Электролизер воды что показывает
Электролизер для проверки воды
Замечали ли вы, что в стакане с водой как будто что-то плавает? Частички, взвеси, или вода постоит и образуется осадок. Есть прибор, который поможет вам узнать, что это плавает. А еще можно выбрать лучшего поставщика воды, сравнив разные.
Прежде чем выпить содержимое стакана, мы внимательно присматриваемся: а что там такое плавает? Это только наше восприятие, то, что мы видим и осязаем! Что же это на самом деле за странные примеси? Не обратить внимание на них невозможно! А вот с помощью прибора электролизера можно приоткрыть завесу тайны!
Процесс электролиза
Вернемся к курсу уже полюбившейся физики и химии. Все помнят опыт с опущенными в емкость с раствором 2-мя палочками? Потом пропускали электрический ток и говорили о так называемом процессе электролиза. Так вот этот самый раствор называется электролитом, для него существуют определенные требования (среда должна проводить электрический ток), а эти самые палочки именуются электродами, один из которых является анодом (положительный заряд), а другой – катодом (отрицательно заряжен).
Электролизом называется совокупность процессов, происходящих в растворе или расплаве электролита, при прохождении через него электрического тока. Под действием постоянного тока беспорядочное движение ионов упорядочивается. Положительные ионы движутся к катоду, отрицательные ионы к аноду. Ионы обоих знаков возникают в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Данное явление и является электролитической диссоциацией.
Качественное определение примесей
Электрический ток, проходя через электролит, вызывает химические изменения, которые можно наблюдать визуально в виде продуктов разложения растворенного вещества из электролита. Другими словами, материал электрода под действием электрического тока растворяется, образуя «хлопья».
Если данную процедуру проводить с дистиллированной водой (которая не содержит ничего, кроме молекул Н2О), то визуальные изменения практически не отмечаются. Некоторые «исследователи» говорят о «высоком» качестве воды, что абсолютно не отвечает действительности. Дистиллированная вода не пригодна для употребления ни одним живым существом.
Электролизер от компании Watertest
Электролизер предназначен для визуальной демонстрации различия качества воды, взятой из двух источников. Вы можете сравнивать качество воды из под крана и питьевой воды. В результате процесса электролиза наглядно демонстрируется уровень минерализации воды в виде окисляющихся металлов и минералов, присутствующих в воде, т.к. электролизер показывает наличие или отсутствие растворимых солей. Если использовать одну пару электродов, или одну емкость, то исследовать на примеси можно только один источник жидкости.
Приобретая электролизер компании Watertest, вы можете контролировать ту воду, которую предоставляет вам поставщик.
Новый вид обмана: «проверка» качества воды электролизом
В последнее время участились жалобы от жителей города на представителей неких компаний, которые назойливо пытаются убедить в низком качестве употребляемой воды.
В гости ко многим жителям Ижевска по телефону напрашиваются некие «эксперты» с предложением бесплатно проверить качество питьевой воды.
Доверчивые горожане, согласившиеся на проверку у себя дома, становятся зрителями опыта, результаты которого многих удручают. «Исследователи» за несколько минут демонстрируют, что вода, которую они пьют, полна опасных примесей и перед употреблением нуждается в очистке. Легко догадаться, что эксперты на самом деле являются торговыми представителями, цель которых продать свой фильтр.
Так называемая «проверка» воды представляет собой демонстрацию определения степени минерализации и процесса электролиза воды.
Для опыта в стаканы наливают разные пробы воды, как правило, водопроводную, бутилированную и, конечно же, «свой» образец воды, полученный на выходе из рекламируемого фильтра. Что на деле является обычной дистиллированной водой.
В первую очередь представитель опускает в воду TDS-метр, специальный прибор, который замеряет степень минерализации воды. Разумеется, измеритель показывает разные цифры, которые зависят от минерализации воды и ее температуры. В воде же, которую принес с собой «эксперт», данная цифра близка к нулю. Это объясняется тем, что дистиллированная вода практически лишена минеральных солей и микроэлементов. Тем более никто не станет уточнять, что минимальное наличие солей необходимо организму.
Для того, чтобы убедиться в наличии примесей в воде, применяется электролиз. Представители демонстрируют прибор (электролизер), который якобы может определить, какого качества исследуемая вода. В стакан с испытуемой водой помещают два противоположно заряженных электрода — катод, анод. С их помощью, пропускают через воду электрический ток. В результате этого процесса в воде наблюдается выпадение хлопьев от серого до зеленовато-коричневого цвета. Во время такого химического процесса соли, содержащиеся в воде, выпадают в осадок, по цвету которого «исследователи» делают выводы о составе и «загрязненности» воды.
На самом деле, этот прибор показывает наличие или отсутствие в воде растворимых солей. Материал электрода под действием электрического тока растворяется. А продукты растворения в воде образуют хлопья. Для сравнения подобная процедура проводится с дистиллированной водой, которая, как известно, не содержит ничего, кроме молекул Н2О. Демонстрируя в ней работу электролизера, визуальные изменения практически не отмечаются, что, по словам «исследователей», говорит о «высоком» качестве воды. Это утверждение абсолютно не отвечает действительности. Дистиллированная вода не пригодна для употребления ни одним живым существом.
Говоря простыми словами, любая вода – это раствор солей, и за исключением химически чистой – дистиллированной, под действием электрического тока оставит осадок. Это признак физиологически полноценной воды.
Прибор электролизер применяют для этой «проверки» специально для тех, кто не верит в цифры, а верит своим глазам. Он не сертифицирован и не применяется ни в лабораториях, ни на производстве.
Существуют утверждённые и закреплённые в законодательном порядке методы контроля содержания в воде токсичных элементов и других веществ. Количественная и качественная оценка этих элементов может проводиться только компетентными инстанциями – аккредитованными лабораториями Роспотребнадзора, имеющими оборудование и полномочия для подобных исследований. Результаты этой оценки достоверно покажут, стоит ли пить эту воду. Качество воды невозможно определить «на глаз». Таким образом, эксперимент с электролизером нельзя воспринимать, как оценку качества воды.
Следует так же заметить, что любой порядочный производитель воды регулярно делает анализы по химическим и бактериологическим параметрам, на которые у лаборатории уходит от 2 до 5 дней. И результаты данных анализов всегда имеются у производителя в открытом доступе.
Напоследок хочется еще раз повторить: как бы убедительно ни звучали слова торговых представителей, не теряйте бдительности! Потому что «проверка» качества воды продавцов фильтрами на самом деле оказалась элементарной уловкой.
Вашему вниманию представляем видео, где подробно показывается и объясняется процесс электролиза воды: http://www.youtube.com/watch?v=gYAuiL-rBeM или http://vk.com/video3719088_165929653
Каким образом получается разный цвет осадка?
Согласно закону электролиза английского физика Фарадея, масса веществ, выделяющегося на электроде, прямо пропорциональна количеству электричества, прошедшего через электролит. Таким образом, окрашивание воды, вызвано растворением электрода. Цвет осадка зависит от материала электрода. А интенсивность окрашивания зависит от общей минерализации воды (концентрации солей) и длительности электротока.
Электролизер pr2 для качественного анализа воды на примеси
Электролизер Water Test для оценки и сравнения качества воды
Прибор для оценки вида примесей в воде, а также для сравнения качества воды из двух источников. Подходит для воды с минерализацией не более 500 мг/л. Полученный цвет выбросов сравнивают с цветовой таблицей и определяют вид примесей.
Работает от сети. Электроды сменные. Инструкция на русском языке.
Электролизер pr2 Water Test
Электролизером Water Test можно по цвету определить тип примесей в исследуемом образце жидкости или сравнить качество воды из двух источников (например, из-под крана и очищенную).
Как проводить измерения
Подсоедините электроды: темный и светлый попарно. Если исследуете один источник, то подсоедините пару электродов. Если проводите сравнительный анализ двух образцов, то подсоедините все четыре электрода.
Наберите в емкость воду, так, чтобы электроды электролизера находились в воде как минимум до середины.
Проверьте уровень минерализации жидкости: он не должен превышать 500 мг/л. При превышении значения 500 мг/л может произойти короткое замыкание, и прибор выйдет из строя.
Поместите электроды в емкость с водой.
Включите электролизер (кнопка on/off).
ВНИМАНИЕ. Не прикасайтесь к электродам электролизера и воде во время работы прибора. Возможно поражение электрическим током.
Наблюдайте за изменениями в емкости. Достаточно 30-40 секунд.
