емкостный экран на что реагирует
xTechx.ru
Новости Высоких Технологий
Ёмкостный сенсорный экран — технология, принцип работы. Преимущества и недостатки.
Принцип работы ёмкостного сенсорного экрана.
На стеклянную или пластиковую панель наносится резистивный материал, нанесённый сеткой, специальным образом — посегментно (обычно оксид олова).
По углам экрана расположены электроды, которые подают постоянный, слабый ток на панель. Так же, по краям находятся датчики, которые регистрируют утечки токов, если к экрану прикасается что-то с большей ёмкостью, чем сама сенсорная панель. Чем ближе к месту утечки датчик, тем больше ток утечки.
Таким образом, датчики с помощью нехитрых расчётов контролёра, могут легко определить точку касания относительно друг друга.
Плюсами данной технологии является – относительная долговечность (больше 150тыс. касаний), слабое влияние загрязнений, устойчивость к попаданию воды, высокая прозрачность (>90%). Такие сенсорные панели, получив повреждения, трещины и сколы, могут продолжать работу, совсем немного потеряв в точности. Имеется поддержка технологии MultiTouch, но для этого используются более точные сенсорные панели, с 6-ю датчиками и более. Существуют ёмкостные экраны как с поддержкой, так и без поддержки многоточечного ввода.
Ёмкостные сенсорные экраны, предназначены для работы с пальцем человека и реагируют только на предметы имеющие высокий ёмкостный потенциал. Со стилусами работа возможна, но со специальными, предназначенными именно для ёмкостных экранов. Из минусов таких стилусов, можно отметить — высокую цену и относительно крупные габариты.
Ёмкостные панели, уже с 2009 года начали активно вытеснять резистивные, благодаря лучшим потребительским характеристикам. Лучшая реакция на пальцы, прочность, долговечность, надёжность, нет нужды в использовании защитных плёнок как на резистивных экранах.
Есть и пара минусов : относительно плохая работа при минусовых температурах, невозможность использовать сенсорный экран с любыми, неспециализированными указывающими предметами (карандаш, медиатор & etc) и в перчатках.
Как на самом деле работает сенсорный экран вашего смартфона?
Если вы интересовались тем, как работает сенсорный экран, то, скорее всего, натыкались на одну из этих статей «для радиолюбителей». Все они написаны, как под копирку и звучат примерно так: когда вы прикасаетесь пальцем к экрану, в определенной точке изменяется емкость условного конденсатора, которую и регистрируют специальные датчики.
Меня всегда удивляли такие объяснения. От того, что кто-то заменил слова «сенсорный экран» словами «емкость конденсатора», мне никогда не становилось легче. Неужели все эти «техноблогеры» в прошлом были электриками? Почему бы не объяснить такую интересную технологию простыми словами, чтобы все было понятно?
Затем я вижу новость, мол, Apple представила iPhone X с экраном 120 Гц, только это не частота обновления картинки (как на Galaxy S20), а частота какого-то опроса сенсора. Естественно, я иду в интернет за ответами и вижу однотипные объяснения: сенсор экрана iPhone X обрабатывает движение пальцев в 2 раза быстрее, то есть, считывание происходит не за 16, а за 8 миллисекунд!
Ага, вроде теперь все стало на свои места. Правда, не совсем понятно, какое еще считывание, что значит «обрабатывать движение пальцев в 2 раза быстрее» и почему процессор может обрабатывать миллиарды операций в секунду, но движение пальцев — только 60 или 120 раз в секунду?
В общем, эта статья будет другой. После ее прочтения у вас не останется неприятного «послевкусия» и вы действительно будете понимать, как все это работает и при чем здесь 120 Гц.
Принцип работы сенсорного экрана — настоящая драма на кончиках пальцев!
Итак, прежде всего, важно понять, что сам по себе экран смартфона совершенно бесчувственный. Чем бы и как бы мы ни прикасались к нему — никакой реакции не последует. Ведь это простой набор из нескольких миллионов крошечных цветных лампочек, которые смартфон использует для отображения картинки.
Чтобы получить какую-то реакцию на прикосновение, нужно где-то дополнительно разместить специальный «чувствительный слой». Но как он выглядит и как именно работает?
Давайте представим, что нам нужно сделать только одну небольшую точку на экране чувствительной к прикосновению. Для этого мы разместим над этой точкой две маленькие пластинки — оранжевую и синюю.
На одну пластинку мы будем подавать ток, то есть загонять туда большое количество электронов (отрицательно заряженных частичек):
Природа всегда стремится к равновесию, то есть, внутри пластинки или чего-угодно (например, наших пальцев) количество положительных и отрицательных зарядов должно быть примерно одинаковым.
Однако же на оранжевой пластинке произошел переизбыток электронов (отрицательно заряженных частичек), которые мы силой туда затолкнули, взяв их из батарейки смартфона. Они пытаются оттолкнуться друг от друга и присоединиться к положительно заряженным частичкам, но не могут.
Дело в том, что эти две пластинки мы предварительно изолировали друг от друга, чтобы свободные электроны не смогли просто перепрыгнуть на голубую пластинку, где их с нетерпением ожидают положительно заряженные частицы. Электрическое поле оранжевой пластинки продолжает отталкивать все «минусы» и притягивать «плюсы», которых уже достаточно много собралось на синей пластине.
Что же произойдет, если мы прикоснемся к этим пластинкам любым проводящим ток предметом, например, своим пальцем?
Электрическое поле оранжевой пластины моментально начнет действовать и на наш палец, частично «переключив внимание» с положительных зарядов синей области на положительные заряды внутри нашего пальца:
Ведь синяя пластинка уже под завязку набита положительно заряженными частицами и это «давление» слишком высоко, а на пальце никакого «давления» нет — там свободно себе «плавают» как положительные, так и отрицательные заряды. Естественно, все это приведет к тому, что положительно заряженных частиц на синей пластинке станет меньше, так как влияние оранжевой пластинки снизилось и переключилось на палец.
Вот, в принципе, и все! Нам лишь осталось измерить эти заряды на пластинке и мы сразу поймем, что возле них появился лишний предмет — кто-то прикоснулся к экрану.
Чтобы весь экран стал чувствительным, нужно полностью перекрыть его этими пластинками: вначале первый слой, на который мы будем подавать ток, затем второй изолирующий слой и после — третий, на котором будем замерять изменение заряда:
Несмотря на то, что все эти слои находятся прямо у вас перед глазами и перекрывают изображение, вы их не увидите, так как все они сделаны из полностью прозрачных материалов. Например, в качестве изоляции может использоваться стекло, а сеточки токопроводящих пластин делают из оксида индия-олова. В низкокачественных экранах эту сеточку увидеть, все же, вполне реально, если посмотреть на выключенный экран под углом на ярком солнце.
Что такое частота опроса сенсора. Или откуда в iPhone 120 Гц?
На картинке выше я схематически показал сеточки из токопроводящего материала, но, естественно, с размером я немножко промахнулся. Кроме того, я не рассказал об одной важной вещи. Все оранжевые пластинки соединены в линии (строки), а голубые — в столбики. То есть, в реальности все выглядит примерно так:
Зачем это делать? Понятное дело, что на экране сенсорный слой состоит не из 3 строк и 3 столбиков, а, например, из 80 строк и 40 столбиков, то есть, всего 3200 пересечений, на которых мы и анализируем электрическое поле. Представляете, какую нужно сделать схему, чтобы подключить каждый такой электрод к своему питанию, чтобы мы могли анализировать 3200 областей на экране?
Вместо этого мы просто подаем напряжение сразу на всю строку и на весь столбик. То есть, подключаем только строки и столбики, после чего наша схема выглядит примерно так:
Но теперь возникает просто колоссальная проблема! Мы включаем напряжение на первый слой, чтобы вокруг каждого пересечения создавалось электрическое поле и начинаем непрерывно отслеживать изменение электрического поля в каждом столбце. Еще раз напоминаю, все электроды (пластинки) соединены теперь в один столбик.
Когда мы касаемся какой-то определенной точки, система моментально фиксирует изменение напряжения не в конкретной точке, а в целом столбике (на картинке — это 7 столбец):
Получается, экран лишь понимает, что в длинной полоске произошло касание, но где именно — без понятия, ведь мы не анализируем каждое конкретное пересечение электродов, а подключаем все их столбцами и строками.
Можно ли как-то решить эту проблему? Да запросто! Давайте просто перестанем подавать напряжение на всю сетку (весь экран) и будем «заталкивать» свободные электроны только в первую строку из токопроводящих пластинок. В результате электрическое поле будет создано только вдоль одной единственной строки.
Теперь, когда «сработает» 7-й столбец, мы будем точно знать, что точка касания находится на пересечении первой строки и седьмого столбца. Почему так? Да потому, что во всех остальных строках вообще не было никакого электрического поля, мы же ток подавали только на первую строку.
Действительно, это решает проблему для первой строки. Но как быть с остальными? Точно так же! Подаем напряжение только на первую строку и замеряем все столбцы, отключаем ток на первой строке и подаем напряжение на вторую строку. Столбцы, при этом, замеряют изменение непрерывно. Таким образом, мы просто поочередно включаем каждую строку и проверяем столбцы. После того, как дойдем до последней строки, переходим снова к первой.
Конечно же, электроника строит «карту прикосновений», чтобы получить полную картинку, где были расположены пальцы на экране по всем строкам. Ведь, палец — это не тонкое перо, он всегда захватывает большую область, то есть, изменяет электрическое поле (и емкость) сразу в нескольких пересечениях. Поэтому, запоминаются значения напряжения для каждой строки.
Один такой цикл прохода от первой до последней строки — это 1 Гц. Если бы «частота опроса сенсора» равнялась одному герцу, управлять таким экраном было бы крайне тяжело, особенно это касается жестов (движения пальца по экрану) или мультитача (одновременного касания нескольких пальцев).
Для этого мы немножко ускоряемся и весь цикл от первой до последней строки проходит за 16 миллисекунд, то есть, за 1 секунду мы получим 60 проходов (поочередной подачи напряжения от первой до последней строки и считывании напряжения на столбцах).
Нужно ли пробегаться по всем строкам еще быстрее — вопрос интересный. К примеру, картинка на экране iPhone 11 меняется каждые 16 миллисекунд (то есть, частота обновления экрана составляет 60 Гц). При этом, сенсорный слой за это же время успевает пройтись построчно по всему экрану дважды. Зачем? Без понятия. Наверное, чтобы во время презентации (или в технических характеристиках) упомянуть о «120 герцах» и, тем самым, «невольно» ввести неподкованного пользователя в заблуждение.
Интересные моменты
Сенсорный слой (то есть, те самые сетки из токопроводящих пластин и изолятора между ними) раньше всегда находился с обратной стороны защитного стекла. То есть, пользователь прикасался к стеклу, на обратной стороне которого и создавалось электрическое поле. В бюджетных моделях примерно так все и осталось.
Затем производители стали думать, куда бы убрать сенсорный слой в своих флагманах, чтобы сократить толщину экрана и сделать его более прозрачным (а значит и ярким). Так появился Super AMOLED-экран от Samsung, который отличался от любого другого OLED-дисплея только расположением сенсорного слоя — внутри дисплейного модуля, а не на защитном стекле.
Дело в том, что любой экран представляет из себя «бутерброд» из нескольких слоев. В частности, для OLED-экрана это TFT-слой управляющих транзисторов, слой органических диодов, поляризационная пленка и пр. Так вот, «сенсорный слой» на Super AMOLED находится внутри «бутерброда», сразу под поляризационной пленкой.
Apple также размещает в некоторых iPhone этот слой внутри дисплея. Если мне не изменяет память — сразу над цветными фильтрами их IPS-экранов.
Как вы уже поняли, сенсорный экран реагирует на любой предмет, способный проводить электричество: от тонкого металлического провода до капельки воды. Если какой-то предмет не проводит ток, он не вступит во взаимодействие с электрическим полем сенсорного слоя.
Вода является одним из главных врагов сенсорных экранов, так как, будучи прекрасным проводником электричества, вносит очень много «шума» в сигнал. И смартфону становится тяжело точно отличить «прикосновения» воды от реальных касаний. Сравните, насколько похожи эти сигналы:
Когда мы прикасаемся пальцем к экрану, меняется напряжение сразу во многих точках, причем, в самом центре касания, где контакт максимален — сильнее, чуть дальше — слабее. Это можно изобразить схематически примерно так:
То есть, смартфон не просто «чувствует» касание, но и «видит» форму этого касания. Соответственно, он пытается реагировать только на тот предмет, который оставляет характерный «след» от пальца. Из-за этого сенсорные экраны и не реагируют на некоторые токопроводящие предметы, например, стилусы с очень тонким наконечником.
К слову, перо S Pen на смартфонах Galaxy Note вообще не имеет никакого отношения к сенсорному слою и электрическому полю, там используется радиосвязь, о чем я подробно рассказывал в этой статье.
Алексей, глав. редактор Deep-Review
P.S. Не забудьте подписаться в Telegram на первый научно-популярный сайт о мобильных технологиях — Deep-Review, чтобы не пропустить очень интересные материалы, которые мы сейчас готовим!
Как бы вы оценили эту статью?
Нажмите на звездочку для оценки
Внизу страницы есть комментарии.
Напишите свое мнение там, чтобы его увидели все читатели!
Если Вы хотите только поставить оценку, укажите, что именно не так?
masterok
Мастерок.жж.рф
Хочу все знать
Сначала сенсорные экраны (тачскрины) встречались крайне редко. Их можно было найти, в основном, лишь в некоторых карманных компьютерах (КПК, PDA). Как известно, эти устройства так и не получили широкого распространения, поскольку им не хватало самого важного: функциональности телефона. История смартфонов тесно связана с тачскринами. А поэтому современного человека с «умным телефоном» в кармане сенсорным экраном уже не удивишь. Тачскрин нашел широкое применение и в модных дорогих девайсах и даже в сравнительно дешевых телефонах. Но не будем в очередной раз обсуждать достоинства и недостатки тех или иных моделей телефонов. В этом вопросе каждый пользователь способен определиться сам.
Поговорим о принципах работы трех типов сенсорных экранов, которые вы можете встретить в современном устройстве.
Итак, сенсорные экраны перестали быть слишком дорогими. Кроме того, тачскрины стали намного «отзывчивее» и касания пользователя теперь распознают превосходно. Это проложило им широкую дорогу к широким массам пользователей. В настоящее время известны три основных конструкции тачскринов:
1.Резистивные или попросту «упругие» (Resistive)
3.Волновые (Surface acoustic wave)
О резистивном тачскрине. Недавнее прошлое
Резистивная система представляет собою обычное стекло, покрытое слоем проводника электричества и упругой металлической «пленкой», тоже обладающей токопроводящими свойствами. Между этими двумя слоями при помощи специальных распорок оставляют пустое пространство. А поверхность экрана покрыта материалом, защищающим его от царапин.
Во время работы пользователя с тачскрином, электрический заряд проходит через оба слоя. Каким образом все происходит? Пользователь касается экрана в определенной точке и упругий верхний слой приходит в соприкосновение с проводниковым слоем. Причем именно в этой точке. Затем компьютер определяет координаты точки, которой коснулся пользователь.
Когда координаты уже известны устройству, специальный драйвер переводит прикосновение в известные операционной системе команды. Здесь уместна аналогия с драйвером обычной компьютерной мышки. Он занимается тем же самым: объясняет операционной системе, что именно хотел ей сказать пользователь нажатием кнопки или перемещением манипулятора. С экранами этого типа чаще всего используют специальные стилусы.
Резистивные экраны можно обнаружить в сравнительно немолодых устройствах. Именно таким сенсорным дисплеем был оборудован IBM Simon, древнейший из сознанных нашей цивилизацией смартфонов.
Устройство емкостного экрана. Цифровое настоящее
В тачскринах этой конструкции стеклянная основа покрыта слоем, играющим роль вместилища-накопителя электрического заряда. Своим касанием пользователь высвобождает часть электрического заряда в определенной точке. Это уменьшение определяется микросхемами, расположенными в каждом из углов экрана. Компьютер вычисляет разницу электрических потенциалов между различными частями экрана, и информация о касании во всех подробностях немедленно передается в программу-драйвер тачскрина.
Важным преимуществом емкостных тачскринов является способность этого типа экранов сохранять почти 90 % изначальной яркости дисплея. В экранах резистивного типа сохраняется лишь порядка 75 % изначального света. По этой причине изображения на емкостном экране выглядят значительно более четким, чем на тачскринах резистивной конструкции.
Волновые сенсорные дисплеи. Яркое будущее
На концах осей X и Y координатной сетки стеклянного экрана располагается по преобразователю. Один из них передающий, а второй принимающий. На стеклянной основе располагаются и рефлекторы, «отражающие» электрический сигнал, передаваемый от одного преобразователя к другому.
Преобразователь-приемник точно «знает» состоялось ли нажатие и в какой именно точке оно произошло, поскольку своим касанием пользователь вносит прерывание в акустическую волну. Стекло волнового дисплея лишено металлического покрытия, что позволяет сохранить все 100 % изначального света. Благодаря своей столь приятной особенности, волновой экран является наилучшим выбором для пользователей, работающих в мелкими деталями графики. Ведь и резистивные и емкостные тачскрины не идеальны в плане четкости изображения. Покрытие задерживает свет и искажает картинку.
Некоторые особенности различных тачскринов
Самыми дешевыми и наименее четко передающими картинку сенсорными экранами являются резистивные. Кроме того, они же самые уязвимые. Любой острый предмет может повредить нежную резистивную «пленочку». Волновые тачскрины являются самыми дорогими среди себе подобных. Резистивная конструкция скорее относится к прошлому, волновая — к будущему, а емкостная — к настоящему. Хотя грядущее никому не известно и можно лишь предполагать, что та или иная технология имеет некоторые перспективы.
Для резистивной системы не имеет особого значения, коснулся пользователь экрана резиновым наконечником стилуса или пальцем. Достаточно и того, что два слоя пришли в соприкосновение. Емкостной экран распознает лишь касания токопроводящими предметами. Чаще всего пользователи работают с ними при помощи своих пальцев. В этом отношении экраны волновой конструкции ближе к резистивным. Отдать ей команду можно практически любым предметом, избегая при этом тяжелых и слишком маленьких объектов. То есть стержень шариковой ручки не подойдет.
А теперь, если читателям еще не наскучили технические подробности и инженерные тонкости, при наличии желания и свободного времени, они могут отправиться в гости к создателям Xbox One — игровой приставки, которой создатели Windows сумели удивить мир.
Сенсорные экраны: как это работает
Универсальный тип сенсорных экранов еще не разработали, а используемые сейчас технологии имеют как свои преимущества, так и недостатки. О плюсах и минусах основных типов сенсорных экранов читайте в этом материале.
Применение сенсорных экранов наиболее целесообразно в небольших портативных устройствах. Во-первых, это связано с неудобством использования мышки, клавиатуры и прочих устройств ввода в телефонах и другой небольшой электронике. Во-вторых, отказ от аппаратных кнопок позволяет серьезно увеличить площадь экрана. В-третьих, производство сенсорных панелей обходится недешево, и их использование в больших экранах пока как минимум экономически невыгодно.
Тем не менее, начав с таких небольших устройств как КПК, сенсорные экраны уже добрались до среднего формата (планшетов и некоторых ноутбуков), и их появление на большом экране лишь вопрос времени.
Существует всего несколько типов сенсорных экранов. Ниже речь пойдет о трех наиболее распространенных технологиях, а также нескольких ее разновидностях.
РЕЗИСТИВНЫЕ ПАНЕЛИ
Сенсорная часть таких экранов состоит из двух слоев, разделенных небольшим пространством, каждый из которых имеет массив резистивных или проводящих элементов (в зависимости от конкретной реализации).
При нажатии пальцем, стилусом (или любым другим предметом) на поверхность экрана эти слои соприкасаются, элементы замыкаются, и экран «понимает», в каком месте к нему дотронулись.
Учитывая, что контакт между двумя слоями возможен только при использовании гибкого материала, который будет прогибаться под давлением, резистивные экраны, как правило, покрывают специальной гибкой пленкой, а не стеклом. Это приводит к появлению царапин и более частым повреждениям экрана при чрезмерном надавливании стилусом.
Технология является одной из наиболее простых, поэтому она первой появилась в сенсорных устройствах. У нее до сих пор есть определенные преимущества, однако недостатков больше, чем в других типах сенсорных экранов.
Преимущества
Помимо низкой цены (стоимость таких дисплеев приблизительно в два раза ниже емкостных), точность резистивных экранов также мало зависит от состояния верхнего слоя, поэтому в случае его загрязнения или намокания отзывчивость сенсора практически не меняется.
Несмотря на возраст технологии, она до сих пор позволяет делать самые точные сенсорные панели. В правильно откалиброванном дисплее фактически можно попадать стилусом в конкретный пиксель благодаря густой решетке резистивных элементов.
Недостатки
Несмотря на то что из этого правила есть исключения, большинство резистивных экранов не распознают мультитач, то есть экран понимает лишь одно касание (самое первое, либо самое сильное), что существенно ограничивает возможности управления интерфейсом. Даже в устройствах, где мультитач реализован, все равно распознается меньше одновременных касаний, чем в самых обычных емкостных экранах.
Использование нескольких слоев снижает контрастность и яркость экрана. Коэффициент прохождения света составляет
15% ниже, чем в емкостных экранах. Таким образом, в устройствах с резистивным сенсором содержимое экрана сложнее рассматривать под прямыми солнечными лучами или при сильном искусственном освещении.
Использование двух слоев, разделенных небольшим зазором, является косвенной причиной снижения точности работы сенсора. Если держать стилус перпендикулярно экрану, то точность может быть одной, однако под углом, расхождение будет составлять несколько пикселей за счет того, что точка, на которую давит стилус, находится не непосредственно над нужным пикселем (эффект параллакса).
Защитой от случайного ввода в резистивных экранах является определенное давление, которое необходимо преодолеть для того чтобы устройство засчитало команду. Следовательно, резистивные экраны сложнее оборудовать дополнительным защитным покрытием, которое лишь увеличит порог срабатывания. В паре с пластиковым покрытием, которое необходимо для гибкости сенсорного слоя, резистивные экраны более других подвержены повреждениям, особенно царапинам, а при неправильном обращении (сильном нажатии острым предметом), могут и попросту треснуть.
Несмотря на то что количество нажатий в каждой конкретной точке оценивается в 30 млн., резистивные экраны все же раньше других типов выходят из строя и являются самыми ненадежными по этому показателю.
Вывод
Небольшая стоимость и устойчивость к загрязнениям (а точнее, сохранению точности ввода при загрязнении), в паре со всеми вышеперечисленными недостатками стали причиной того, что резистивные экраны медленно вытесняются из обихода, хотя и смогли закрепиться в некоторых нишах, например, в секторе терминалов для быстрой оплаты.
Стилусы
Характерной особенностью устройств с резистивным сенсором является распространенное использование стилуса, площадь контакта которого с поверхностью меньше, чем у пальца, а сила давления больше, что является причиной более точного ввода.
Наличие стилуса желательно, хоть и необязательно для экранов с небольшой диагональю (в основном это телефоны, а несколько лет назад и КПК), однако в планшетах достаточной точности можно добиться и с помощью пальцев.
После того как несколько лет назад КПК были полностью вытеснены смартфонами и другими устройствами, казалось, что вместе с ними навсегда сцену покинули и стилусы, однако сейчас все чаще можно встретить их реинкарнацию, особенно в устройствах промежуточных размеров между смартфонами и планшетами.
Поскольку резистивные экраны сейчас используются все реже, стилусы тоже немного изменились. Подстраиваясь под современные реалии, они стали выпускаться со специальными насадками на конце, которые распознаются емкостными экранами.
ЕМКОСТНЫЕ ПАНЕЛИ
Принцип работы емкостных экранов заключается в том, что на специальный слой электропроводника, находящегося на внешней поверхности экрана, подается небольшое напряжение, формирующее однородное электростатическое поле. Когда к экрану прикладывается палец, являющийся проводником электричества, свойства поля меняются вследствие появления утечки (пользователь работает как заземлитель и «крадет» ток у экрана). По изменению емкости можно определить наличие контакта и его координаты.
Для определения координат в углах экрана установлены электроды, измеряющие силу тока утечки, и чем она сильнее на каждом конкретном датчике, тем ближе произошло нажатие. Определив конкретные значения, можно очень точно вычислить координаты нажатия.
Подклассом емкостных экранов являются проекционно-емкостные экраны, принцип работы которых также заключается в измерении емкости, однако базовые элементы в них расположены не на внешней стороне экрана, а на внутренней, что повышает защищенность сенсора. Именно такие экраны сейчас и используются повсеместно в смартфонах.
В отличие от резистивных панелей, где используется гибкий материал, емкостные сенсоры покрывают стеклом. Это лучше защищает их от царапин, хотя с большей вероятностью станет причиной появления трещины при сильном ударе или падении.
Достоинства
Отсутствие нескольких слоев дополнительных материалов не только увеличивает яркость экрана (прозрачность для света составляет приблизительно 90%), но также снижает расстояние между поверхностью экрана и изображением, что позволяет точнее попадать в нужные пиксели. Пускай выигрыш и не большой, но он все же заметен, особенно когда устройство находится под некоторым углом относительно оси зрения, то есть в те моменты, когда разница между реальным положением нужного пикселя на экране и точкой, в которую нужно попасть, смещаются максимально друг относительно друга.
Дисплеи Super AMOLED компании Samsung позволяют еще больше снизить толщину экрана за счет отказа от дополнительного слоя емкостных элементов. В этом типе экранов они встраиваются непосредственно в матрицу.
Емкостные экраны гораздо долговечнее резистивных (практически на порядок) когда речь заходит о количестве нажатий до выхода сенсорных элементов из строя. Число таких повторений оценивается в 200+ млн раз.
Недостатки
Емкостные экраны обходятся дороже резистивных в производстве и требуют, чтобы материал, касающийся их поверхности, обязательно обладал свойствами проводника. Следовательно, использовать любой удобный предмет или работать в обычных перчатках с емкостными экранами не получится. В связи с этим широкое распространение приобретают специальные емкостные стилусы и перчатки для работы с сенсорными панелями в холодную погоду.
Точность емкостных экранов несколько ниже чем, у резистивных, хотя в практических задачах эта разница не сильно заметна, поскольку составляет буквально 1-3 пикселя, и учитывая, что в большинстве случаев интерфейс программ уже и так заточен под устранение этих погрешностей, недостатком это назвать сложно.
Вывод
Емкостные панели по своим характеристикам и цене лучше всего подошли для экранов мобильных устройств, поэтому и доминируют сейчас в этом секторе.
ИНФРАКРАСНЫЕ ПАНЕЛИ
Несмотря на то что инфракрасные сенсоры начали появляться в устройствах позже других типов панелей, их не стоит считать более совершенными. Несколько преимуществ у них есть, однако, скорее всего, как и резистивные экраны, они останутся нишевыми и не смогут потеснить емкостные панели.
Оптические
Главное отличие инфракрасных сенсоров от всех остальных заключается в том, что специальные датчики расположены не на поверхности экрана, а по краям от него и формируют серию горизонтальных и вертикальных инфракрасных лучей непосредственно над дисплеем. Когда предмет касается экрана, лучи разрываются и таким образом определяется место контакта.
Тепловые
Разновидностью инфракрасных экранов являются экраны с тепловыми сенсорами. Для того, чтобы они реагировали на касания, предмет должен быть теплым.
Как и в емкостных панелях, устройства с инфракрасными датчиками используют защитное покрытие из стекла, что является причиной тех же преимуществ и недостатков: лучшая устойчивость к появлению царапин, но большая вероятность возникновения трещины при сильном ударе.
Достоинства
Расположение сенсоров по бокам от матрицы позволяет отказаться от промежуточного слоя на LCD матрице, что улучшает яркость картинки (прозрачность покрытия составляет практически 100%), уменьшает зазор между реальным изображением и поверхностью экрана, делает дисплей более устойчивым к повреждениям, а также позволяет работать с загрязненным экраном, но при условии, что загрязнения не мешают свободному распространению инфракрасных лучей.
Инфракрасными (оптическими) экранами можно управлять в перчатках, либо используя любые другие удобные предметы.
Недостатки
Любые загрязнения по краям матрицы, заслоняющие инфракрасные источники сигналов, приводят к сбоям в работе сенсоров. Проблемы возникают и при небольших искривлениях устройства, когда лучи покидают плоскость, параллельную экрану.
Однако одной из наиболее распространенных проблем с инфракрасными датчиками является ложное срабатывание. Поскольку пользователям не обязательно физически касаться экрана, то иногда сенсоры активируются и при достаточном приближении пальца к экрану или во время его движения от одной точки к другой.
Несмотря на то что инфракрасные сенсоры часто используются в устройствах с относительно небольшой стоимостью (например, в электронных книгах), сами экраны с инфракрасным сенсором дороже как резистивных, так и емкостных экранов.
Вывод
Если резистивные и емкостные экраны можно было условно отнести к соответственно отмирающим и доминирующими типам экранов, то инфракрасные сенсоры — технология устройств-маргиналов, поскольку они используются в малоизвестных моделях портативной электроники. Исключение составляют электронные книги, например Nook Touch.
ВМЕСТО ЭПИЛОГА
Сенсорные и обычные дисплеи в ближайшее время ждет еще много инноваций (гибкая матрица, новые защитные покрытия), однако когда речь заходит о технологиях, отвечающих за распознавание ввода, то здесь на горизонте не видно никаких революционных альтернатив, поэтому и дальше доминировать будут емкостные сенсоры, как самые удобные и относительно недорогие по сравнению с другими типами сенсоров.