голографический эффект это что

Как в ближайшем будущем будут использовать трехмерные голограммы

Технологии голографии активно используют стартапы и большие технологические компании. Голограммы становятся предметом искусства, они используются в музеях, с помощью них презентуют новые продукты. Рассказываем, как голограммы помогают нам сегодня и во что они превратятся в ближайшем будущем.

Читайте «Хайтек» в

Что такое голограмма?

Голограмма — это трехмерный объект, который может отражать предметы в пространстве. Отличительная особенность в том, что ее можно увидеть без применения специальных линз.

Сегодня для того, чтобы сделать голограммы используется инфернация волн. Это означает, что волны излучающие одинаковую амплитуду, преломляются, и пересекаются в определенной точке. Иначе говоря, два луча лазера направляют свет в определенную точку: 1-й луч идет как и положено, второй преломляется (например от зеркала) и в итоге они встречаются в определенной точке, в месте встречи этих лучей мы получаем точку пересечения, то есть точку которую мы видим в пространстве, таким образом, при использовании мощных компьютеров можно создавать любое изображение.

Как создать голограмму?

Существует два метода создания голограммы:

Им впервые воспользовалась компания Microsoft. Она представила голографические очки HoloLens на презентации в 2015 году. Компания научилась создавать виртуальные объекты, встроенные в реальный мир.

Для того, чтобы создавать голограмму, разработчики использут инструменты для импортировки файлов из других сервисов или создают 3D-объекты с помощью интерфейса.

В этом случае лазер сначала регистрирует, а потом восстанавливает максимально приближенные к реальным 3D-изображения. Когда лазер освещает голограмму, формируется точный клон нужного объекта вместе со всеми его свойствами. Например какие-либо изменения перспективы при движении смотрящего.

В самом элементарном случае испускаемый лазером луч расширяется и делится на две части. Одна часть падает на фотопластинку и отражается от зеркала — это опорный луч. Другая отражается от объекта и называется предметным лучом.

В таком случае оба пучка должны иметь одинаковую длину волны и двигаться в одной фазе. Тогда опорный и предметный лучи соединяются вместе в интерференционную картину. Это чередование повышенной и пониженной интенсивности света. При максимальной интенсивности эмульсия засвечивается сильнее, при минимальной — слабее.

Чтобы восстановить изображение, проявленную фотопластинку помещают в то же место, где она находилась при фотографировании, и освещают опорным пучком света. Часть лазерного пучка, которая освещала предмет, перекрывается.

Опорный пучок огибает (дифрагирует) на голограмме. В результате получается точно такая же волна, как у отражённого предмета. Эта волна и даёт изображение предмета.

Как голограммы используют в реальной жизни?

С помощью голографических технологий можно совершать звонки. При звонке формируются голограммы собеседника, которые полностью передают эмоции и жестикуляцию пользователя. Первый такой разговор произошел в 2017 году между двумя крупнейшими операторами Verizon (США) и Korea Telecom (Южная Корея).

Такой способ подходит и для дистанционного образования. В таком случае все ученики во всех частях мира видят лектора.

Также голограммы могут смоделировать трехмерное пространство. Описанный в исследовании метод ученых из Технологического университета Мюнхена позволяет создавать копии помещений, отображая предметы вокруг них. Это может помочь, например использовать технологию для обнаружения жертв под завалами.

Также голограммы могут помочь продемонстрировать большой аудитории один небольшой объект. В феврале 2017 года Barbie презентовала голографическую куклу-бота, которая реагирует на голосовые команды.

Стартапы с голограммами

Это российский стартап, который специализируется голографических решениях для смешанной реальности. Проект создаёт приложения для очков дополненной реальности Microsoft HoloLens, а также сотрудничал с «Уралкалий», Hyundai, «Новатэк», «Ашан».

Это еще одна российская компания, которая создает навигационную систему Navion, основанную на технологии дополненной реальности. В устройство входит голографическая плёнка, которая наносится на лобовое стекло автомобиля.

Будущее голограмм

Исследователь Дэниэл Смолли из MIT Media Lab предложил технологию для голографического телевидения, основанную на использовании оптического чипа. В его блоге можно даже посмотреть схемы и описание.

Кристофер Ист из компании WaterWorks создал визуализацию идеи телефона с голографической технологией. Ист убежден, что такой телефон будет не только незаменим для презентаций и работы дизайнеров и архитекторов, но и станет важным инструментом в сферах маркетинга, урбанистики и образования.

Разработчики сделали одноместный лайтбокс для «голопортации». Этот комплекс предназначен для того, чтобы один человек мог с максимальным эффектом присутствия и обратной связью дистанционно общаться с другими людьми.

