость амортизаторов по показаниям датчиков.
Иным путем пошли инженеры Delphi, создав технологию MRC (Magnetic Ride Control). Здесь для амортизаторов была разработана специальная магнитореологическая рабочая жидкость, меняющая вязкость в магнитном поле. В шток амортизатора встроен электромагнит, управляемый отдельным контроллером. В данной системе удалось добиться самой быстрой реакции, когда амортизаторы могут менять жесткость практически мгновенно и бесступенчато, в зависимости от скорости движения, положения руля и работы подвески каждого колеса. Технология выглядит весьма перспективно, однако остаются проблемы со сроком службы рабочей жидкости и стабильности ее свойств при разных температурах.
Принципиальная схема работы технологии MRC: под воздействием электромагнитного поля рабочая жидкость меняет вяхкость, частицы «выстраиваются в линию», отчего изменяется и жесткость амортизатора
Каков итог?
Сохраняя свою принципиальную конструкцию, сейчас амортизаторы превратились в высокотехнологичный компонент с электронным управлением, незаменимый при создании различных «умных» подвесок, адаптирующихся к дорожному покрытию и режиму движения. Есть где разгуляться и любителям тюнинга: разнообразие амортизаторов для доводки очень велико — выбирай на вкус и настраивай подвеску как угодно. Но не будем сбрасывать со счетов и старую проверенную двухтрубную «гидравлику»: пока существует парк бюджетных автомобилей и доступного секонд-хенда, недорогим «обычным» амортизаторам всегда найдется работа.
Полезная статья о амортизаторах
Амортизаторы сегодня — это неотъемлемая часть подвески как на легковых, так и на грузовых автомобилях.
«Подвеска» автомобиля – общее понятие. Она служит для соединения колеса с кузовом автомобиля, но независимо от типа и конструктивных схем предназначена для обеспечения надёжного контакта колеса с поверхностью дороги и гашения колебаний кузова, вызванных неровностями дороги и инерционными силами при движении.
• При введении в подвеску упругого элемента (пружины или рессоры), толчок на кузов значительно смягчается, но вследствие инерции кузова колебательный процесс затягивается во времени, делая управление автомобилем трудным, а движение опасным. Автомобиль с такой подвеской раскачивается во всевозможных направлениях, и высока вероятность «пробоя» при резонансе (когда толчок от дороги совпадает со сжатием подвески в течение затянувшегося колебательного процесса).
• В современных подвесках, во избежание вышеперечисленных явлений, наряду с упругим элементом используют демпфирующий элемент – амортизатор. Он контролирует упругость пружины, поглощая большую часть энергии колебаний. При проезде неровности пружина, как и в предыдущем случае, сжимается. Когда же, после сжатия, она начнёт расширяться, стремясь превзойти свою нормальную длину, большую часть энергии зарождающегося колебания поглотит амортизатор. Продолжительность колебаний до возвращения пружины в исходное положение при этом уменьшится до 0,5 … 1,5 циклов.
Надёжный контакт колеса с дорогой обеспечивается не только шинами, основными упругими и демпфирующими элементами подвески (пружина, амортизатор), но и её дополнительными упругими элементами (буферы сжатия, резинометаллические шарниры), а также тщательным согласованием всех элементов между собой и с кинематикой направляющих элементов.
Таким образом, чтобы Ваш автомобиль «парил» над дорогой, между кузовом и дорожным полотном должны быть:
– шины
– основные упругие элементы
– дополнительные упругие элементы
– направляющие устройства подвесок
– демпфирующие элементы.
Шины первыми в автомобиле воспринимают неровности дороги и, насколько это возможно, в силу их ограниченной упругости, смягчают колебания от микропрофиля дороги.
Шины могут служить индикатором исправности подвески: быстрый и неравномерный (пятнами) износ шин свидетельствует о снижении сил сопротивления амортизаторов ниже допустимого предела.
Основные упругие элементы (пружины, рессоры) удерживают кузов автомобиля на одном уровне, обеспечивая упругую связь автомобиля с дорогой. В процессе эксплуатации упругость пружин меняется вследствие старения металла или из-за постоянной перегрузки, что приводит к ухудшению характеристик автомобиля:уменьшается высота дорожного просвета, изменяются углы установки колёс, нарушается симметричность нагрузки на колёса.
Пружины, а не амортизаторы удерживают вес автомобиля. Если дорожный просвет уменьшился и автомобиль «просел» без нагрузки, значит, пришло время менять пружины.