Отключите прибор. Выньте электроды из воды. Протрите их сухой тканью, чтобы продлить срок службы прибора.
Эксплуатация
Электролизер Water Test работает от сети. Соблюдайте меры предосторожности при работе с прибором. Не допускайте контакта с жидкостью, уровень минерализации которой превышает 500 мг/л. Допустимая температура исследуемого образца воды от 0 до 50°C.
Для продления срока службы электродов, после измерений, протирайте их сухой тканью. Пожелтевшие электроды можно почистить содой или замочить в растворе уксусной кислоты. При необходимости их можно заменить.
Электролизер с электродами и инструкцией по эксплуатации помещены в картонную коробку.
Разделяй и властвуй: совершенствование электролиза воды
Одной из самых известных химических формул, которые нам известны еще со школьной скамьи, является H2O — оксид водорода, т.е вода. Без этого простого на первый взгляд вещества жизнь на нашей планете была бы совершенно иной, если вообще была бы. Помимо своих животворящих функций у воды имеется масса других применений, среди которых стоит выделить получение водорода (H). Одним из методов достижения этого является электролиз воды, когда ее разделяют на составляющие, т.е. на кислород и водород. Это достаточно сложный, затратный, но эффективный метод. Тем не менее, нет в мире такого, что ученые не хотели бы улучшить. Команда исследователей из университета штата Вашингтон и Лос-Аламосской национальной лаборатории нашли способ усовершенствовать электролиз воды, значительно снизив себестоимость его проведения без снижения результата. Какие изменения пришлось внедрить в электролиз воды, почему были использованы те или иные вещества, и какие результаты показывает обновленный метод добычи водорода? Об этом нам поведает доклад ученых. Поехали.
Основа исследования
Водород во многом уникальный элемент: он самый легкий среди элементов периодической таблицы, а его одноатомный вариант является самым распространенным веществом во Вселенной. Кроме того водород крайне дружелюбный элемент, с легкостью формирующий ковалентные связи с большинством неметаллов. В природе мы встречаем водород чаще в составе какого-то вещества, в том числе и в воде, нежели, так сказать, в одиночку.
При обычных условиях водород представляет собой газ без запаха и вкуса с химической формулой Н2. У него есть и жидкий эквивалент — жидкий водород, который хоть и не так популярен в массовой культуре, как жидкий азот, но не менее экстремален в аспекте температур: точка замерзания −259.14 °C; точка кипения −252.87 °C.
Для перечислений всех конкретных применений водорода понадобится немало времени, так как он принимает активное участие в самых разных сферах производства: пищевая промышленность, металлургия, производство электроники, производство аммиака и т.д. Не говоря уже об использовании водорода в качестве ракетного топлива.
Методов получения водорода также существует несколько: из природного газа, из угля и посредством электролиза воды. В год в мире по примерной оценке используется порядка 70 миллионов тонн, из которых лишь 100 000 тонн производится методом электролиза.
Такая методологическая «дискриминация» обусловлена сложностью и ценой электролиза в совокупности с получаемыми объемами водорода по сравнению с другими методами. Однако всегда есть возможность для совершенствования, о чем и пойдет речь далее, но обо всем по порядку.
Движущей силой электролиза воды для ее расщепления на кислород и водород является электричество. По словам ученых, низкотемпературный электролиз воды представляет особый интерес для сферы возобновляемой энергетики, так как этот метод может позволить хранить электроэнергию из возобновляемых источников в химических связях в форме водорода высокой чистоты.
При низкотемпературном электролизе воды в качестве электролита (проводящее ток вещество) используется концентрированный раствор KOH (гидроксид калия), протонообменная мембрана (PEM от proton-exchange membrane) или щелочная анионообменная мембрана (AEM от alkaline anion exchange membrane).
Основное преимущество AEM электролиза над другими вариантами заключается в его стоимости. То есть для его реализации нет необходимости использовать металлы платиновой группы (PGM от platinum-group metals) в качестве катализаторов. Однако всегда есть подвох, заключающийся в данном случае в нестабильности щелочного метода, ввиду чувствительности к перепадам давления и низкой скорости производства водорода.
В традиционных щелочных электролизерах (установка для электролиза) жидкий щелочной электролит (30–40 мас.% КОН) циркулирует через электроды, которые разделены пористой мембраной (1а).
Изображение №1: схема низкотемпературного электролиза воды.
2.0 В), чем у щелочных электролизеров, поскольку протонообменная мембрана имеет более высокую проводимость. (1b).
Использование твердых электролитов в PEM электролизе воды позволяет создать компактную систему с долговечными и устойчивыми структурными свойствами при высоких перепадах давления (200–400 psi). Но даже в этом методе есть свои недостатки, в частности высокая стоимость установки для электролиза, ввиду дорогостоящего кислотостойкого оборудования и необходимости в металлах платиновой группы.
В AEM электролизе за последние несколько лет произошло несколько изменений. Одним из самых важных является создание полимерных AEM (1с). Щелочной AEM-электролиз сочетает в себе многие преимущества других методов: возможность использовать катализаторы без PGM; возможность применять чистую воду или низкоконцентрированный щелочной раствор вместо концентрированных щелочных электролитов; низкие омические потери из-за высокой проводимости и тонких AEM. В дополнение к этому мембранная конструкция установки позволяет ей работать при значительных перепадах давления, а также снижает ее габариты и вес. Не говоря уже о снижении стоимости данного устройства.
В своем исследовании ученые решили попытаться избавиться от некоторых недостатков данного метода, тем самым сделав его более привлекательным для массового производства водорода. Исследователи выяснили, что высокая концентрация четвертичных аммониевых соединений необходима для повышения активности реакций выделения водорода и кислорода в AEM электролизере. Также было установлено, что фенильные группы в основной цепи иономера* имеют негативный эффект, образуя кислые фенолы при высоких анодных потенциалах.
Иономер* — полимеры, состоящие из электрически нейтральных и ионизированных составных звеньев, ковалентно связанных с основной цепью полимера в виде боковых групп атомов.
Кватернизаця* — преобразование соединений элементов 15-ой группы (N, P, As, Sb), атомы которых имеют свободную электронную пару, в четвертичные соли при взаимодействии с реагентами типа RX (Х — анионоидная группа).
Результаты исследования
Прежде чем понять, на что способен усовершенствованный AEM электролизер, необходимо было установить, чего он не может, т.е выяснить факторы, ограничивающие его производительность. Для этого были проведены эксперименты с вращающимся дисковым электродом (RDE от rotating disk electrode). RDE эксперименты предоставляют информацию о различных требованиях к электролитам, используемым в топливных элементах и электролизерах, путем измерения реакции выделения кислорода (OER), реакции выделения водорода (HER), реакции восстановления кислорода (ORR) и реакции окисления водорода (HOR).
Изображение №2: влияние концентрации NaOH (гидроксид натрия) на активность электрокатализаторов.
На графиках выше показаны поляризационные кривые OER с использованием IrO2 и HER с использованием поликристаллического платинового электрода (Pt poly) в зависимости от концентрации NaOH. Активность OER и HER для AEM электролизера значительно увеличивалась при увеличении концентрации NaOH с 0.01 М (рН = 12) до 1 М (рН = 14). HOR активность Pt poly проявляет максимальную активность при концентрации NaOH в 0.02 М (вставка на 2b). Потеря активности HOR при более высокой концентрации NaOH (> 0.1 М) также сопровождалась более низкой плотностью тока, ограничивающей диффузию.
Более низкая HOR активность Pt poly с концентрированным раствором NaOH объясняется кумулятивной совместной адсорбцией катион-гидроксид-вода, что ограничивает доступ водорода к поверхности катализатора. Однако совместная адсорбция не влияет на активность HER и OER, поскольку адсорбция происходит от 0 до 0.9 В. Влияние концентрации NaOH на активность ORR Pt poly показало тенденцию, аналогичную HOR.
ORR-активность Pt поли увеличивалась при увеличении концентрации NaOH с 0,01 до 0.1 М, затем начинала уменьшаться при дальнейшем увеличении концентрации NaOH до 1 М.
Результаты экспериментов предполагают, что концентрация гидроксида аммония, необходимая для AEM электролизеров и AEM топливных элементов, может быть различной. Для AEM электролизеров предпочтительнее иономер с более высокой ионообменной емкостью (IEC от ionexchange capacity). Для AEM топливных элементов лучше подойдет иономер со средним IEC, так как иономеры с более высоким IEC вызывают ограниченный перенос газа из-за нежелательной совместной адсорбции катион-гидроксид-вода.
Далее ученые решили выяснить, каким должен быть иономер для AEM электролизеров. Эксперименты с RDE показали, что обеспечение условий с высоким pH (> 13) в электродах имеет важное значение для создания высокоэффективных AEM электролизеров.
На данный момент доступные анионообменные иономеры имеют две критические проблемы, которые могут ограничивать среду с высоким pH в AEM электролизерах.
Первая проблема заключается в наличии фенильных групп в основной цепи иономера. Ранее проведенное исследование показало, что фенильная группа в основной цепи иономера может окисляться при OER потенциалах и образовывать фенольное соединение, которое является кислым (pKa = 9.6). К сожалению, большинство стабильных щелочных иономеров содержат фенильные группы в своей структуре.
Следовательно, AEM электролизеры, использующие иономеры, содержащие фенильную группу, так или иначе подвержены образованию фенола.
В аспекте окисления фенильной группы было обнаружено несколько крайне важных особенностей. Скорость образования фенола связана с энергией адсорбции фенильной группы на поверхности OER катализаторов, а незамещенные фенильные группы в боковой цепи полимера оказывают более вредное воздействие по сравнению с замещенной аммонием фенильной группой.
Структура и размер фрагментов основной цепи в полиароматических соединениях сильно влияют на адсорбцию фенила, тогда как функционализированная боковой цепью фенильная группа демонстрирует гораздо более низкую энергию адсорбции из-за конкурирующей адсорбции с аммониевыми группами. Кроме того, биметаллические платиновые катализаторы (например, PtRu, PtNi и PtMo) могут эффективно снижать энергию адсорбции фенила.
0.1 М). Неоднородное распределение иономера в электроде дополнительно снижает эффективность реакции и проводимость гидроксида. Следовательно, иономеры с более высоким IEC должны быть полезны для повышения производительности AEM электролизера.
Однако одно тянет за собой другое, так как для синтеза иономера с высоким IEC необходимо учитывать несколько критериев.
Во-первых, существует ограничение на максимальное количество аммониевых групп на полимерное составное звено (группа атомов, составляющих полимер).
Во-вторых, анионообменные иономеры с высоким IEC часто подвергаются реакции сшивания во время процесса функционализации, что затрудняет дальнейшую обработку.
И, в-третьих, когда анионообменные иономеры синтезируются с высоким IEC, они часто становятся растворимыми в воде, что непригодно для применения в электродах.
Как ни крути, а обойти все эти ограничения будет не так и просто. Тем не менее, взяв за основу вышеописанные данные, ученые подготовили несколько функционализированных триметиламмонием полистирольных иономеров (3а).
Изображение №3: химическая структура полимерных материалов, использованных в исследовании.
Созданные иономеры обладали достаточно уникальными характеристиками по сравнению с обычными иономерными связующими, разработанными для AEM топливных элементов.
Во-первых, основная алифатическая полимерная цепь не содержит фенильной группы. Отсутствие фенильной группы в основной цепи полимера исключает возможность адсорбции фенила и образования кислого фенола.
Во-вторых, основная цепь полимера не содержит длинных неионных алкильных цепей, которые могут снизить растворимость полимера.
В-третьих, все фенильные группы в боковых цепях имеют замещенные аммониевые или аминные группы, которые минимизируют адсорбцию фенильных групп и помогают поддерживать высокий рН.
По завершению синтеза иономеров было обнаружено, что их IEC варьируется в диапазоне от 2.2 до 3.3. Для AEM был подготовлен HTMA-DAPP, т.е. полифенилен Дильса-Альдера, функционализированный гексаметилтриметиламмонием (3b). Гидроксидная проводимость HTMA-DAPP составляла 120 мСм/см при 80 °C (мСм — миллисименс; сименс — единица измерения электрической проводимости).
Основная цепь полифенилена в высокомолекулярном полимере HTMA-DAPP обеспечивает превосходную механическую прочность (растягивающее напряжение > 20 МПа при относительной влажности 90% при 50 °C). А вот кватернизованный полистирол слишком хрупок для создания мембран и поэтому не подходит для применений с водным AEM электролизером, который требует механически стабильных AEM.
Щелочная стабильность HTMA-DAPP также достаточно высока: проявление минимального разложения в течение > 3000 часов в 4 М NaOH при 80 °C. Этот показатель гарантирует проведение испытаний AEM электролизера при рабочей температуре в 85 °C.
Изображение №4: влияние иономеров на производительность AEM.
На графике 4а продемонстрирован прогресс улучшения рабочих характеристик электролизера за счет исследуемого иономера.
Помимо влияния иономеров на производительность электролизера, ученые также исследовали влияние фенильной группы в иономере (4b). Для этого были проведены эксперименты, в которых сравнивались два МЕА, которые были одинаковы, за исключением связующего электрода. Первый электрод — это MEA с HTMA-DAP, а второй — с TMA-53. Содержание иономера (9 мас.%) и значение IEC (2,6) для обоих электродов было также одинаковым.
Подобные наблюдения указывают на то, что работа электролизера менее чувствительна к 0.1 М NaOH. Это может объясняться тем, что кислотные фенолы от окисления фенильной группы были нейтрализованы щелочным раствором.
Далее было проведено более детальное изучение характеристик MEA с TMA-70 посредством использования катализаторов, не содержащих металлов платиновой группы. В качестве анода был использован катализатор на основе нанопены NiFe.
Проверка характеристик MEA с разным содержанием иономеров в анодном NiFe катализаторе позволила определить, что 20 мас.% содержание иономера является наиболее эффективным.
Изображение №5: производительность AEM электролизера с анодным катализатором без применения металлов платиновой группы.
Далее для большей наглядности рабочие характеристики MEA с анодным NiFe катализатором сравнили с характеристиками электролизера с протонообменной мембраной (PEM), в которых используются катализаторы с металлами платиновой группы.
Изображение №6: показатели прочности AEM электролизеров с NiFe катализатором.
Было обнаружено, что частицы катализатора были вымыты как из анодного, так и из катодного выходных потоков. Это может свидетельствовать о том, что иономер с высоким IEC (TMA-70) не удерживал частицы катализатора во время непрерывной работы.
Увеличение силы связывания иономера можно было достичь путем применения того же иономера с более низким IEC при 60 °C.
На 6b показан кратковременный тест на прочность AEM электролизера с использованием иономера TMA-53. По результатам четко видно, что система работает стабильно в течение более 100 часов после начального повышения напряжения с 1.75 до 2.1 В. Начальное повышение напряжения в течение первых 40 часов, вероятно, связано с окислением фенила.
Вывод достаточно печальный — система хоть и показывает отличные результаты по производительности, но не может похвастаться тем же в аспекте долговечности.
Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.
Эпилог
В данном труде исследователи продемонстрировали модель связующей системы для электродов, которая способна повысить производительность AEM электролизера. Такой вариант по своим характеристикам не уступает современным PEM электролизерам, при этом он не нуждается в металлах платиновой группы, что значительно снижает себестоимость всей системы.
Связующее для электродов было синтезировано на основе результатов экспериментов с вращающимся дисковым электродом, которые показали важность высокого локального pH для эффективной реакции выделения водорода и реакции выделения кислорода.
Удаление фенильных групп из основной цепи полимера позволяет предотвратить образование кислых фенолов, которые могут нейтрализовать гидроксид четвертичного аммония и снизить рН электролита. Кроме того, повышение рН электродов было достигнуто путем увеличения содержания иономера и IEC.
AEM электролизер, использующий кватернизованный иономер полистирола аммония, продемонстрировал отличную производительность даже без циркулирующего щелочного раствора.
Конечно не обошлось и без недостатков. В дальнейшем ученые намерены провести ряд дополнительных исследований для улучшения производительности разработанной системы и для повышения ее долговечности.
В совокупности все рассмотренные наблюдения являются дополнительными сведениями в области разработки высокоэффективных систем электролизеров, а также позволяют понять, как эффективнее хранить возобновляемую энергию.
Как говорят сами авторы исследования, суть заключается в том, что источники возобновляемой энергии весьма нестабильны. За одинаковый промежуток времени можно получить разный объем энергии, поскольку могут быть разные условия (например, ветрогенератор в безветренную погоду не особо эффективно работает). Тем не менее, порой имеется излишек энергии, которую необходимо эффективно утилизировать. Авторы сего труда считают, что использовать данную возобновляемую энергию нужно для производства водорода, необходимость в котором из года в год только растет.
Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