В компании говорят, что пользователь при «голопортации» в прямом эфире получит возможность видеть и слышать аудиторию на другом конце интернет-соединения. Контент в разрешении 4K можно зацикливать и активировать с помощью движения, используя HOLOPORTL как автономное устройство для взаимодействия с людьми.

Источник

Хронология: как развивалась голография

История технологии, которая позволила создать кинематографическую систему IMAX и защитить документы Visa и MasterCard.

В основе голографии лежат два физических явления: дифракция и интерференция. Дифракция связана с отклонением волн от прямолинейного распространения при столкновении с препятствием.

Интерференция наблюдается при наложении двух или нескольких пучков, в результате чего происходит усиление или ослабление результирующих световых колебаний в различных точках пространства.

Идея голографии заключается в том, что при наложении двух световых пучков и соблюдении определённых условий возникает интерференционная картина. Это особый фотографический метод, при котором с помощью лазера регистрируются и восстанавливаются изображения трёхмерных объектов, максимально приближённые к реальным.

Трёхмерные голограммы, которые можно встретить сегодня, стали возможными только после изобретения лазера. Он создаёт когерентные волны с одинаковой частотой и постоянной разностью фаз колебаний. Именно свет, образованный такими волнами, позволяет записывать интерференционные картины в голографии.

Понятие «голография» также используется в дополненной реальности. Однако с физическим понятием «голография» она имеет мало общего: в AR для её создания используются программные компоненты, а физическая основывается на законах оптики.

В 1917 году Альберт Эйнштейн предположил, что процесс, который мог бы происходить в лазерах, — вынужденное излучение. Однако идею лазера впервые опубликовали в 1958 году Артур Шаулоу и Чарльз Таунс. Они работали в Лаборатории Белла в Мюррей-Хилл, штат Нью-Джерси.

Первый рабочий рубиновый лазер в 1960 году создал Теодор Мейман в Научно-исследовательской лаборатории Хьюза в Малибу, штат Калифорния. Затем Али Джаван в 1960 году в Лаборатории Белла изобрёл первый газовый лазер — гелий-неоновый.

В 1962 году Роберт Холл из лаборатории General Electric в Скенектади, штат Нью-Йорк, изобрёл полупроводниковый инжекционный лазер, который сейчас называют лазерным диодом.

Однако голография появилась задолго до изобретения лазера.

Французский физик Габриэль Липпман разработал теорию использования световых волн для захвата цвета в фотографии. Учёный покрыл ртутью заднюю сторону стеклянных фотографических пластин, чтобы она действовала как зеркало, и световые волны отскакивали обратно через эмульсию, создавая волновую интерференцию.

В Академии наук Липпман представил свою теорию вместе с некоторыми простыми примерами интерференционных цветных фотографий. В 1893 году он продемонстрировал в Академии цветные фотографии братьев Люмьер. В 1894 году физик опубликовал полную теорию.

Липпман получил Нобелевскую премию по физике за «создание метода фотографического воспроизведения цветов на основе явления интерференции».

Интерференция цветных волн Липпман стала предшественницей голограмм. Цвет изображения был результатом дифракции цвета основного света. Чтобы увидеть изображение, смотрящему нужно было держать плёнку под прямым углом к свету, как это сейчас требуют голограммы. История современной голографии началась спустя 39 лет.

Венгр Денеш Габор заинтересовался физикой в 1915 году, когда ему было 15 лет. Именно тогда он изучил работы Липпмана. Как и ученый, Габор тоже был евреем. В 1933 году, когда к власти пришел Гитлер, венгр бежал в Англию, чтобы избежать преследований нацистов.

Спустя 14 лет во время работы в Британской исследовательской лаборатории Томсона-Хьюстона в городе Рагби Денеш Габор пытался улучшить разрешающую способность электронного микроскопа, чтобы разглядеть отдельные атомы. Так он пришёл к теории реконструкции волноводного фронта. И придумал название «голография» от греческого слова «holos» — «полный» и «graphe» — «пишу».

Однако в течение следующего десятилетия развитие не продвигалось вперёд, потому что у доступных в то время источников света не было достаточной когерентности.

Советский учёный и сотрудник Государственного оптического института им. С. И. Вавилова Юрий Денисюк прочитал описание интерференционной фотографии Липпмана и понял, что может использовать метод для записи трёхмерных изображений. Он начал эксперименты, используя высокофильтрованную ртутную разрядную трубку в качестве источника света. Лазер к тому времени ещё не придумали.

