глаза для чего даны

Глаз человека: строение и функции

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Для многих из нас будет открытием, что глазами мы только смотрим, но не видим. Изображение формируется в коре головного мозга, которая воспринимает сигналы от зрительного нерва и преобразует в картинку, отражающую действительность. Орган зрения – совершенный анализатор, выработавшийся в процессе эволюционного развития. Ни одна современная технология не позволяет создать даже примитивный аналог человеческого глаза. Через глаза мы получаем более 80% информации, поэтому глаза необходимо беречь и периодически проходить обследование у врача-офтальмолога. Своевременное выявление заболеваний и адекватное лечение предотвратит развитие серьезных осложнений.

Как мы видим?

Обработка импульсов, поступающих в мозг от двух глаз, дает объемное изображение. Первичные сигналы от сетчаток обоих глаз передаются по зрительным нервам, которые образуют частичный перекрест (хиазму). Нервные волокна, идущие изначально от каждого глаза отдельно, перераспределяются таким образом, что в правое полушарие коры головного мозга поступает информация с правой стороны сетчатки обоих глаз, а в левое – с левой стороны. После перекреста нервный импульс попадает в подкорковые центры зрительного анализатора, где происходит анализ зрительных стимулов, оцениваются их цветовые характеристики, пространственный контраст и средняя освещенность в различных участках поля зрения. Далее нейроны подкоркового слоя через аксоны передают преобразованные сигналы в проекционную область зрительной коры, где и формируется изображение.

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Зачем нужно проверять зрение?

Глаз в этой сложнейшей системе является всего лишь «приемником», преобразующим изображение в миллионы нервных импульсов. Малейший сбой в сложнейшем механизме чреват серьезными последствиями, вплоть до полной слепоты. Диагностика с применением приборов последнего поколения позволяет выявить любую проблему на ранней стадии и принять меры к ее устранению.

Строение глаза

Глаза – не только «зеркало души», но и сложнейшие оптические приборы, принимающие и кодирующие электромагнитные волны видимой части спектра в нервные импульсы для передачи в мозг. В глазном яблоке заключены одновременно три аппарата – рефракционный, аккомодационный и сенсорный, согласованная работа которых и обеспечивает зрительное восприятие.

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Оптик-Центр предлагает пройти комплексное обследование, по результатам которого врач-офтальмолог предложит оптимальный метод коррекции зрения – очки, контактные линзы, лазерную коррекцию или замену хрусталика. Очки и линзы совершенно бесплатно помогут подобрать в салонах «Оптик-Центр», а консультанты предложат красивую и модную оправу, которая станет отличным аксессуаром.

Источник

Как работает наше зрение?

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Процесс человеческого зрения воистину удивителен.

Для лучшего понимания процесса зрения, давайте вначале рассмотрим из чего состоит наш глаз или его «структуру» и ответим на вопрос: «в чем заключается процесс зрения?». Ответ на этот вопрос не займет много времени.

Зная теперь внешнее строение глаза, давайте заглянем вовнутрь и ответим на вопрос о том, как мы видим предметы и в чем заключается зрительный процесс. Что позволяет нам видеть восход солнца и великолепный завтрак утром?

Внутреннее строение глаза

Главные внутренние структуры глаза включают:

Каждый день сет проникает в глаз через роговицу и зрачок. Если вы в темной комнате включаете свет, ваш зрачок сузится для уменьшения количества света. Противоположное происходит если из освещенного солнечным светом помещения перейти в темную комнату. Ваш зрачок расширится, чтобы лучше видеть в новом окружении.

После прохождения через зрачок и хрусталика глаза, свет фокусируется на сетчатке. Это самый удивительный этап зрительного процесса, когдаизображение находится в перевернутом виде на задней стенке глаза. Да, все верно.

После достижения задней стенки свет проходит по нервным окончаниям. Эти изображения попадают в мозг через зрительные нервы. По мере переработки мозгом этой информации, происходит поворот изображений, и мы не видим их перевернутыми. Без этого мы бы жили в необычном мире!

Наша зрительная система воистину эффективно спроектирована.

В то время как это может странно выглядеть, это наиболее эффективный и быстрый процесс обработки информации. Напрашивается вопрос: «Что происходит, когда функция какого-либо органа зрения нарушена»?

Распространенные глазные проблемы

Анатомия глаз вызывает глубокий интерес. Мы четко видим, при нормальном и совместном функционировании роговицы, хрусталика и сетчатки. К сожалению, это не всегда происходит.

Плохое зрение почти всегда относится к генетическим проблемам. Если ваши родители в молодости носили контактные линзы, вероятно, вам также потребуются в детстве и юношестве контактные линзы. Ниже изложены некоторые распространенные глазные проблемы.

Как мы видим, многие компоненты глаза должны правильно функционировать для нормального зрительного восприятия. Однако при нарушении функции мы используем современные технологии для коррекции проблем со зрением.

Вызывает восхищение работа различных компонентов глаза для поддержания нормальной зрительной функции.

Источник

Урок 1. Как устроено зрение человека

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даныЗрение является каналом, посредством которого человек получает примерно 70% всех данных о мире, который его окружает. И возможно это только по той причине, что именно зрение человека представляет собой одну из самых сложных и поражающих воображение зрительных систем на нашей планете. Если бы не было зрения, все мы, скорее всего, просто жили бы в темноте.

Человеческий глаз обладает совершенным строением и обеспечивает зрение не только в цвете, но также в трёх измерениях и с высочайшей резкостью. Он обладает способностью моментально менять фокус на самые разные расстояния, осуществлять регуляцию объёма поступающего света, различать между собой огромное количество цветов и ещё большее количество оттенков, производить коррекцию сферических и хроматических аберраций и т.д. С мозгом глаз связывают шесть уровней сетчатки, в которых ещё перед тем как информация будет отправлена в мозг, данные проходят через этап компрессии.

Но как же устроено наше с вами зрение? Как посредством усиления цвета, отражённого от предметов, мы трансформируем его в изображение? Если подумать об этом серьёзно, можно сделать вывод, что устройство зрительной системы человека до мельчайших подробностей «продумано» создавшей его Природой. Если же вы предпочитаете верить в то, что за создание человека ответственен Создатель или некая Высшая Сила, то эту заслугу можете приписать им. Но давайте не будем разбираться в тайнах бытия, а продолжим разговор об устройстве зрения.

Огромное количество деталей

Строение глаза и его физиологию можно без обиняков назвать действительно идеальными. Подумайте сами: оба глаза находятся в костных впадинах черепа, которые защищают их от всевозможных повреждений, однако выступают из них они именно так, чтобы обеспечивался максимально широкий горизонтальный обзор.

Расстояние, на котором глаза находятся друг от друга, обеспечивает пространственную глубину. А сами глазные яблоки, как доподлинно известно, обладают шарообразной формой, благодаря чему способны вращаться в четырёх направлениях: влево, вправо, вверх и вниз. Но каждый из нас воспринимает всё это, как само собой разумеющееся – мало кому приходит в голову представить, что было бы, если бы наши глаза были квадратными или треугольными или их движение было бы хаотичным – это бы сделало зрение ограниченным, сумбурным и малоэффективным.

Итак, устройство глаза предельно сложно, но как раз это и делает возможным работу примерно четырёх десятков его различных составляющих. И даже если бы не было хоть одного из этих элементов, процесс зрения перестал бы осуществляться так, как ему следует осуществляться.

Чтобы убедиться в том, насколько сложно устроен глаз, предлагаем вам обратить своё внимание на рисунок ниже:

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Давайте же поговорим о том, как реализуется на практике процесс зрительного восприятия, какие элементы зрительной системы в этом участвуют, и за что каждый из них отвечает.

Прохождение света

По мере приближения света к глазу световые лучи сталкиваются с роговицей (иначе её называют роговой оболочкой). Прозрачность роговицы позволяет свету проходить сквозь неё во внутреннюю поверхность глаза. Прозрачность, кстати, является важнейшей характеристикой роговицы, и прозрачной она остаётся по причине того, что особый протеин, который в ней содержится, сдерживает развитие кровеносных сосудов – процесс, происходящий практически в каждой из тканей человеческого тела. В том случае если бы роговица прозрачной не была, остальные компоненты зрительной системы не имели бы никакого значения.

Помимо прочего, роговица не даёт попадать во внутренние полости глаза сору, пыли и каким-либо химическим элементам. А кривизна роговой оболочки позволяет ей преломлять свет и помогать хрусталику фокусировать световые лучи на сетчатке.

После того как свет прошёл сквозь роговицу, он проходит через маленькое отверстие, расположенное посередине радужки глаза. Радужка же представляет собой круглую диафрагму, которая находится перед хрусталиком сразу за роговицей. Радужка также является тем элементом, который придаёт глазу цвет, а цвет зависит от преобладающего в радужке пигмента. Центральное отверстие в радужке – это и есть знакомый каждому из нас зрачок. Размер этого отверстия имеет возможность изменяться, чтобы контролировать количество поступающего в глаз света.

Размер зрачка изменятся непосредственно радужкой, а обусловлено это её уникальнейшим строением, ведь состоит она из двух различных видов мышечных тканей (даже здесь есть мышцы!) Первая мышца является круговой сжимающей – она располагается в радужке кругообразно. Когда свет яркий, происходит её сокращение, вследствие чего зрачок сокращается, как бы втягиваясь мышцей внутрь. Вторая мышца является расширяющей – она расположена радиально, т.е. по радиусу радужки, что можно сравнить со спицами в колесе. При тёмном освещении происходит сокращение этой второй мышцы, и радужка раскрывает зрачок.

Многие специалисты-эволюционисты до сих пор испытывают некоторые затруднения, когда пытаются объяснить, каким же всё-таки образом происходит формирование вышеназванных элементов зрительной системы человека, ведь в любой другой промежуточной форме, т.е. на каком-либо эволюционном этапе работать они просто не смогли бы, но человек видит с самого начала своего существования. Загадка…

Фокусировка

Минуя названные выше этапы, свет начинает проходить через хрусталик, находящийся за радужкой. Хрусталик является оптическим элементом, имеющим форму выпуклого продолговатого шара. Хрусталик абсолютно гладок и прозрачен, в нём нет кровеносных сосудов, а сам он расположен в эластичном мешочке.

Проходя сквозь хрусталик, свет преломляется, после чего происходит его фокусировка на ямке сетчатки – самом чувствительном месте, содержащем максимальное количество фоторецепторов:

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Важно заметить, что уникальное строение и состав обеспечивают роговице и хрусталику большую силу преломления, гарантирующую короткое фокусное расстояние. И как же удивительно, что такая сложная система вмещается всего в одном глазном яблоке (подумайте только, как бы мог выглядеть человек, если бы для фокусировки световых лучей, идущих от предметов, требовался бы, например, метр!)

Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо.

Если же речь идёт о предметах расположенных близко к глазу, то здесь всё ещё любопытнее, ведь в этой ситуации преломление световых лучей оказывается ещё более сильным. Обеспечивается же это увеличением кривизны хрусталика. Хрусталик соединён посредством цилиарных поясков с ресничной мышцей, которая, сокращаясь, даёт хрусталику возможность принимать более выпуклую форму, тем самым увеличивая свою преломляющую силу.

И здесь снова нельзя не упомянуть о сложнейшем строении хрусталика: составляют его множество ниточек, которые состоят из соединённых друг с другом клеточек, а тонкие пояски связывают его с цилиарным телом. Фокусировка осуществляется под контролем головного мозга крайне быстро и на полном «автомате», т.е. неосознанно.