Дополнительные упругие элементы (резинометаллические шарниры или сайлентблоки, буферы сжатия) отвечают за подавление высокочастотных колебаний и вибраций от соприкосновения металлических деталей. Без них срок службы элементов подвески резко сокращается (в частности в амортизаторах: из-за усталостного износа клапанных пружин).
Регулярно проверяйте состояние резинометаллических соединений подвески. Поддерживая их работоспособность, Вы увеличите срок службы амортизаторов.
Направляющие устройства (системы рычагов, рессоры или торсионы) обеспечивают кинематику перемещения колеса относительно кузова. Задача этих устройств в том, чтобы сохранять плоскость вращения колеса (двигающегося вверх при сжатии подвески и вниз при отбое) в положении близком к вертикальному, т.е. перпендикулярно дорожному полотну.
Если геометрия направляющего устройства нарушена, поведение автомобиля резко ухудшается, а износ шин и всех деталей подвески, в том числе и амортизаторов, значительно ускоряется.
Отдельное внимание стоит уделить подвеске McPherson: во-первых, такая подвеска получила исключительное распространение на переднеприводных автомобилях, а во-вторых в этой подвеске амортизатор играет роль направляющего элемента и нагружен боковыми силами.
Демпфирующий элемент гасит колебания кузова, вызванные неровностями дороги и инерционными силами, а следовательно, уменьшает их влияние на пассажиров и груз. Он также препятствует колебаниям неподрессоренных масс (мосты, балки, колёса, шины, оси, ступицы, рычаги, колёсные тормозные механизмы) относительно кузова, улучшая тем самым контакт колеса с дорогой.
Амортизаторы, как демпфирующий элемент современной подвески, получили наибольшее распространение в силу сочетания эффективности в работе, надёжности и технологичности изготовления. Основной функцией амортизатора является обеспечение надёжного контакта колеса с дорогой, комфорта и безопасности.
Для выполнения своей функции амортизатор должен поглощать определённое количество энергии колебаний, и если точнее, то не поглощать, а преобразовывать её в тепловую. Количество поглощаемой энергии зависит от массы автомобиля, жёсткости пружины и частоты колебаний.
Работа гидравлического и гидропневматического амортизаторов основывается на двух основных свойствах жидкости: её несжимаемости и вязкости.
Все производимые в мире амортизаторы делятся на две группы:
• Гидравлические (или масляные)
• Гидропневматические (или газонаполненные)
Принцип работы гидравлического амортизатора достаточно прост. В рабочем цилиндре, заполненном специальной гидравлической жидкостью, перемещается шток с поршнем, имеющим точно калиброванную систему клапанов. Рабочие характеристики подбираются индивидуально для наилучшего гашения колебаний подвески каждого автомобиля.
Поясним формирование гидравлической характеристики амортизатора:
• Если все клапаны «намертво» закрыты, а прохождение гидравлической жидкости происходит только через обходной канал в поршне, получится абсолютно жёсткая линейная характеристика. Если включить в работу клапаны сообщения с компенсационной камерой – характеристика станет «мягче». Несимметричность объясняется тем, что клапан, открывающийся на «сжатии», имеет большее проходное сечение, чем клапан, работающий на «отбое».
• Если задействовать основные клапаны, расположенные в поршне, форма характеристики уже нелинейна и по мере открытия клапанов и увеличения общего проходного сечения каналов, становится всё менее «жёсткой».
Думая о настройке подвески, надо временно абстрагироваться от брендов и рекламных кампаний. Прежде всего надо решить, какой тип амортизаторов соответствует персональному концепту вашего драйва. Академические понятия функциональности амортизатора звучат весьма определенно – гасить вертикальные колебания. Кроме того, нельзя забывать и о влиянии амортизаторов на разгонную и тормозную динамику. Так, при разгоне автомобиль «приседает» назад, нагружая задние и разгружая передние колеса, снижая тем самым их сцепление с дорогой. При торможении наблюдается обратная картина. Основная нагрузка ложится на передние колеса, а задние лишь слегка притормаживают.
И в той и в другой ситуации идеальным было бы состояние, при котором автомобиль сохранял бы свое нормальное «горизонтальное» положение. Примерно та же картина и при маневрировании, но здесь нагрузка смещается не по осям, а по сторонам автомобиля. Резюмируя, можно сказать, что главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Для чего колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление. Современные тенденции сводятся к тому, что, к примеру, пружины или рессоры лишь поддерживают вес автомобиля. Всю остальную работу берут на себя именно амортизаторы, как более точный инструмент. Вот почему так важен их правильный выбор.
При работе амортизатора необходимо предусмотреть множество различных вариантов и характеристик его функционирования. Ведь дорога имеет куда более сложное покрытие, чем в теории, да и автомобиль едет не всегда по прямой. Нюансов очень много. К примеру, несколько последовательных кочек заставляют его работать прерывисто: не успев толком распрямиться, амортизатор снова должен работать на сжатие. Нужно обеспечить и комфортное обрабатывание мелких неровностей, а на крупных избежать полного сжатия амортизатора, грозящего его пробоем. Здесь, как нигде более, важен компромисс – оптимальный баланс между комфортностью и точной управляемостью. Следующая большая проблема – теплообразование. И чем выше вязкость жидкости или меньше перепускные отверстия поршня, тем выше жесткость амортизатора и больше выделяется температуры при его работе. Отвод тепла – очень важная задача. Но и минусовая температура доставляет немало проблем. При большом минусе масло, находящееся внутри амортизатора, может загустеть, что сделает амортизатор более жестким. Характеристики могут меняться до нескольких десятков процентов. В данном случае все решает правильный подбор масла. Далее вопрос – аэрация. Поскольку в современных амортизаторах наряду с маслом присутствует и некий газ, они могут смешиваться в процессе работы, и масло превращается в пену. А поскольку пена, в отличие от масла, может быть сжата, это резко снижает эффективность демпфирования. Не менее важный вопрос – расположение амортизаторов. Наиболее выгодное, с точки зрения работы, место – как можно ближе к колесу, точно перпендикулярно плоскости подвески. Установка амортизатора под углом (как это часто бывает) снижает его демпфирующую эффективность (отклонение от перпендикуляра подвески +/– 50О – эффективность амортизатора 68%). Все вышесказанное возводит амортизаторы с позиции банального (с точки зрения простого обывателя) автомобильного узла в сложнейшую и многогранную науку. И как в любой другой области, здесь также существуют различные конструкторские и компоновочные решения поставленных задач. По своей конструкции амортизаторы можно разделить на несколько основных типов. По архитектуре их принято делить на одно– и двухтрубные. По наполнению: жидкостные (гидравлические) и газовые (с гидравлическим газовым подпором). Существуют и чисто газовые амортизаторы, в которых используется очень высокое давление газа (порядка 60 атм), но они не столь распространены.
(Принципиальная схема двухтрубного гидравлического амортизатора)
Гидравлические двухтрубные амортизаторы – некогда самый распространенный и дешевый тип демпфирующих стоек. Они довольно просты по конструкции и не столь требовательны к качеству изготовления. Состоит такой амортизатор из двух трубок: рабочей колбы, где и находится поршень, и внешнего корпуса, предназначенного для хранения избыточного масла. Поршень перемещается во внутренней колбе, пропуская масло через собственные каналы и выдавливая часть масла через клапан, находящийся снизу колбы. Этот клапан иногда называют клапаном сжатия, поскольку зачастую он отвечает за перетекание масла именно в данном такте. Эта часть жидкости просачивается в полость между колбой и внешним корпусом, где сжимает воздух, находящийся при атмосферном давлении в верхней части амортизатора. При движении назад задействуются клапана самого поршня, регулируя усилие на отбой. Длительное время именно такая конструкция превалировала на рынке амортизаторов. Но годы эксплуатации выявили ряд ее недостатков. Основным минусом является вышеупомянутая аэрация. Особенно при интенсивной работе такого амортизатора. Замена воздуха азотом (азот, будучи инертным газом, не давал деталям амортизатора корродировать, в отличие от воздуха) несколько улучшила его работу, но не решила проблему полностью. Кроме того, такие амортизаторы, имея фактически двойной корпус, хуже охлаждаются, что также отрицательно сказывается на их работе. С другой стороны, если делать их большего диаметра, удается повысить демпфирующие характеристики, одновременно снижая рабочее давление и, как следствие, температуру.
…плюс газ
(Принципиальная схема регулируемого двухтрубного гидравлического амортизатора с газовым подпором (на примере конструкции амортизаторов фирмы Koni) )
Такие гидропневматические амортизаторы имеют схожую конструкцию и принцип действия с обычными гидравлическими двухтрубными стойками. Основное отличие в том, что вместо воздуха под атмосферным давлением находится инертный газ (чаще азот) под некоторым давлением (от 4 до 20 атм и более, в зависимости от назначения). Это и есть так называемый газовый подпор. Значение давления газа может быть различным для разных условий эксплуатации автомобиля. Кстати, чем больше диаметр патрона, тем меньшее необходимо давление газового подпора. Оно может различаться также для передних и задних амортизаторов. Чем же помогает газовый подпор? Прежде всего – пресловутая аэрация. Будучи под давлением, газ не смешивается с маслом столь сильно, как в предыдущем случае, улучшая работу амортизатора. Но полностью данная проблема не решена и здесь. Кроме снижения аэрации масла, газовый подпор способствует поддержанию автомобиля, выполняя роль дополнительного демпфера. То есть, даже если пружины уже сжались бы, газовый заряд в амортизаторе удерживает правильное положение автомобиля, что положительно влияет на его управляемость. Такой конструктивный подход позволяет инженерам более гибко подходить к настройкам работы амортизатора, делая его более универсальным, чем обычные гидравлические. Общая проблема всех двухтрубных амортизаторов – невозможность установки «вверх ногами». Этому мешает наполняющий их газ.
(Регулируемый амортизатор системы CDC на автомобиле Opel Astra разработки ZF)
Такие амортизаторы, как следует из названия, имеют лишь одну колбу, которая является и рабочим цилиндром, и корпусом одновременно. Работают они так же, как и двухтрубные, но в данной конструкции газ находится в том же цилиндре и отделен от масла особым плавающим поршнем (так называемая схема De Carbon). Газ (чаще азот) находится в своей камере, отделенной от масла, под высоким давлением (20–30 атм). Однотрубные амортизаторы не имеют нижнего клапана сжатия, как двухтрубные. Это означает, что всю работу по управлению сопротивлением и при сжатии, и при отбое берет на себя поршень. В этой связи, несмотря на кажущуюся простоту этого узла, подбор его конструкции, размера, формы и количества отверстий является весьма сложной задачей. В целом такие амортизаторы имеют высокие рабочие характеристики. Они еще точнее держат автомобиль, способствуя лучшей управляемости. Кроме того, они эффективнее охлаждаются, поскольку воздухом обдувается непосредственно рабочий цилиндр. Плюс к этому в тех же габаритах, что и двухтрубные амортизаторы, внутренний диаметр рабочей колбы будет больше, равно как и диаметр поршня. Это означает больший объем масла, более стабильные характеристики и, опять же, лучшая теплоотдача. Но есть и минусы. В отличие от своих двухтрубных «коллег», однотрубные более уязвимы от внешних повреждений. Замятая колба однозначно приводит к замене стойки, тогда как двухтрубные имеют своего рода страховку, или, если можно так назвать, щит в виде внешнего цилиндра. К минусам можно отнести также высокую чувствительность однотрубных амортизаторов к температуре. Чем она выше, тем выше давление газового подпора и жестче работает амортизатор. С другой стороны, однотрубные стойки можно устанавливать как угодно, поскольку газ плотно отделен от масла плавающим поршнем. Кстати, именно это обстоятельство позволяет автопроизводителям, устанавливая такой амортизатор штоком вниз, снижать неподрессоренные массы. Здесь же нужно сказать и о том, что часто можно встретить амортизаторы с надетой на них пружиной. Этот вариант конструкции не относится исключительно к однотрубным стойкам. Просто так добавляется дополнительный упругий элемент, а порой он и вовсе заменяет основную пружину. Такие конструкции часто имеют возможность регулировки клиренса автомобиля. Подкручивая особую винтовую гайку на корпусе амортизатора, поддерживающую пружину снизу, можно поднять или опустить автомобиль, соответственно поджав либо отпустив пружину. Своего рода эволюцией однотрубных амортизаторов являются «однотрубники» с выносной компенсационной камерой. В них камера с газовым подпором вынесена за пределы самого амортизатора в отдельный резервуар. Такая конструкция позволяет, не увеличивая размеры самого амортизатора, увеличить объем и газа, и масла, что серьезно влияет на температурный баланс (они более эффективно охлаждаются) и стабильность характеристик. Плюс к этому имеют больший рабочий ход. Но еще больший эффект от выносной камеры в том, что на пути масла, перетекающего из основного рабочего цилиндра в допкамеру, можно установить систему клапанов, которые будут играть роль клапана сжатия, как в двухтрубной конструкции. Отделив друг от друга клапана, работающие на сжатие и отбой, можно заложить много диапазонов регулировки. Можно менять жесткость работы амортизатора для различных скоростей движения поршня, например малую, среднюю и большую. И позиций таких регулировок может быть 10 и более. Порой можно встретить и весьма экстравагантную систему с набором перепускных клапанов. Кроме большого внешнего резервуара, амортизатор облеплен несколькими трубками, на концах которых находятся регулировочные головки под гаечный ключ или отвертку. По этим трубкам масло перепускается из над– и подпоршневых камер друг в друга. Регулируя эти перепускные каналы, можно получить нужные характеристики работы амортизатора на определенных режимах или, если быть точным, положениях поршня. То есть такие амортизаторы чувствительны не только к скорости перемещения поршня, но и к его позиции внутри колбы. Кроме этого, наличие большего числа трубок, по которым проходит масло, способствует лучшему его охлаждению.
(Магнитная жидкость; Плоский поток (параболический профиль скорости перемещения))
Кроме примеров борьбы с явлением аэрации, были и другие варианты совершенствования конструкции таких амортизаторов. Так, например, компания Monroe, используя особые заостренные бороздки на стенках рабочей колбы, добивалась точной настройки характеристик амортизатора как для спокойной, так и для активной езды. Нужно отметить и примеры регулируемых амортизаторов, построенных по двухтрубной газонаполненной схеме. Стандартные амортизаторы также обладают возможностью регулировки, но для этого их необходимо разбирать. А есть варианты конструкций, предлагающие внешнюю регулировку жесткости. Так, фирма Koni применяет особый регулировочный штырь, проходящий через шток. Загнутый конец этого штыря, поворачивая особую эксцентриковую шайбу, создает дополнительную нагрузку на нижние пластины, позволяя настроить усилия хода отбоя. Ряд фирм осуществляют регулировку жесткости работы амортизатора схожим образом, но с использованием системы перепускных каналов в штоке, отвечающих за протекание масла, минуя дроссель. Интересный вариант регулировки жесткости предлагает фирма Kayaba. На ее амортизаторах серии AGX используется клапан, расположенный сбоку амортизатора в нижней части стойки, также регулирующий перепускание масла в обход поршня. У конструкций с выносными резервуарами возможностей настройки, как было сказано выше, куда больше, но все это механические системы, требующие остановки и ручной корректировки. Такой вариант мало подходит к современным серийным автомобилям, производители которых стремятся создать водителю и пассажирам максимальный комфорт и удобства. Для этих целей разрабатываются новые варианты амортизаторов, имеющих автоматические регулировки жесткости. Первые такие устройства представляли собой сложнейшие гидравлические системы, работающие под высоким давлением и регулирующие характеристики работы амортизаторов посредством изменения давления масла в рабочем цилиндре. В настоящее время им на смену пришли иные устройства, позволяющие изменять характеристики работы амортизаторов посредством электрических клапанов, причем как в ручном, так и в автоматическом режиме. В качестве примера можно привести систему CDC (Continuous Damping Control – непрерывный контроль демпфирования) фирмы ZF, использованную на автомобиле Opel Astra. Здесь применена схема обычного двухтрубного амортизатора с газовым подпором. Регулировка усилия на сжатие и отбой осуществляется посредством двух электромагнитных клапанов, установленных сбоку в нижней части амортизатора и внутри самого поршня. Процессорное управление отслеживает множество параметров (скорость, вертикальное ускорение каждого колеса, угол поворота руля и т. д.) и регулирует жесткость по каждому из амортизаторов в отдельности. Есть и куда более изящная разработка, имеющая, на мой взгляд, весьма радужные перспективы. В прошлом году компания General Motors представила магнитные амортизаторы на моделях Cadillac Seville и Chevrolet Corvette. Совместно с корпорацией Delphi была разработана система MRC (Magnetic Ride Control – магнитный контроль перемещения). В данной системе отсутствуют привычные способы регулировки усилия. Всю работу берет на себя магнито-реологическая жидкость. Эта жидкость работает как и в обычных амортизаторах, но при этом под воздействием электромагнитного поля, генерируемого специальными электромагнитными катушками, она способна менять свою вязкость. Причем менять с частотой 1000 раз/сек, и регулировка происходит фактически мгновенно. Реакция системы занимает всего одну миллисекунду. Нет ни двигателей, ни соленоидов, ни каких бы то ни было сложных клапанных систем. Такой магнитный амортизатор проще своих классических «коллег», но, к сожалению, пока не дешевле. Виной тому все еще высокая стоимость устойчивых к расслоению магнито-реологических жидкостей с достаточно широким температурным диапазоном работы. Но очень похоже, что будущее за подобной схемой. Уж очень много преимуществ. Упрощаются сам амортизатор и подвеска. Исключается необходимость в стабилизаторах поперечной устойчивости. Потрясающие возможности контроля жесткости подвески. Много плюсов.