Спустя четыре года Денисюк изобрёл способ записи изображения в трёхмерных средах, позволяющий сохранить информацию о фазе, амплитуде и спектральном составе волны, пришедшей от объекта. В СССР научное достижение признали открытием. Работа учёного стала первой трёхмерной голограммой. Про работу Габора он не слышал.

Независимо от советского исследователя, американские физики Эмметт Лейт и Юрис Упатниекс прочитали статью Габора и из любопытства повторили опыт. Но они использовали лазер, луч которого делится на две части и с помощью зеркал направляется на объект и записывающую среду. С появлением гелий-неонового лазера исследователи представили публике свою трёхмерную лазерную голографию. Про работу Денисюка не знали.

Лейт и Упатниекс приглашают к сотрудничеству Фрица Горо, чтобы создать голограмму для журнала LIFE. Вместо голограммы игрушечного поезда и птицы, Горо предложил изображения, состоящие из набора геометрических фигур. Такие предметы и более крупная фотографическая пластика способны создать голограмму с большим ощущением трёхмерности, чем предыдущие работы.

Это была первая голограмма, которая предназначалась для демонстрации способности носителя показывать объекты по разными углами и, следовательно, подчеркнуть все плюсы нового метода хранения информации.

Компания Conductron Corporation в Анн-Арборе, штат Мичиган, впервые проводит коммерческое исследование потенциала голографии. Сотрудник корпорации Ларри Зиберт использует самодельный импульсный лазер для создании первой голограммы человека. С этого года компания помогает исследователям голографии. В последующее время художники Брюс Науман и Сальвадор Дали заказывают у Conductron свои голограммы.

Художник Науман представил свою первую серию голограмм в Галерее Николоса Уайлдера в Лос-Анджелесе.

Британская художница Маргарет Беньон стала первой женщиной, которая использовала голографию как искусство. Она увидела в голографии не только практическое применение, но и попыталась расширить границы искусства.

Стивен Бентон из Polaroid Research Laboratories изобрёл пропускающую голограмму, видимую в обычном белом свете. Такие голограммы назвали радужными, так как они переливаются всеми цветами радуги, из которых состоит белый свет.

Открытие Бентона позволило начать массовое производство недорогих голограмм с помощью нанесения интерференционной картины на пластик. Сейчас этот тип используют на банкнотах и документах.

Науман выпустил ещё десять голограмм, которые представил в Галерее Лео Кастелли в Нью-Йорке. На этом его голографическая деятельность закончилась.

Источник

голографический эффект это что. Смотреть фото голографический эффект это что. Смотреть картинку голографический эффект это что. Картинка про голографический эффект это что. Фото голографический эффект это чтоmasterok

Мастерок.жж.рф

Хочу все знать

Компания NICE Interactive

Продолжаю выполнять заявки своих френдов из ноябрьского стола заказов. Месяц уже близиться к концу, а я еще далек от завершения очереди ваших вопросов. Сегодня мы разбираем, обсуждаем и дополняем задание голографический эффект это что. Смотреть фото голографический эффект это что. Смотреть картинку голографический эффект это что. Картинка про голографический эффект это что. Фото голографический эффект это чтоtrudnopisaka :

Технологии создания трехмерных голограмм. Бывают ли они непрозрачными? С чем можно сравнить энергетические затраты на их создание? Какие есть перспективы развития?

Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы этаинтерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.

Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны.

Японский концерт с 3D голограммой Hatsune Miku

Если голограмму записать в некоторой объемной среде, то полученная модель стоячей волны однозначно воспроизводит не только амплитуду и фазу, но и спектральный состав записанного на ней излучения. Это обстоятельство было положено в основу создания трехмерных (объемных) голограмм.
В основу работы объемных голограмм положен дифракционный эффект Брэгга. B результате интерференции волн, распространяющихся в толстослойной эмульсии, образуются плоскости, засвеченные светом большей интенсивности. После проявления голограммы на засвеченных плоскостях образуются слои почернения. В результате этого создаются так называемые брэгговские плоскости, которые обладают свойством частично отражать свет. Т.е. в эмульсии создается трехмерная интерференционная картина.

Такая толстослойная голограмма обеспечивает эффективное восстановление объектной волны при условии, что угол падения опорного пучка при записи и восстановлении останется неизменным. Не допускается также изменение длины волны света при восстановлении. Такая избирательность объемной пропускающей голограммы позволяет записать на пластинке до нескольких десятков изображений, изменяя угол падения опорного пучка соответственно при записи и восстановлении.

Схема записи пропускающих объемных голограмм аналогична схеме Лейта-Упатниекса для двумерных голограмм.