Значение «фотоплёнки»

Результатом фокусировки становится сосредоточение изображения на сетчатке, представляющей собой многослойную ткань, чувствительную к свету, покрывающую заднюю часть глазного яблока. В сетчатке содержится примерно 130 миллионов фоторецепторов (для сравнения можно привести современные цифровые фотоаппараты, в которых подобных сенсорных элементов не более 10 000 000) [Kumaramanickavel G., Denton M.J., Legge M., 2015]. Такое громадное количество фоторецепторов обусловлено тем, что расположены они крайне плотно – примерно 400 000 на 1 мм².

Здесь не будет лишним привести слова специалиста по микробиологии Алана Л. Гиллена, говорящего в своей книге «Тело по замыслу» о сетчатке глаза, как о шедевре инженерного проектирования. Он считает, что сетчатка является самым удивительным элементом глаза, сравнимым с фотоплёнкой. Светочувствительная сетчатка, расположенная на задней стороне глазного яблока, намного тоньше целлофана (её толщина составляет не более 0,2 мм) и гораздо чувствительнее, чем любая, созданная человеком фотоплёнка. Клетки этого уникального слоя способны обрабатывать до 10 миллиардов фотонов, в то время как самый чувствительный фотоаппарат способен обработать лишь несколько их тысяч [Gillen A. L., 2001]. Но ещё удивительнее то, что человеческий глаз может улавливать единицы фотонов даже в темноте:

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Всего сетчатку составляют 10 слоёв фоторецепторных клеток, 6 слоёв из которых являются слоями светочувствительных клеток. 2 вида фоторецепторов имеют особую форму, по причине чего их называют колбочками и палочками. Палочки крайне восприимчивы к свету и обеспечивают глазу чёрно-белое восприятие и ночное зрение. Колбочки, в свою очередь, не так восприимчивы к свету, но способны различать цвета – оптимальная работа колбочек отмечается в дневное время суток.

Благодаря работе фоторецепторов световые лучи трансформируются в комплексы электрических импульсов и посылаются в мозг на невероятно большой скорости, а сами эти импульсы за доли секунд преодолевают свыше миллиона нервных волокон.

Связь фоторецепторных клеток в сетчатке очень сложна. Колбочки и палочки никак напрямую с мозгом не связаны. Получив сигнал, они переадресовывают его биполярным клеткам, а те перенаправляют уже обработанные собою сигналы ганглиозным клеткам, более миллиона аксонов (нейритов, по которым передаются нервные импульсы) которых составляют единый зрительный нерв, по которому данные и поступают в мозг:

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Два слоя промежуточных нейронов, до того как зрительные данные будут отправлены в мозг, способствуют параллельной обработке этой информации шестью уровнями восприятия, находящимися в сетчатке глаза. Необходимо это для того чтобы изображения распознавались как можно быстрее.

Восприятие мозга

После того как обработанная зрительная информация поступает в мозг, он начинает её сортировку, обработку и анализ, а также формирует цельное изображение из отдельных данных. Конечно же, о работе человеческого мозга ещё много чего неизвестно, однако даже того, что научный мир может предоставить сегодня, вполне достаточно, чтобы поразиться.

При помощи двух глаз формируются две «картинки» мира, который окружает человека – по одной на каждую сетчатку. Обе «картинки» передаются в мозг, и в действительности человек видит два изображения в одно и то же время. Но как?

А дело вот в чём: точка сетчатки одного глаза точно соответствует точке сетчатки другого, а это говорит о том, чтоб оба изображения, попадая в мозг, могут накладываться друг на друга и сочетаться вместе для получения единого изображения. Информация, полученная фоторецепторами каждого из глаз, сходится в зрительной коре головного мозга, где и появляется единое изображение.

По причине того, что у двух глаз может быть разная проекция, могут наблюдаться и некоторые несоответствия, однако мозг сопоставляет и соединяет изображения таким образом, что человек никаких несоответствий не ощущает. Мало того, эти несоответствия могут быть использованы с целью получения чувства пространственной глубины.

Как известно, из-за преломления света зрительные образы, поступающие в мозг, изначально являются очень маленькими и перевёрнутыми, однако «на выходе» мы получаем то изображение, которое привыкли видеть.

Помимо этого в сетчатке изображение делится мозгом надвое по вертикали – через линию, которая проходит через ямку сетчатки. Левые части изображений, полученных обоими глазами, перенаправляются в правое полушарие, а правые части – в левое. Так, каждое из полушарий смотрящего человека получает данные только от одной части того, что он видит. И снова – «на выходе» мы получаем цельное изображение без каких бы то ни было следов соединения.

Разделение изображений и крайне сложные оптические пути делают так, что мозг видит отдельно каждым из своих полушарий с использованием каждого из глаз. Это позволяет ускорить обработку потока входящей информации, а также обеспечивает зрение одним глазом, если вдруг человек по какой-либо причине перестаёт видеть другим.

Можно заключить, что мозг в процессе обработки зрительной информации убирает «слепые» пятна, искажения из-за микродвижений глаз, морганий, угла зрения и т.п., предлагая своему хозяину адекватное целостное изображение наблюдаемого.

Движение глаз

Ещё одним из важных элементов зрительной системы является движение глаз. Умалять значение этого вопроса никак нельзя, т.к. чтобы вообще иметь возможность использовать зрение должным образом мы должны уметь поворачивать глаза, поднимать их, опускать, короче говоря – двигать глазами.

Всего можно выделить 6 внешних мышц, которые соединяются с внешней поверхностью глазного яблока. К этим мышцам относятся 4 прямые (нижняя, верхняя, боковая и средняя) и 2 косые (нижняя и верхняя):

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

В тот момент, когда какая-либо из мышц сокращается, мышца, являющаяся для неё противоположной, расслабляется – это обеспечивает ровное движение глаз (в противном случае все движения глазами осуществлялись бы рывками).

При повороте двух глаз автоматически изменяется движение всех 12 мышц (по 6 мышц на каждый глаз). И примечательно то, что процесс этот является непрерывным и очень хорошо скоординированным.

Контроль и координация связи органов и тканей с центральной нервной системой посредством нервов (это называется иннервацией) всех 12 глазных мышц представляет собой один из очень сложных процессов, происходящих в мозге. Если же добавить к этому точность перенаправления взора, плавность и ровность движений, скорость, с которой может вращаться глаз (а она составляет в сумме до 700° в секунду), и соединить всё это, мы получим на самом деле феноменальную по части исполнения подвижную глазную систему. А то, что человек имеет два глаза, делает её ещё более сложной – при синхронном движении глаз необходима одинаковая мускульная иннервация.

Мышцы, которые вращают глаза, отличны от мышц скелета, т.к. их составляет множество всевозможных волокон, а контролируются они ещё большим числом нейронов, иначе точность движений стала бы невозможной. Данные мышцы можно назвать уникальными ещё и потому, что они способны быстро сокращаться и практически не устают.

Очистка глаз

Учитывая то, что глаз – это один из наиболее важных органов человеческого организма, он нуждается в непрерывном уходе. Именно для этого как раз и предусмотрена, если так можно назвать, «интегрированная система очистки», которая состоит из бровей, век, ресниц и слёзных желёз:

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

При помощи слёзных желёз регулярно производится липкая жидкость, с медленной скоростью движущаяся вниз по внешней поверхности глазного яблока. Эта жидкость смывает различный сор (пыль и т.п.) с роговицы, после чего входит во внутренний слёзный канал и затем стекает по носовому каналу, выводясь из организма.

В слезах содержится очень сильное антибактериальное вещество, уничтожающее вирусы и бактерии. Веки выполняют функцию стеклоочистителей – они очищают и увлажняют глаза благодаря непроизвольному морганию с интервалом в 10-15 секунд. Вместе с веками работают ещё и ресницы, предотвращая попадание в глаз любого сора, грязи, микробов и т.п.

Если бы веки не выполняли свою функцию, глаза человека постепенно бы засохли и покрылись рубцами. Если бы не было слёзного протока, глаза бы постоянно заливались слёзной жидкостью. Если бы человек не моргал, в его глаза попадал бы мусор, и он мог бы даже ослепнуть. Вся «очистительная система» должна включать в себя работу всех элементов без исключения, в противном случае она просто перестала бы функционировать.

Глаза как показатель состояния

Глаза человека способны передавать немало информации в процессе его взаимодействия с другими людьми и окружающим миром. Глаза могут излучать любовь, гореть от гнева, отражать радость, страх или беспокойство, говорить о тревоге или усталости. Глаза показывают, куда смотрит человек, заинтересован он в чём-либо или же нет.

Например, когда люди закатывают глаза, беседуя с кем-то, это можно расценивать совершенно иначе, нежели обычный взгляд, направленный вверх. Большие глаза у детей вызывают у окружающих восторг и умиление. А состояние зрачков отражает то состояние сознания, в котором в данный момент времени находится человек. Глаза – это показатель жизни и смерти, если уж говорить в глобальном смысле. Наверное, именно по этой причине их называют зеркалом души.

Вместо заключения

В этом уроке мы с вами рассмотрели устройство зрительной системы человека. Естественно, мы упустили немало деталей (сама по себе эта тема очень объёмна и вместить её в рамки одного урока проблематично), но всё же постарались донести материал так, чтобы вы получили общее представление о том, КАК видит человек.

Вы не могли не заметить, что как сложность, так и возможности глаза позволяют этому органу многократно превосходить даже самые современные технологии и научные разработки. Глаз является наглядной демонстрацией сложности инженерии в огромном количестве нюансов.

Но знать об устройстве зрения – это, конечно же, хорошо и полезно, однако наиболее важно знать о том, как зрение можно восстанавливать. Дело в том, что и образ жизни человека, и условия, в которых он живёт, и некоторые другие факторы (стрессы, генетика, вредные привычки, заболевания и многое другое) – всё это нередко способствует тому, что с годами зрение может ухудшаться, т.е. зрительная система начинает давать сбои.

Но ухудшение зрения в большинстве случаев не является необратимым процессом – зная определённые методики, данный процесс можно повернуть вспять, и сделать зрение, если уж и не таким, как у младенца, то хорошим настолько, насколько вообще это возможно для каждого отдельно взятого человека.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только один вариант. После выбора вами одного из вариантов система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Следующий урок посвящён методам восстановления зрения.

Источник

Какой глаз у вас ведущий?

глаза для чего даны. Смотреть фото глаза для чего даны. Смотреть картинку глаза для чего даны. Картинка про глаза для чего даны. Фото глаза для чего даны

Наше тело, несмотря на кажущуюся симметричность, на самом деле далеко от нее, это же касается и нашего зрения. Вероятно, вы уже слышали о том, что оба глаза могут работать по-разному, и один из ваших глаз можно назвать доминирующим. В медицине существует даже специальный термин для этого – доминантность или доминирование одного из глаз.

Что же это такое?

Ведущий глаз дает мозгу большую часть данных для визуальной обработки. Он с большей точностью определяет местоположение объектов.
Обычно этот термин употребляют, когда оба глаза хорошо видят, просто один глаз является ведущим. Но о «доминантном глазе» также упоминают в случае амблиопии (ленивый глаз) и косоглазия.
1. Вытяните обе руки вперед и сложите большие и указательные пальцы так, чтобы образовался треугольник. Верхний угол между указательными пальцами – 45 градусов.
2. Наведите треугольник на какой-нибудь удаленный объект. Это могут быть часы на стене или дверная ручка. Оба глаза открыты. Предмет расположен посреди треугольника.
3. Закройте один глаз, к примеру, левый.
4. Если объект остается в центре, ваш открытый глаз – правый – и является доминирующим. Если объект больше не в центре или вовсе вышел за его пределы, ваш ведущий глаз – левый.
Можно сделать еще один аналогичный тест:
1. Вытяните одну руку, подняв один палец вверх (большой или указательный).
2. Найдите на удалении какой-нибудь объект, и закройте его пальцем, глаза при этом открыты. Вам может показаться, что палец исчезает, это нормально.
3. Закрывайте глаза по очереди.
4. Глаз, при котором объект все еще скрыт пальцем (другой глаз закрыт), и есть доминирующий.
Оба теста называются прицельными по аналогии с «прицелом» винтовки. Они элементарные и назвать их стопроцентно точными нельзя – многое также зависит от вашей ведущей руки и других факторов (об этом чуть позже). Можно пройти более точное тестирование при помощи специальных аппаратов, но они имеются лишь в офтальмологических клиниках.

Доминирование глаз и рук

На то, какой глаз доминирующий, может повлиять и то, левша вы или правша. Исследования свидетельствуют, что около 90% людей активнее используют правую руку, и так же ведущий глаз у 67% – правый. Но все же точно сказать, что у левшей «работает» активнее левый глаз, а у правшей правый – нельзя.

Бывает ли такое, что ни один глаз не доминирует?

Бывает и такое, что четко выявить один доминантный глаз нельзя. Нередко в разное время и при разных условиях, при выполнении различных задач то один глаз берет на себя эту миссию, то второй. Случается, что при проведении теста с треугольником, выбранная цель никогда не оказывается по центру. У одних людей четче выражено доминирование, а у других слабее.

Многое зависит и от особенностей работы мозга. Зрительная кора – это тот участок мозга, в котором происходит процесс обработки визуальных данных. В ней можно выделить полосы нейронов, которые называются доминирующими столбиками. Ученые считают, что данные полосы нервных клеток нужны главным образом для ввода информации от правого и левого глаза. Именно от таких полос и зависит качество бинокулярного зрения, т.е. когда изображения, полученные из двух глаз, сливаются в единую картину.

Также ученые высказывают мнение, что эти полосы могут быть пластичными и частично перекрывать друг друга. И по этой причине доминантность глаз может чередоваться или быть нечетко выраженной.

Зачем нам знать, какой глаз ведущий?

Есть ли практический смысл в определении доминантного глаза? Безусловно. Это важно, если вы занимаетесь спортом, любите пострелять или занимаетесь фотографией.
Рассмотрим для начала стрельбу. Точность стрельбы очень сильно зависит от того, каким вы глазом прицеливаетесь. Так что если вы все время промахиваетесь мимо цели, может быть, пора использовать другой глаз. Может быть и так, что ваш доминирующий глаз и доминирующая рука – противоположные. Это называется перекрестным доминированием. Зная эти особенности, вы с большей вероятностью попадете точно в цель.

При перекрестном доминировании лучше смотреть в оба глаза до того момента, как вы нажмете курок. Таким образом, вам удастся использовать все возможности периферического и пространственного зрения. Закройте левый глаз при перекрестном доминировании непосредственно перед выстрелом, вы настроите четкость в последнюю секунду, чтобы попасть точно в цель.

Знать особенности своего зрения нужно и для того, чтобы делать фото – лучше всего смотреть в видоискатель фотокамеры «правильным» глазом, будь то «зеркалка» или пленочный фотоаппарат. В таком случае вы получите более точную предварительную картинку до того, как сделать снимок. В противном случае некоторые детали могут уехать за пределы кадра.

Доминирующий глаз важен и при игре с мячом. К примеру, при игре в бейсбол или софтбол. Для удачного броска вам необходимо четко отслеживать то, как происходит вращение мяча, с какой скоростью он летит и положение его в пространстве. Это же касается и крикета.

Если вы профессионально занимаетесь спортом и желаете усовершенствовать свои спортивные результаты, вы можете посетить офтальмолога, который специализируется именно на этих аспектах зрения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *