дюйм градус вт что лучше
Дюйм градус вт что лучше
справедливо для всех марок?
У большинства пригодных для фонарестроения марок сплавов теплопроводность одинаковая плохая. Высокой теплопроводностью отличатся почти чистый алюминий (АД*), который слишком мягкий для корпусов.
судя по графику для 40градусов получается 20г радиатора на 1вт мощности?
надо не по весу а по площади, тонкий радиатор с ребрами будет намного лутше отдавать тепло в воздух чем гладкий куб того же веса
p.s. че то не то нажал и мой пост оказался внутри вашего поста, тim4r70, извиняйте, вроде исправил,
а вообще надо говорить за конкретный объект, какой корпус, диод, где используется, а если речь идет за обычной формы фонарь то просто посмотрите как брендовые решили этот вопрос, и сделайте похоже.
Сдаётся мне, что топикстартеру нужно посчитать тепловое сопротивление корпуса, а не теплопроводность.
Например радиатор: http://www.chipdip.ru/product/hs-107-100.aspx
имеет тепловой сопротивление 13 дюйм*градус/ватт.
Т.е. подав на 1 дюйм длинны этого радиатора 1 ватт тепла, мы получим его нагрев на 13 градусов. Если окружающая температура +20, то на радиаторе будет 33С.
Где-то на форуме проскакивала программка для рассчёта радиаторов.
В фонаре будут стоять 2 XM-L, интересует вопрос дойдёт ли тепло до радиатора который сзади корпуса. Толщина «пола» под съёмной крышкой 15 мм, общая площадь фонаря 162 кв.см.
Чисто визуально два XM-L такая аллюминиевая конструкция охладит без проблем. Знаю, что звучит неубедительно.
А вообще эскиз классный. Стильно)
мне кажется не хватит, я бы так не делал, от ребер сзади толка не будет, тем более что они очень часто стоят для пассивного охлаждения, да и посмотрите все подобные изделия, ребра стоят как можно ближе к источнику тепла, думаю не достаточное охлаждение будет.
и еще если я правильно понял, то 15мм то что я отметил (на чертеже выглядит что пол плавно переходящий в стенки имеет везде одну толщину), то весь предмет размером с литровую банку минимум, а то и 3х, и ни как не имеет площадь поверхности162кв см.
мальенкая коробочка для 2х 18650 имеет площадь поверхности около 100кв см.
если ваш фонарь имеет похожие габариты (немного большие чем коробочка под 2 18650 акума) то без всяких подсчетов уверен спекутся ваши 2 хм-л через 2-3 минуты на полном газу
Дюйм градус вт что лучше
Есть микросхемы TDA8560Q, TA8221AH.
Модели радиаторов с абсолютно плоским основание.
Эта модель радиатора с кулером подойдет для этих микросхем?
CUW3-610(SA)
Не хочется слишком большие пластины ставить.
Может есть подходящие в разделе Ребристые радиаторы?
Например:
бабай | ||||
Карма: 45 |
| |||
as478 | |||
Зарегистрирован: Чт дек 19, 2013 20:27:13 | |||
бабай | ||||
Карма: 45 |
| |||
as478 | |||
Зарегистрирован: Чт дек 19, 2013 20:27:13 |
| ||
Страница 1 из 1 | [ Сообщений: 5 ] |
Часовой пояс: UTC + 3 часа
Кто сейчас на форуме
Сейчас этот форум просматривают: samand587, Zub@stik и гости: 8
Сравнение радиаторов отопления по теплоотдаче
Реальная теплоотдача радиаторов отопления различных типов часто обсуждается на строительных форумах. Участники спорят, какие батареи лучше по тепловым характеристикам – чугунные, алюминиевые или стальные панели. Чтобы прояснить данный вопрос, предлагается выполнить расчет мощности разных отопительных приборов и провести сравнение радиаторов по теплоотдаче.
Как правильно рассчитывается реальная теплоотдача батарей
Ошибочное суждение: мощность алюминиевых радиаторов самая высокая, ведь теплоотдача меди и алюминия – самая лучшая среди металлов. Теплопроводность алюминия действительно высока, но процесс теплообмена зависит от многих факторов. Нюанс второй: отопительные приборы делают из силумина – алюминиевого сплава с кремнием, чьи показатели заметно ниже.
Прописанная в паспорте отопительного прибора теплоотдача соответствует истине, когда разница между средней температурой теплоносителя (tподачи + tобратки)/2 и воздуха помещения равна 70 °С. Величина зовется температурным напором, обозначается Δt. Расчетная формула:
Подставим известное значение температурного напора и получим такое уравнение:
(tподачи + tобратки)/2 — tвоздуха = 70 °С
Справка. В документации изделий от различных фирм параметр Δt может обозначаться по-разному: dt, DT, а иногда просто пишется «при разнице температур 70 °С».
Какую теплоотдачу мы получим, если в документации на биметаллический радиатор написано: тепловая мощность одной секции равна 200 Вт при DT = 70 °С? Разобраться поможет та же формула, в нее подставляем значение комнатной температуры +22 °С и ведем расчет в обратном порядке:
(tподачи + tобратки) = (70 + 22) х 2 = 184 °С
Зная, что разность температур в подающем и обратном трубопроводах не должна превышать 20 °С, определяем их значения следующим образом:
Теперь видно, что 1 секция биметаллического радиатора из примера отдаст 200 Вт теплоты при условии, что вода в подающем трубопроводе нагреется до 102 °С, а температура воздуха в комнате – до +22 °С.
Первое условие невыполнимо, поскольку современные бытовые котлы нагреваются до 80 °С (максимум). Значит, радиаторная секция никогда не отдаст заявленные 200 Вт тепла. Да и температура теплоносителя в системе частного дома редко поднимается выше 70 °С, тогда DT = 38 °С, а не 70 градусов. То есть, реальная теплоотдача прибора вдвое ниже паспортной.
Порядок расчета теплоотдачи
Итак, реальная мощность батареи отопления гораздо меньше заявленной, но для ее подбора надо понимать, насколько. Для этого есть простой способ: применение понижающего коэффициента к паспортному значению тепловой мощности обогревателя. Ниже представлена таблица коэффициентов, на которые умножается заявленная теплоотдача радиатора в зависимости от настоящей величины DT:
Алгоритм расчета настоящей теплоотдачи отопительных приборов для ваших индивидуальных условий такой:
В приведенном примере тепловая мощность 1 секции биметаллического радиатора составит 200 Вт х 0.48 = 96 Вт. На обогрев помещения площадью 10 м² пойдет приблизительно 1000 Вт теплоты или 1000/96 = 10.4 ≈ 11 секций (округление делаем в большую сторону).
Представленная таблица и расчет теплоотдачи батарей надо использовать, когда в документации указана Δt, равная 70 °С. Но бывает, что фирмы–производители дают мощность радиатора для других условий, например, при Δt = 50 °С. Тогда пользоваться коэффициентами нельзя, проще набрать требуемое количество секций по паспортной характеристике, только взять их число с полуторным запасом.
Справка. Многие производители указывают значения теплоотдачи при таких условиях эксплуатации: tподачи = 90 °С, tобратки = 70 °С, tвоздуха = 20 °С, что как раз соответствует Δt = 50 °С.
Сравнение по тепловой мощности
Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти параметры мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, здесь конструкция и форма изделия играет большую роль. Четко сравнить стальной панельный обогреватель с чугунной батареей не выйдет, их поверхности слишком разные.
Трудновато сравнивать отдачу теплоты плоскими панелями и ребристыми поверхностями сложной конфигурации
Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдадут 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) на 5 секций такой же высоты передаст в комнату только 530 Вт при аналогичных условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.
Примечание. Мощностные характеристики алюминиевых и биметаллических обогревателей мало отличаются, сравнивать их нет смысла.
Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Длина батареи из 5 алюминиевых секций GLOBAL высотой 600 мм составит примерно 400 мм, что соответствует стальной панели KERMI 600 х 400.
В таблице указана тепловая производительность 1 секции из алюминия и биметалла в зависимости от размеров и разницы температур Δt
Если даже взять трехрядную стальную панель (тип 30), получим 572 Вт при Δt = 50 °С против 635 Вт у 5-секционного алюминия. Еще учтите, что радиатор GLOBAL VOX гораздо тоньше, глубина прибора составляет 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминиевых секций позволяет уменьшить габариты обогревателя.
В индивидуальной системе отопления частного дома батареи одинаковой мощности, сделанные из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:
Вывод простой: неважно, из какого материала изготовлен радиатор. Главное, правильно подобрать батарею по мощности и дизайну, который устроит пользователя. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой лучше устанавливать.
Сравнение по другим характеристикам
Об одной особенности работы батарей – инертности – уже упоминалось выше. Но чтобы сравнение радиаторов отопления выглядело объективным, кроме теплоотдачи следует учесть и другие важные параметры:
Ограничение по рабочему давлению определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота подъема воды сетевыми насосами может достигать сотни метров. Параметр не играет роли для частных домов, где давление в системе невысокое, максимум 3 Бар.
Сравнение по вместительности радиаторов может дать представление об общем количестве воды в сети, которое придется нагревать. Ну а масса изделия важна при выборе места установки и способа крепления батареи.
В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:
Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.
Заключение
Если провести сравнение изделий широкого круга производителей, то все равно выяснится, что по теплоотдаче и другим характеристикам первое место прочно удерживают алюминиевые радиаторы. Биметаллические выигрывают по рабочему давлению, но стоят дороже, покупать их не всегда целесообразно. Стальные батареи – это скорее бюджетный вариант, а вот чугунные, наоборот, — для ценителей. Если не учитывать цену советских чугунных «гармошек» МС140, то ретро радиаторы – самые дорогие из всех существующих.
Дюйм*градус/ватт — что это за такой параметр радиатора?
3 недели назад Электрика Комментарии к записи Дюйм*градус/ватт — что это за такой параметр радиатора? отключены 17 Просмотры
Подходя к вопросу о выборе радиатора для силового транзистора или мощного диода, мы, как правило, уже имеем результат предварительно произведенных расчетов относительно той мощности, которую компоненту необходимо будет рассеять через радиатор об окружающий воздух. В одном случае это будет 5 ватт, в другом 20 и т. д.
Для рассеивания большей мощности потребуется радиатор с большей площадью контакта поверхности с воздухом, а если для того же транзистора, работающего в том же режиме, взять радиатор поменьше, то и нагрев радиатора будет сильнее.
Таким образом, для одного и того же ключа справедливым оказывается утверждение: чем больше площадь контактирующей с воздухом поверхности радиатора — тем больше тепла будет рассеяно, и тем меньше нагреется при этом радиатор. То есть чем длиннее радиатор и чем более разветвлен его профиль — тем лучше он будет рассеивать тепло и, соответственно, меньше будет разогреваться.
Если для примера рассмотреть два радиатора, выполненных из профиля одинаковых размера и формы, но разной длины, то более длинный радиатор станет рассеивать тепло быстрее, нежели более короткий. Именно с данным положением тесно связан параметр дюйм*градус/ватт, нормируемый для большинства радиаторов, предлагаемых сегодня на рынке, и называемый «удельное тепловое сопротивление». В этом параметре нет данных о площади, за то есть данные о длине.
Суть данной величины
Дюйм*градус/ватт — величина, применяемая вынужденно. Она относится не конкретно к радиатору, а к металлическому профилю, по сути — к форме профиля, к поперечным размерам профиля металла, от которого данный кусок под названием «радиатор» отрезан. Радиатор длиной в 1 дюйм будет иметь вдвое больше градус/ватт, чем радиатор длиной в 2 дюйма, изготовленный из того же металла точно такого же профиля.
Вдвое более короткий радиатор разогреется на вдвое большее количество градусов относительно окружающего воздуха при одной и той же передаваемой ему тепловой мощности. И чтобы радиатор длиной в 2 дюйма из нашего примера нагрелся так же, как радиатор длиной в 1 дюйм из того же профиля, к нему потребуется подводить вдвое большее количество ватт в форме тепла.
Таким образом, мы получаем простую интерпретацию относительно параметра дюйм*градус/ватт, указываемого для того или иного радиатора. Данный параметр показывает, сколько дюймов радиатора (в длину!) выбранного профиля необходимо использовать, чтобы при непрерывном рассеивании мощности в 1 ватт получить между поверхностью радиатора и окружающим воздухом разность температур в 1°C. Очевидно, этот параметр применим только к тем радиаторам, профиль которых (форма поперечного сечения) по всей длине одинаков.
Зададимся например количеством ватт, которые необходимо рассеять. Зададимся разностью температур, которую между поверхностью радиатора и воздухом необходимо при этом получить — это есть тепловое сопротивление.
Теперь, зная параметр дюйм*градус/ватт легко вычислим требуемую длину радиатора, просто разделив его на полученное тепловое сопротивление. Так мы убедились, что параметр дюйм*градус/ватт — параметр профиля радиатора, сам по себе никак не связанный с его длиной. Можно просто разделить данный параметр на длину имеющегося радиатора в дюймах и таким образом точно получить величину его теплового сопротивления.
Пример расчета
Допустим, имеется радиатор с параметром «удельное тепловое сопротивление» равным 3,1 дюйм*градус/ватт. Длина радиатора 100 мм — это 100/25,4 = 3,937 Дюймов. Разделим 3,1 на длину в дюймах: 3,1/3,937 = 0,7874 (градус/ватт) — это тепловое сопротивление радиатора Rt. Сколько ватт нужно рассеять?
Допустим, P = 20 ватт. На сколько нагреется выбранный радиатор относительно температуры окружающего воздуха?
dt = Rt*P = 20*0,7874 = 15,74 °C.
То есть если наш радиатор стоит на открытом воздухе и к нему подводится тепловая мощность 20 Вт, а температура воздуха +25°C, то температура радиатора составит 25+15,74 = 40,74 °C.
Дюйм*градус/ватт — что это за такой параметр радиатора?
Как выбрать радиатор
Радиаторы являются важным элементом в схемотехнике, поскольку они обеспечивают эффективный способ для передачи тепла в окружающую среду от электронных устройств (например, BJT, MOSFET, линейные регуляторы и т. д.). Общая идея, лежащая в основе использования теплоотвода, заключается в увеличении площади поверхности тепловыделяющего устройства, что позволяет более эффективно передавать тепло в окружающую среду. Этот улучшенный тепловой путь снижает повышение температуры в месте контакта электронного устройства. Далее мы обсудим, как выбрать радиатор с использованием тепловых данных из приложения и спецификаций радиатора.
Требуется ли теплоотвод?
Давайте предположим, что приложение разрабатывается с использованием транзистора, размещенного в корпусе TO-220, потери на переключение и проводимость транзистора составляют 2,78 Вт, а рабочая температура окружающей среды не должна превысить 50°C. Для этого транзистора потребуется радиатор или нет?
Рис. 1. Корпус ТО-220 в разрезе с радиатором
Первый шаг — нужно получить все тепловые сопротивления, которые будут мешать мощности 2,78 Вт рассеиваться в окружающее пространство. Если эти ватты не могут эффективно рассеиваться, температура кристалла внутри корпуса TO-220 выйдет за пределы рекомендуемых условий работы (обычно 125°C для кремния).
Большинство поставщиков транзисторов документируют термическое сопротивление «переход-среда», обозначаемое символом RθJA, которое измеряется в единицах °C/ Вт. Это значение показывает, насколько температура перехода поднимется выше температуры окружающей среды вокруг корпуса TO-220, на каждый ватт мощности, рассеиваемой внутри устройства.
Например, если поставщик транзистора заявляет, что термическое сопротивление между переходом и окружающей средой составляет 62 °C/Вт, это означает, что 2,78 Вт, рассеиваемые в корпусе TO-220, приведут к повышению температуры перехода на 172 °C относительно температуры окружающей среды (рассчитывается как 2,78 Вт х 62 °С/Вт). Предполагая, что температура окружающей среды в наихудшем случае для этого применения составляет 50 °C, мы получим температуру кристалла около 222 °C (рассчитывается как 50 °C + 172°C). Это намного превышает максимальную рабочую температуру для кремния 125 °C и приведет к необратимому повреждению транзистора. Следовательно, радиатор требуется. Подключение теплоотвода значительно снизит термическое сопротивление между переходом и окружающей средой. Следующим шагом будет определение того, насколько низким должно быть термическое сопротивление для безопасной и надежной работы.
Определение контуров термического сопротивления
Для этого начнем с максимально допустимого повышения температуры. Если максимальная рабочая температура окружающей среды для применения составляет 50 °C, а кремниевый кристалл не должен нагреваться до температуры выше 125 °C, то наибольшее допустимое повышение температуры составляет 75 °C (рассчитывается как 125 °C — 50 °C).
Затем рассчитаем максимально допустимое тепловое сопротивление перехода. Если наибольшее допустимое повышение температуры составляет 75 °C, а рассеиваемая мощность в корпусе TO-220 составляет 2,78 Вт, то наибольшее допустимое тепловое сопротивление будет 27 °C/Вт (рассчитывается как 75°C ÷ 2,78 Вт).
Наконец, нужно учесть все составляющие термического сопротивления от кремниевого перехода к окружающему воздуху и убедиться, что их сумма меньше, чем максимально допустимое тепловое сопротивление — 27 °C/Вт в этом примере.
Рис. 2. Графическая иллюстрация тепловых сопротивлений, которые должны быть учтены между кристаллом и окружающим воздухом в типичном корпусе TO-220
Из рис. 2 видно, что первое тепловое сопротивление, которое нужно учитывать — сопротивление «кристалл — корпус», обозначаемое символом RθJC. Это мера того, насколько легко тепло может передаваться от полупроводникового кристалла, где выделяется тепло, на поверхность (корпус) устройства (в данном примере TO-220). Большинство производителей показывают это сопротивление в своем даташите вместе с метрикой кристалл — окружающая среда. В этом примере предполагаемое тепловое сопротивление перехода — корпус составляет 0,5 °C/Вт.
Второе требуемое термическое сопротивление — «корпус-сток», обозначаемое символом RθCS. Это мера того, насколько легко тепло может передаваться от поверхности (корпуса) устройства к поверхности радиатора. Из-за неровностей поверхностей корпуса TO-220 и основания радиатора, как правило, рекомендуется использовать теплопроводящий материал (TIM или «термопаста») между двумя поверхностями, чтобы обеспечить их качественное сцепление с точки зрения передачи тепла. Это значительно улучшает передачу тепла от корпуса TO-220 к радиатору, но создает дополнительное тепловое сопротивление, которое необходимо учитывать.