При восстановлении объемной голограммы, в отличие от плоских пропускающих голограмм, образуется только одно изображение вследствие отражения от голограммы восстанавливающего пучка только в одном направлении, определяемом углом Брэгга.

Отражательные объемные голограммы записываются по иной схеме. Идея создания данных голограмм принадлежит Ю.Н.Денисюку. Поэтому голограммы этого типа известны под именем их создателя.

Уникальная 3D-голограмма в ГУМе!

В соответствии со свойством цветовой избирательности можно получить цветную голограмму объекта, в точности передающую его естественный цвет. Для этого необходимо при записи голограммы смешать три цвета: красный, зеленый и синий либо провести последовательное экспонирование фотопластинки этими цветами. Правда, технология записи цветных голограмм находится еще в экспериментальной стадии и потребует еще значительных усилий и экспериментов. Примечательно при этом, что многие, посетившие выставки голограмм, уходили оттуда в полной уверенности, что видели цветные объемные изображения!

Технология связи при помощи объемных голограмм, описанная впервые в «Звездных войнах» еще 30 лет назад, судя по всему, становится реальностью. Еще в 2010 году команда физиков из Университета Аризоны смогла разработать технологию передачи и просмотра движущихся трехмерных изображений в реальном времени. Разработчики из Аризоны называют свою работу прототипом «голографического трехмерного телеприсутствия». В реальности показанная сегодня технология представляет собой первую в мире практическую трехмерную систему передачи подлинно трехмерных изображений без необходимости использования стереоскопических очков.

Для создания эффекта виртуальной инсталляции (3D голограммы) объекта в месте инсталляции натягивается специальная проекционная сетка. На сетку осуществляется проекция с помощью видеопроектора, который располагается за этой сеткой на расстоянии 2-3 метра. В идеале проекционная сетка натягивается на ферменную конструкцию, которая полностью обшивается темной тканью для затемнения и усиления эффекта. Создается подобие некого темного куба, на переднем плане которого разворачивается 3D изображение. Лучше чтобы действие происходило в полной темноте, тогда не будет виден темный куб и сетка, а только 3D голограмма!

Существующие системы 3D-проекций способны производить либо статические голограммы с превосходной глубиной и разрешением, либо динамические, но смотреть на них можно только под определенным углом и в основном через стереоскопические очки. Новая технология объединяет в себе преимущества обеих технологий, но лишена их многих недостатков.

В сердце новой системы находится новой фотографический полимер, разработанный калифорнийской исследовательской лабораторией Nitto Denko, работающей с электронными материалами.

Голографическая 3D-установка AGP

И последние новости 2012 года по этой теме:

Технологии создания трехмерных изображений, которые «растут как грибы» в последнее время, воплощаясь в виде трехмерных телевизионных экранов и дисплеев компьютеров, фактически не создают полноценного трехмерного изображения. Вместо этого с помощью стереоскопических очков или других ухищрений в каждый глаз человека посылаются немного разнящиеся изображения, а уже головной мозг зрителя соединяет все это воедино прямо в голове в виде трехмерного образа. Такое «насилие» над органами чувств человека и повышенная нагрузка на мозг вызывает напряжение зрения и головные боли у некоторых людей. Поэтому, для того, что бы сделать настоящее трехмерное телевидение требуются технологии, способные создавать реальные трехмерные изображения, другими словами, голографические проекторы. Люди уже давно научились создавать высококачественные статические голограммы, но когда дело заходит о движущихся голографических изображениях, тут возникают большие проблемы.

Исследователи из бельгийского нанотехнологического исследовательского центра Imec, разработали и продемонстрировали работающий опытный образец голографического проектора нового поколения, в основе которого лежат технологии микроэлектромеханических систем (microelectromechanical system, MEMS). Использование технологий, лежащих на грани между нано- и микро-, позволит в ближайшем времени создать новый дисплей, способный демонстрировать движущиеся голографические изображения.

В основе нового голографического проектора лежит пластина, на которой находятся крошечные, в половину микрона размером, отражающие свет подвижные площадки. Эта пластина освещается светом от нескольких лазеров, направленных на нее под различными углами. Регулируя положение по вертикальной оси светоотражающих площадок можно добиться того, что волны отраженного света начинают интерферировать между собой, создавая трехмерное голографическое изображение. Это все звучит невероятно и кажется очень сложным, но, тем не менее, на одном из снимков можно увидеть статическое цветное голографическое изображение, сформированное с помощью этих крошечных светоотражающих площадок.

Голограмма Цоя на Сцене

Голограмма Тупака Шакура

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *