глинозем для чего используется
Глинозем
Смотреть что такое «Глинозем» в других словарях:
глинозем — глинозем … Орфографический словарь-справочник
ГЛИНОЗЕМ — то же, что алюминия оксид … Большой Энциклопедический словарь
ГЛИНОЗЕМ — (оксид алюминия, Аl2О3), минерал, используемый как абразив, а также для электрической изоляции и футеровки печей. Содержащая примеси, гидратированная форма глинозема, БОКСИТ, является основной рудой, из которой добывают алюминий. Одной из… … Научно-технический энциклопедический словарь
глинозем — сущ., кол во синонимов: 8 • алунд (3) • арктицит (1) • гибсид (1) • … Словарь синонимов
ГЛИНОЗЕМ — окись алюминия, Al2O3. Известны три модиф.: a Al2O3, тригон. корунд; b Al2O3, гекс., неустойчив, получен искусственно, при нагревании выше 1600 °С переходит в корунд; g Al2O3, куб., неустойчив, получен искусственно при обезвоживании… … Геологическая энциклопедия
глинозем — Оксид алюминия, являющийся основной частью большинства горных пород. Примечание Оксид алюминия существует в различных модификациях. [ГОСТ Р 52918 2008] Тематики огнеупоры EN alumina … Справочник технического переводчика
глинозем — alumina Tonerde – Al2O3. Див. алюмінію оксид … Гірничий енциклопедичний словник
Глинозем — см. Алюминий … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Глинозем — глинозём м. Тугоплавкий, нерастворимый в воде оксид алюминия. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
Глинозем
Глинозем наименования Аl2O3 – это основное исходное вещество, используемое в производстве чистого алюминия. В большинстве случаев именно бокситы выступают в качестве рудной базы при создании глинозема, также применяют камень нефелин и иные содержащие глинозем руды.
Первая разновидность данного вещества – это глинозем в виде безводного Al2O3 (плотность которого составляет четыре грамма на один см 3 ). Это негигроскопичный вид глинозема. Зёрна имеют шершавый верхний слой, благодаря чему глинозем имеет низкую степень сыпучести и высокий уровень абразивности.
На что стоит ориентироваться при выборе глинозема, от чего зависит качество глинозема?
К качеству рассматриваемого вещества предъявляется большое количество обязательных требований, вот лишь некоторые из них:
1. Увеличенная скорость растворения вещества в электролите и достаточная поглощающая глинозема по сравнению с летучими соединениями, в основе которых содержится фтор;
2. Достаточная степень текучести даже при слабом пылении;
3. Необходимые теплофизические характеристики. Если глинозем используют в промышленных или иных технических целях, то стремятся к совершенному, гармоничному сочетанию вышеназванных характеристик в отдельно взятой разновидности глинозема.
Глинозем
Глинозем представляет собой распространенную природную форму оксида алюминия Al2O3. Глинозем алюминия в чистом виде встречается в виде минерала корунда, ярко выражен в составе бокситов – горных глинистых пород, а также алунитов, нефелинов и каолинов.
Производство глинозема
Для получения технических видов глинозема, применяемых в промышленности, используются различные технологии и типы сырья. Из добытой и обогащенной руды выделяют чистый глинозем, подходящий для получения алюминия электролитическим способом. Производство глинозема из руд промышленного значения осуществляется несколькими методами в зависимости от характеристик и состава алюминиевых руд.
Распространенной промышленной технологией получения глинозема является щелочной гидрохимический метод Байера. Оксид алюминия при использовании такого методам добывается из бокситов высших сортов путем разложения алюминатного раствора при взаимодействии с гидроокисью алюминия. В результате из полученного раствора осаждается конечный продукт, который после промывки, фильтрования, кальцинации и прокаливания превращается в безводный глинозем.
Сухая щелочная технология получения глинозема (спекание) позволяет выделять глинозем из низкосортных бокситов, нефелинов и алунитовых руд. Сырье спекается в печах для получения твердой формы алюмината, который выщелачивается, сгущается, промывается и подвергается отделению шлама. Полученный раствор разлагают углекислотой и получают оксид алюминия и дополнительные продукты.
Свойства и применение глинозема
Глинозем используется для производства ряда абразивных, огнеупорных, износостойких материалов, применяется в качестве адсорбентов, электроизолирующих материалов, катализаторов, инертных наполнителей в исследовательских работах и химической промышленности.
Химические и электропроводные свойства глинозема:
Компания «Микроинтек» реализует качественный глинозем, цена которого определяется маркой, назначением, использованными при изготовлении технологиями и сырьем.
Производство глинозема
Технология производства алюминия состоит из двух стадий: первая — производства глинозема и вторая — электролитическое получение алюминия из глинозема. За рубежом практически весь глинозем получают из бокситов в основном способом Байера (К.И.Байер — австрийский инженер, работавший в России), на отечественных заводах глинозем получают из бокситов способом Байера и из бокситов и нефелинов способом спекания. Оба эти способа относятся к щелочным методам выделения глинозема из руд. Способ Байера экономически целесообразно использовать для переработки бокситов с небольшим содержанием SiO2 (с кремниевым модулем Al2O3/SiO2 более 5—7), поскольку при росте количества SiO2 все больше Al2O3 и используемой в процессе щелочи теряются из-за образования химического соединения Na2O • Al2O3 • 2SiO2 • 2H2O.
Для переработки бокситов с кремниевым модулем менее 5—7 более экономичным является способ спекания. В связи с истощением богатых глиноземом месторождений боксита и вовлечением в производство более бедных бокситов, доля способа Байера в производстве глинозема снижается и возрастает доля способа спекания.
Способ Байера
Способ Байера — способ выделения глинозема из боксита — основан на выщелачивании, цель которого растворить содержащийся в боксите оксид алюминия Al2O3, избежав перевода в раствор остальных составляющих боксита (SiO2, Fe2O3 и др.). В основе способа лежит обратимая химическая реакция:
При протекании реакции вправо глинозем в виде алюмината натрия переходит в раствор, а при обратном течении реакции образующийся гидратированный Al2O3 выпадает в осадок. Упрощендая схема производства глинозема по способу Байера показана на рис. 244. Ниже описаны основные операции этого способа.
1. Подготовка боксита к выщелачиванию. Боксит дробят и размалывают до фракций размером 0,05—0,15 мм в среде добавляемой щелочи и оборотного раствора щелочи NaОН, добавляют также немного извести, активизирующей выщелачивание.
2. Выщелачивание. Полученную при помоле пульпу направляют на выщелачивание. Для полного протекания приведенной выше реакции вправо (образования алюмината натрия) необходимы щелочная среда, высокое давление (
3 МПа), нагрев пульпы до 100—240 °С (в зависимости от сорта боксита) и ее длительное (около 2 ч) перемешивание. Такие условия обеспечиваются в автоклавах — сосудах, работающих под давлением. Применяемые автоклавы представляют собой (рис.245) стальной цилиндрический сосуд диаметром 1,6—2,5 и высотой 13,5—17,5 м. Давление в автоклаве 2,5—3,3 МПа, пульпу подают сверху, снизу через патрубок 2 с барботером 3 — пар, который нагревает и перемешивает ее. Из автоклава пульпа выдавливается через трубу 1.
Автоклав для выщелачивания боксита
Пульпу обычно пропускают через батарею из 6—10 последовательно установленных автоклавов, где в течение
2 ч содержащийся в пульпе в виде Al2O3 • Н2O, Al2O3 • 3Н2O и Al2O3 глинозем реагирует со щелочью (реакция приведена выше), переходя в Na2O • Al2O3. В первый автоклав пульпу подают насосом, предварительно подогрев до
150 °С, из последнего автоклава пульпа попадает в два автоклава-испарителя, в которых давление снижается до атмосферного. Продуктом является автоклавная пульпа, состоящая из алюми- натного раствора (содержащего Na2O • Al2O3) и шлама (осадка, в который выпадают остальные примеси боксита).
3. Разделение алюминатного раствора и шлама после разбавления пульпы водой производят в сгустителях (отстойниках) — сосудах диаметром 15—50 м, на дне которых оседает шлам, а через верх сливается отстоявшийся алюминатный раствор. Его дополнительно пропускают через фильтры и направляют на следующую операцию — декомпозицию. Получаемый красный шлам (окраску ему придают частицы Fe2O3) идет в отвал, шлам содержит, %: Al2O3 12—18, SiO2 6—11, Fe2O3 44-50, CaO 8-13.
4. Разложение алюминатного раствора, называемое также декомпозицией или выкручиванием проводят с целью перевести алюминий из «раствора в осадок в виде Al2O3 • 3Н2O, для чего обеспечивают течение приведенной выше реакции выщелачивания влево, в сторону образования Al2O3 • 3Н2O. Чтобы указанная реакция шла влево, необходимо понизить давление (до атмосферного), разбавить и охладить раствор, ввести в него затравки (мелкие кристаллы гидрооксида алюминия) и пульпу для получения достаточно крупных кристаллов Al2O3 • 3Н2O перемешивать в течение 50—90 ч.
Этот процесс осуществляют в серии установленных последовательно и соединенных перепускными сифонами декомпозеров, через которые последовательно проходит пульпа (алюминатный раствор с выпадающими кристаллами гидрооксида алюминия). В серии устанавливают 10—11 декомпозеров с механическим перемешиванием или 16—28 декомпозеров с воздушным перемешиванием пульпы. Первые представляют собой баки диаметром до 8 м, в которых перемешивание осуществляют вращением вокруг вертикальной оси волокуш (гребков). Декомпозеры второго типа, преимущественно применяемые в настоящее время, представляют собой цилиндрические баки высотой 25—35 м и объемом до 3000 м3; снизу в них подают сжатый воздух, перемешивающих пульпу.
5. Отделение кристаллов гидрооксида алюминия от раствора и классификация кристаллов по крупности. После декомпозиции пульпа поступает в сгустители, где гидрооксид отделяют от раствора. Полученный гидрооксид в гидросепараторах разделяют на фракцию с размером частиц 40—100 мкм и мелкую фракцию (размером
6. Кальцинацию или обезвоживание гидрооксида алюминия осуществляют в футерованных шамотом трубчатых вращающихся печах диаметром 2,5—5 и длиной 35—110 м, отапливаемых природным газом или мазутом. Гидрооксид медленно перемещается вдоль вращающегося барабана навстречу потоку горячих газов, температура которых повышается от 200—300 °С в месте загрузки до
1200 °С вблизи горелки у разгрузочного торца барабана. При нагреве гидрооксида идет реакция: Al2O3 • 3H2O = Al2O3 + 3Н2O, заканчивающаяся при 900 °С. Продуктом является глинозем Al2O3 (порошок белого цвета).
Извлечение глинозема при использовании описанного способа Байера составляет около 87 %. На производство 1 т глинозема расходуют 2,0—2,5 т боксита, 70—90 кг NaOH, около 120 кг извести, 7—9 т пара, 160—180 кг мазута (в пересчете на условное топливо) и около 280 кВт • ч электроэнергии.
Способ спекания
Способ применяют для получения глинозема из высококремнистых (> 6—8 % SiO2) бокситов с кремниевым модулем менее 5—7 и из нефелиновых руд; способ пригоден также для переработки любого алюминиевого сырья.
Сущность способа заключается в получении твердых алюминатов путем их спекания при высоких (
1300 °С) температурах и в последующем выщелачивании полученного спека.
Получение глинозема из бокситов
Основные стадии этого процесса следующие.
Подготовка к спеканию. Боксит и известняк после дробления измельчают в мельницах в среде оборотного содового раствора с добавкой свежей соды Na2CO3, получая пульпу с влажностью 40 %.
Спекание ведут в отапливаемых трубчатых вращающихся печах диаметром до 5 и длиной до 185 м. Температура в печи повышается от 200—300 °С в месте подачи пульпы до
1300 °С в разгрузочном конце у горелки. При нагреве оксид алюминия превращается в водорастворимый алюминат натрия:
а кремнезем связывается в малорастворимые силикаты: SiO2 + 2СаО = 2СаО • Si02. С содой реагирует также Fe2O3 боксита, образуя NaaO • Fe203. Эти химические соединения спекаются, образуя частично оплавленные куски — спек.
После обжиговой печи спек охлаждают в холодильниках, дробят до крупности 6—8 мм и направляют на выщелачивание.
Выщелачивание ведут горячей водой проточным методом в аппаратах различной конструкции: диффузорах (цилиндрических сосудах, куда порциями загружают и выгружают спек), в конвейерных выщелачивателях и др. Наиболее совершенными являются трубчатые выщелачиватели непрерывного действия (рис. 246). Загружаемый через бункер 1 в сосуд высотой 26 м спек благодаря непрерывной выгрузке секторными разгружателями 2 движется вниз и промывается встречным потоком воды. В воде растворяется алюминат натрия, вода разлагает также феррит натрия Na2O • Fe2O3 и Fe2O3 выпадает в осадок. Продуктами выщелачивания являются алюминатный раствор и красный шлам, содержащий Fe2O3, Al2O3, SiO2, CaO. В алюминатный раствор переходит немного кремнезема в виде гидросиликатов, в связи с чем раствор подвергают обескремниванию.
Обескремнивание алюминатного раствора осуществляет в батарее автоклавов длительной (
2,5 ч) выдержкой при температуре 150—170 °С. В этих условиях вырастают кристаллы нерастворимого в воде соединения Na2O • Al2O3 • 2SiO2 • 2Н2О (иногда к раствору добавляют известь, в этом случае образуются кристаллы СаО • Al2O3 •2SiO2 • 2H2O). Из автоклавов выходит пульпа, состоящая из алюминатного раствора и осадка — белого шлама. Далее раствор отделяют от белого шлама путем сгущения и фильтрации. Белый шлам идет в шихту для спекания, а раствор направляют на карбонизацию.
Карбонизацию проводят с целью выделения алюминия в осадок Al2O3 • 3Н2O (карбонизация заменяет декомпозицию в способе Байера). Карбонизацию осуществляют в сосудах цилиндрической или цилиндроконической формы объемом до 800 м 3 пропусканием через раствор отходящих газов спекательных печей, содержащих 10—14 % СO2. Газы перемешивают раствор, а СO2 разлагает алюминат натрия: Na2O • Al2O3 + СO2 + 3Н2O = Al2O3 • 3Н2O + Na2CO3 и гидроксид алюминия выпадает в осадок.
Далее проводят те же технологические операции, что и в способе Байера: отделение Al2O3 • 3Н2O от раствора и кальцинацию — обезвоживание гидроксида алюминия прокаливанием в трубчатых печах с получением глинозема Al2O3.
Примерный расход материалов на получение 1 т глинозема, т: боксита 3,2—3,6; известняка 1,35; извести 0,025; кальцинированной соды 0,19; условного топлива 1,1—1,2; электроэнергии
Получение глинозема из нефелинов
Нефелиновый концентрат или руду и известняк после дробления размалывают в водной среде, получая пульпу для спекания. В связи с наличием в составе нефелина щелочей не требуется добавок в шихту соды.
Спекание производят в отапливаемых трубчатых вращающихся печах диаметром 3—5 и длинрй до 190 м; пульпу заливают в печь со стороны выхода газов, где температура равна 200—300 °С, а в разгрузочном конце она достигает 1300 °С. В процессе нагрева нефелин взаимодействует с известняком:
В результате этой реакции входящие в состав нефелина Na2O и К2O обеспечивают перевод глинозема в водорастворимые алюминаты, а СаО связывает кремнезем в малорастворимый двухкальциевый силикат. Получаемый спек охлаждают в холодильниках и дробят.
Выщелачивание нефелинового спека совмещают с его размолом и проводят в шаровых или стержневых мельницах в среде горячей воды со щелочным раствором, получаемым после карбонизации. В процессе выщелачивания алюминаты растворяются в воде и остается известково-кремнистый шлам (называемый белитовым), который идет на производство цемента.
Обескремнивание алюминатного раствора проходит в две стадии. Первую проводят в автоклавах в течение 1,5—2 ч при температуре 150—170 °С; при этом в осадок выпадают содержащие кремнезем алюмосиликаты, этот осадок (белый шлам) идет в шихту для спекания.
Алюминатный раствор после первой стадии обескремнивания делят на две части. Одну часть далее подвергают карбонизации (так, как при переработке бокситов) с последующей декомпозицией, после чего получают в осадке гидрооксид алюмния и содощелочной раствор, идущий на выщелачивание спека.
Вторую часть алюминатного раствора дополнительно обескремнивают в мешалках с добавкой извести при
95 °С в течение 1,5—2 ч. При этом в осадок выпадает известковосиликатный шлам и обеспечивается глубокое обескремнивание алюминатного раствора. Затем этот раствор подвергают кальцинации, получая в осадке гидроксид алюминия и глубоко обескремненный содовый раствор, из которого далее в содовом цехе получают поташ (К2СО3) и кальцинированную соду (Na2СO3); глубокое обескремнивание необходимо для получения этих товарных продуктов.
Кальцинация. Гидрооксид алюминия после обеих ветвей переработки алюминатного раствора подвергают промывке и фильтрации и затем направляют на кальцинацию (обезвоживание), которую проводят так же, как в способе Байера, получая глинозем.
Примерный расход материалов на получение 1 т глинозема из нефелинов, т: нефелина 4; известняка 7; извести 0,1; условного топлива 1,5; электроэнергии
1000 кВт • ч. При этом получают около 1 т содопродуктов и до 10 т цемента.
Бокситы, глинозем и рециклинг. Как и из чего производят алюминий
На фоне новостей о госперевороте в Гвинее, втором мировом поставщике сырья для алюминия, стоит освежить информацию о том, как производится данный металл и какие страны играют ключевую роль на этом рынке.
Производственная цепочка алюминия выглядит следующим образом:
Добыча бокситов
В мире существует несколько видов алюминиевых руд, но основным сырьем для производства являются именно бокситы. Эта порода добывается преимущественно открытым способом с применением мощной карьерной техники. Около 90% мировых запасов бокситов приходится на страны тропического пояса, причем 70% — на 5 стран: Гвинею, Австралию, Вьетнам, Бразилию и Ямайку.
Крупнейшими производителями бокситов являются Австралия, Гвинея и Китай: там сосредоточено 67% всей мировой добычи.
Производство глинозема (Alumina)
Добытые бокситы дробят, обрабатывают щелочным раствором и выделяют из них глинозем — оксид алюминия Al2O3. В бокситах, как правило, содержится от 40% до 60% глинозема. Полученный глинозем выступает ключевым сырьем в процессе электролиза алюминия. Из одной тонны глинозема в среднем получают 0,5 тонны чистого алюминия.
Электролиз и выплавка первичного алюминия
Под воздействием электрического тока связь между атомами алюминия и кислорода в глиноземе распадается. Алюминий осаждается на дне специальной электролизной ванны, а кислород соединяется с углеродом, входящим в состав анодных блоков, и образует углекислый газ. При производстве одной тонны алюминия выделяется 280 тыс. кубометров газа.
Для производства алюминия требуется очень большое количество электроэнергии, поэтому в состав металлургических холдингов часто входят генерирующие активы. В свете популярного в последние годы тренда на ESG при оценке того, насколько «зеленым» является алюминий, принято оценивать выбросы CO2 от сопутствующей производству электрогенерации.
В России, по данным портала «Сайт об алюминии», около 95% алюминиевых мощностей обеспечены относительно чистой гидрогенерацией. Компания РУСАЛ даже предлагает своим покупателям специальный сорт алюминия с низким углеродным следом под товарным знаком «ALLOW». Совокупные выбросы CO2 при производстве 1 тонны такого алюминия составляют всего около 4 тонн.
Одной из революционных технологий в производстве алюминия является использование в электролизе инертного анода. При этом выделяемый из глинозема кислород не соединяется с углеродом и выбросов CO2 практически не образуется. В 2021 г. РУСАЛ начал тестовые поставки алюминия, произведенного с использованием такой технологии.
Крупнейшие компании–производители алюминия в мире
Изготовление конечных изделий
После электролиза остатки примесей из алюминия удаляют методом переплавки. Из готового первичного алюминия отливают слитки, которые впоследствии будут использоваться для изготовления конечных изделий.
Прямоугольные слитки называют слябами. Они применяются для проката в тонкие листы и производства алюминиевой фольги, банок для напитков, автомобильных кузовов и пр.
Цилиндрические слитки алюминия используют для экструзии — выдавливания через отверстие необходимой формы. Так производится большинство алюминиевых изделий.
При производстве изделий в алюминий могут внедряться различные добавки для производства сплавов, обладающих необходимыми качествами. В промышленности используется свыше 100 различных марок алюминиевых сплавов.
По данным statista.com, на азиатский регион приходится около 78% всего потребления алюминия. На европейский регион — чуть более 11%, на США и Латинскую Америку — 9%.
Переработка
Алюминий, в отличие от стали и некоторых других металлов, не подвержен коррозии и не теряет своих свойств в процессе использования. Изделия из него могут подвергаться переплавке и вторичной переработке в новые продукты — рециклингу.
В развитых странах доля переработки в производстве конечных изделий довольно высока и, по всем прогнозам, будет расти и дальше. По оценке информационного издания Алюминиевый вестник, в странах Евросоюза доля вторичного сырья в автопроме и строительстве достигает 90–95%, в алюминиевой банке — 74%, а в целом в упаковке — 60%.
В России собирается и перерабатывается более 600 тыс. алюминиевого лома. В литой продукции доля вторсырья составляет 59%, в экструзии — 39%, в прокате — 15%.
БКС Мир инвестиций
Последние новости
Рекомендованные новости
Прогнозы и комментарии. Ралли после обвала
США распродают нефтяные резервы, но цены все равно растут
Рынок США. Ждем большой блок данных по экономике
Рекордные обороты в акциях на Московской бирже
4 акции. Игра в ротацию
3 лидера падения. Какие перспективы
Муниципальные облигации пошли вверх
Главный защитный актив на фоне общего краха
Адрес для вопросов и предложений по сайту: bcs-express@bcs.ru
* Материалы, представленные в данном разделе, не являются индивидуальными инвестиционными рекомендациями. Финансовые инструменты либо операции, упомянутые в данном разделе, могут не подходить Вам, не соответствовать Вашему инвестиционному профилю, финансовому положению, опыту инвестиций, знаниям, инвестиционным целям, отношению к риску и доходности. Определение соответствия финансового инструмента либо операции инвестиционным целям, инвестиционному горизонту и толерантности к риску является задачей инвестора. ООО «Компания БКС» не несет ответственности за возможные убытки инвестора в случае совершения операций, либо инвестирования в финансовые инструменты, упомянутые в данном разделе.
Информация не может рассматриваться как публичная оферта, предложение или приглашение приобрести, или продать какие-либо ценные бумаги, иные финансовые инструменты, совершить с ними сделки. Информация не может рассматриваться в качестве гарантий или обещаний в будущем доходности вложений, уровня риска, размера издержек, безубыточности инвестиций. Результат инвестирования в прошлом не определяет дохода в будущем. Не является рекламой ценных бумаг. Перед принятием инвестиционного решения Инвестору необходимо самостоятельно оценить экономические риски и выгоды, налоговые, юридические, бухгалтерские последствия заключения сделки, свою готовность и возможность принять такие риски. Клиент также несет расходы на оплату брокерских и депозитарных услуг, подачи поручений по телефону, иные расходы, подлежащие оплате клиентом. Полный список тарифов ООО «Компания БКС» приведен в приложении № 11 к Регламенту оказания услуг на рынке ценных бумаг ООО «Компания БКС». Перед совершением сделок вам также необходимо ознакомиться с: уведомлением о рисках, связанных с осуществлением операций на рынке ценных бумаг; информацией о рисках клиента, связанных с совершением сделок с неполным покрытием, возникновением непокрытых позиций, временно непокрытых позиций; заявлением, раскрывающим риски, связанные с проведением операций на рынке фьючерсных контрактов, форвардных контрактов и опционов; декларацией о рисках, связанных с приобретением иностранных ценных бумаг.
Приведенная информация и мнения составлены на основе публичных источников, которые признаны надежными, однако за достоверность предоставленной информации ООО «Компания БКС» ответственности не несёт. Приведенная информация и мнения формируются различными экспертами, в том числе независимыми, и мнение по одной и той же ситуации может кардинально различаться даже среди экспертов БКС. Принимая во внимание вышесказанное, не следует полагаться исключительно на представленные материалы в ущерб проведению независимого анализа. ООО «Компания БКС» и её аффилированные лица и сотрудники не несут ответственности за использование данной информации, за прямой или косвенный ущерб, наступивший вследствие использования данной информации, а также за ее достоверность.