Шапка невидимка что это
Шапка-невидимка
Один из волшебных атрибутов, часто упоминаемый в славянских сказках.
Известно поверье о том, как добыть шапку-невидимку. Нужно найти цветок адамову голову, который цветет только на Иванов день (7 июля), и положить его в церкви под престол, чтобы он пролежал сорок дней. Потом, когда его достать, он уже имеет такую волшебную силу, что, если держать в руке, будет видна вся нечистая сила. Тогда можно снять с лешего шапку, надеть на себя и стать таким же невидимым, как и нечистый. В этой шапке можно творить что угодно: никто не увидит и не узнает. Но перед смертью нужно шапку бросить в речку, чтобы нечистые забрали ее. В противном случае затерзают душу в аду за то, что их добро им не вернул.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
САМОЛЕТ-НЕВИДИМКА
САМОЛЕТ-НЕВИДИМКА (Материал В. Жарова)Еще в 1930-е годы в СССР пытались воплотить в жизнь самые, фантастические проекты. Увы, а может быть, к счастью, множество объективных факторов препятствовали их воплощению в жизнь. А если бы эти проекты удалось завершить, то, может
Соболья шапка
Соболья шапка И все же народ, промышлявший на реках Мессояха и Таз, однажды взял на себя грех: указал дорогу на поганые озера пришлому купчине. Правда, потом те указчики горевали о содеянном, каялись и уверяли, что тот сам напросился на погибель. Появился он откуда-то с
3.4. Облако, делающее Энея невидимым, и плащ-невидимка, скрывающий Зигфрида от глаз окружающих
3.4. Облако, делающее Энея невидимым, и плащ-невидимка, скрывающий Зигфрида от глаз окружающих Согласно «Энеиде», Эней, приближаясь к царице Дидоне, окутывает себя неким облаком, которое СКРЫВАЕТ ЕГО ОТ ОКРУЖАЮЩИХ, ДЕЛАЕТ НЕВИДИМЫМ, см. выше. В таком виде Эней присутствует
3.4. Облако, делающее Энея невидимым и плащ-невидимка, скрывающий Зигфрида от глаз окружающих
3.4. Облако, делающее Энея невидимым и плащ-невидимка, скрывающий Зигфрида от глаз окружающих Согласно поэме Вергилия, Эней, приближаясь к царице Дидоне, окутывает себя неким облаком, которое СКРЫВАЕТ ЕГО ОТ ОКРУЖАЮЩИХ, ДЕЛАЕТ НЕВИДИМЫМ, см. выше. В таком виде Эней
Слон-невидимка
Слон-невидимка «Я не вижу слона в своем погребе. Если бы он там был, я бы его наверняка увидел. Следовательно, слона в погребе нет». Артур Батц [11]. Обращаясь к доказательствам истребления немцами шести миллионов евреев, мы сразу сталкиваемся с совершенно необъяснимым
Шапка Мономаха
Шапка Мономаха К только что сказанному добавим, что Владимир Всеволодович Мономах был по матери внуком византийского императора Константина Мономаха («Мономах» по-гречески означает «единоборец») и получил в наследство от деда не только его прозвище, но, и по
Шапка Мономаха
Шапка Мономаха Почти трехвековое царствование дома Романовых вознесло Россию на очень высокую ступень славы. Сокровища государства непрестанно умножались каждым царем, и царский двор удивлял посланников всех иностранных государств пышностью и богатством. Так,
3. «Шапка-невидимка»
3. «Шапка-невидимка» Но в семье Дзержинских дети воспитывались не только в горячо-взятом католицизме. Культивировался еще и пафос национальной польской борьбы против поработительницы Польши — России. Как множество детей интеллигентных семей, и Феликс Дзержинский пил
3. «Шапка-невидимка»
3. «Шапка-невидимка» Но в семье Дзержинских дети воспитывались не только в горячо-взятом католицизме. Культивировался еще и пафос национальной польской борьбы против поработительницы Польши — России. Как множество детей интеллигентных семей, и Феликс Дзержинский пил
САМОЛЕТ–НЕВИДИМКА[18]
САМОЛЕТ–НЕВИДИМКА[18] Еще в 1930–е годы в СССР пытались воплотить в жизнь самые фантастические проекты. Увы, а может быть, к счастью, множество объективных факторов препятствова?ли их воплощению в жизнь. А если бы эти проекты удалось завершить, то, может статься, современная
Шапка Мономаха
Шапка Мономаха В Москве Сорокоумовским принадлежали три главных меховых магазина, в которых можно было купить любой вид меха (от горностая до кролика) и любой фасон мехового изделия, – в Верхних торговых рядах (ныне ГУМ), на Ильинке и на Кузнецком мосту. И хотя цены там
1. Шапка Мономаха
1. Шапка Мономаха Почти трехвековое царствование Дома Романовых вознесло Россию на очень высокую ступень славы. Сокровища государства непрестанно умножались каждым царем и царский двор удивлял посланников всех иностранных государств пышностью и богатством.
Шапка
Шапка Лучше всего известны исследователям шапки особого покроя – полусферические, сделанные из яркой материи, с околышем из драгоценного меха. В подобные шапки одеты каменные и деревянные идолы, сохранившиеся с языческих времён, такие мы видим и на дошедших до нас
Дед – шапка драная
Дед – шапка драная Так называют владыку северо-западного ветра в устье Волги. Он ходит с дождем, но без бури. Шапка у него драная потому, что часто он сражается с повелительницей бури – моряной. Когда бьются дед и моряна, морские волны столпом возносятся до неба,
История шапки-невидимки
Виктор Георгиевич Веселаго длительное время занимался экспериментальными исследованиями магнитных веществ и сильных магнитных полей. Но в мировом научном сообществе он стал знаменит в одночасье благодаря одной небольшой, чисто теоретической статье по электродинамике, опубликованной в далеком 1967 году. Он предсказал существование материалов, из которых можно сделать шапку-невидимку.
В начале 2001 года дома у Виктора Веселаго, завлабораторией магнитных материалов отдела сильных магнитных полей Института общей физики РАН (ИОФАН) им. А.М. Прохорова, раздался звонок телефона. «Профессор, — сказал по-английски голос в трубке. — Вас беспокоят из журнала New Scientist. Мы бы хотели получить ваш комментарий по поводу экспериментов американских ученых Смита и Шульца, описанных в только что вышедшем журнале Science. Кажется, им удалось создать материал, который вы теоретически предсказали более тридцати лет назад».
Упражнение для ума
После окончания школы, где он всерьез увлекся радиотехникой, Веселаго поступил на только что созданный физико-технический факультет МГУ (позднее ставший самостоятельным вузом — МФТИ). Диплом он защитил в ФИАН под руководством А.М. Прохорова (будущего лауреата Нобелевской премии 1964 года по физике), а затем продолжил работу в институте уже как научный сотрудник.
В 1960-х годах он заинтересовался магнитными полупроводниками — материалами, которые проявляют свойства как ферромагнетиков, так и полупроводников (их проводимость меняется при изменении магнитного поля). «Есть такой электровакуумный прибор — лампа бегущей волны, он используется в качестве усилителя СВЧ-сигналов, — объясняет профессор Веселаго. — Усиление здесь происходит за счет взаимодействия электронов с электромагнитной волной. Я подумал, что можно было бы попробовать создать такой прибор в твердотельном варианте, а для этого нужен был материал, сильно замедлявший скорость распространения электромагнитной волны, то есть с очень высоким показателем преломления. Показатель преломления (n) определяется как квадратный корень из произведения диэлектрической проницаемости (ε) и магнитной проницаемости (µ). Идея с магнитным полупроводником не оправдала себя (нужный режим работы подобрать не удалось), но заставила меня внимательно рассмотреть вещества с различными ε и µ, и положительными, и отрицательными. Вещества с обеими положительными величинами — это хорошо известные обычные диэлектрики. С положительным ε и отрицательным µ — ферромагнетики. С отрицательным ε и положительным µ — плазма. А вот веществ с отрицательными ε и µ тогда известно не было. Листок с формулой показателя преломления лежал у меня на столе, я смотрел на него и вдруг подумал: но ведь в таком случае и сам показатель преломления может быть отрицательным. И не только с точки зрения математики!».
«Правые» и «левые»
Что мы увидим, если посмотрим на материал с отрицательным показателем преломления
Преломление света — привычное явление, хорошо известное всем, кто хоть раз смотрел на игру солнечных лучей на гладкой поверхности пруда. Но вот эффекты, возникающие в среде с отрицательным показателем преломления («левой» среде), сложно представить — настолько они противоречат общепринятым понятиям о поведении света. Вот некоторые из них.
Против здравого смысла
Такой вывод был крайне необычным, поскольку во всех учебниках подразумевалось, что показатель преломления любой среды — это всегда положительная величина. Своими соображениями, которые показались ему очень важными, Виктор поделился с коллегами. Но ученые, загруженные работой, восприняли его выводы как «разминку для ума», абстракцию, которая не имела никакого физического смысла. И тогда Веселаго написал небольшую статью «Электродинамика веществ с одновременно отрицательными значениями ε и µ», где показал, что наличие таких веществ не противоречит никаким законам физики, и описал их необычные свойства. Материалы с отрицательным коэффициентом преломления в статье были названы «левыми», а обычные, с положительным, — «правыми» (по ориентации векторов, характеризующих электромагнитную волну). «На самом деле мне не первому пришла в голову эта идея, — говорит профессор Веселаго. — Об этом рассуждал еще академик С.Л. Мандельштам, но исключительно в математическом плане. Рассматривал их и Д.В. Сивухин, но в свой знаменитый учебник он эти соображения не включил».
Линзы Веселаго
Материал с ε = –1, μ = –1 и отрицательным показателем преломления n = –1 можно использовать для создания так называемой линзы Веселаго. Плоская пластинка «левой» среды полностью переносит оптическое поле с одной стороны на другую, создавая точное, без всяких искажений, изображение. У такой линзы, в отличие от обычной, отсутствует оптическая ось. Она не способна сфокусировать параллельный пучок света, зато за счет фокусировки ближнего поля через нее можно рассмотреть детали, меньшие по размеру, чем длина волны света (дифракционный предел).
В журнале «Успехи физических наук» (УФН) статью тоже восприняли как гипотетические рассуждения, но тем не менее опубликовали. «Я представил свой доклад на международной конференции в Москве, — вспоминает Виктор Георгиевич, — и получил приглашение выступить по этой теме на нескольких других конференциях — в Италии, Франции и США. После моих докладов на этих конференциях темой заинтересовались, и я подготовил еще одну статью в сборник. Но высокое начальство ФИАН, узнав об этом, настойчиво порекомендовало мне не заниматься всякой ерундой и не отвлекаться от основной работы в отделе сильных магнитных полей, где мы создавали большую экспериментальную установку «Соленоид». В итоге эта тематика была почти забыта на долгие три десятилетия».
От теории к эксперименту
Статья «Экспериментальное подтверждение отрицательного показателя преломления» Дэвида Смита, Шелдона Шульца и Ричарда Шелби, исследователей из Калифорнийского университета в Сан-Диего, вышла в 2001 году в авторитетном журнале Science и произвела в научном сообществе эффект разорвавшейся бомбы. В статье исследователи показали, как, используя проводящие дорожки и незамкнутые катушки-резонаторы для управления электрическими и магнитными свойствами среды, можно сконструировать композиционный материал с отрицательным показателем преломления для длины волны около 3 см. Такие составные материалы, свойства которых определяются не их химическим составом, а структурой, называют метаматериалами. А поскольку экспериментаторы уже во втором абзаце статьи ссылались на ту самую статью 1967 года, это окончательно закрепило приоритет изобретения таких материалов за Виктором Веселаго. Интерес к теме был настолько высок, что эта статья стала самой цитируемой за всю историю журнала УФН, который издается с 1918 года.
А в 2006 году один из авторов первой статьи, Дэвид Смит, к тому времени перешедший в Университет Дюка, вместе со своим коллегой по университету Дэвидом Шуригом и физиком Джоном Пендри из Имперского колледжа в Лондоне, опубликовали в Science статью «Управление электромагнитными полями». В ней они показали кольцевую конструкцию из метаматериала с отрицательным показателем преломления, которая заставляет электромагнитные волны огибать предмет, находящийся в центре. А это не что иное, как шапка-невидимка в самом буквальном смысле этого слова. Правда, пока для сантиметрового диапазона, но ведь это только начало.
Как работает шапка-невидимка
Если осветить предмет, сравнимый по размеру с длиной волны, пучком микроволн, мы увидим его за счет отражения части излучения. Но если окружить предмет «шапкой-невидимкой», изготовленной из метаматериала с отрицательным показателем преломления, пучок будет огибать предмет, и он станет полностью невидим. Такой эксперимент был продемонстрирован исследователями из Калифорнийского университета в Сан-Диего.
Свет, радио, звук, прибой
Технология метаматериалов с отрицательным показателем преломления сейчас очень активно развивается. И не только потому, что это интересная наука, но и потому, что результаты в данной сфере могут привести к интересным решениям в прикладных областях. «Публика ждет шапку-невидимку, военные — идеальный камуфляж и невидимую радаром технику, — говорит Виктор Веселаго. — Но я не думаю, что в ближайшее время стоит ожидать чего-то подобного. Зато уже есть ряд очень интересных разработок в области материалов с отрицательным показателем преломления не для электромагнитных, а для сейсмических волн. Достаточно построить такую структуру вокруг здания, и волны, порожденные землетрясением, будут огибать его. А ученые из Института Френеля в Марселе и Ливерпульского университета уже несколько лет разрабатывают метаматериалы такого типа, способные защитить прибрежные сооружения от разрушительных приливных, штормовых волн и цунами. И конечно, моя мечта — это материалы с отрицательным показателем преломления для оптического диапазона, которые сделают реальностью суперлинзы для оптических приборов со сверхвысоким разрешением».
Невидимые дома
Принцип «невидимости», реализуемый с помощью метаматериалов с отрицательным показателем преломления, применим не только в оптике и радиофизике, но и в акустике. Ученые возлагают большие надежды на создание структур, которые могли бы «маскировать» важные сооружения от сейсмических волн при землетрясениях. Эксперименты группы исследователей из Института Френеля и Университета Экс-Марсель показали, что размещение в грунте нескольких регулярных рядов пустотелых цилиндров преломляет и отражает сейсмические волны.
Анатомия шапки-невидимки
Как оптические метаматериалы позволяют скрывать предметы от посторонних глаз
Как обещает третий закон Кларка, любая достаточно развитая технология неотличима от магии. А значит, любые волшебные артефакты, с которыми мы встречались в сказках, фэнтези и других фантастических жанрах, могут оказаться высокотехнологическими устройствами, созданными учеными. В новом тексте серии «Это фантастика» мы обратили внимание на всевозможные шапки-невидимки, мантии невидимости и Кольца Всевластия, с завидной регулярностью встречающиеся в литературе и кино. Совместно с НИТУ «МИСиС» мы постараемся ответить на вопрос, как можно сделать интересующий нас объект невидимым, — с точки зрения науки, разумеется.
Прежде чем говорить о технологиях, давайте разберемся, а как вообще мы видим предметы? В первую очередь, ничего не получится без света — электромагнитного излучения. В абсолютно темной комнате мы не сможем ни увидеть предмет, ни распознать его цвет — в лучшем случае у нас получится его нащупать. Но даже если объект находится в освещенной комнате, это еще не значит, что мы его обязательно увидим, — всем известно, как легко не заметить огромную стеклянную стену, стоящую перед нами. Ведь все, что видит наш глаз, — это свет, «испущенный», или, точнее, рассеянный или отраженный предметами. Качественное чистое стекло практически не рассеивает и не отражает свет — поэтому мы с удовольствием смотрим в окно, не задерживаясь взглядом на стеклянной преграде.
Итак, увидеть предмет можно благодаря тому, что он искажает ход лучей и световое поле, которое его окружает. Следовательно, у нас может быть три возможных подхода к невидимости. Первый — это идеальная прозрачность, когда объект сам по себе почти не искажает пути лучей света. Второй — камуфляж, когда лучи, рассеянные на объекте, совпадают с теми лучами, которые мы ожидали бы увидеть в отсутствие предмета. Третий — когда некое устройство, например наша шапка-невидимка, сама преобразовывает ход лучей света так, чтобы оно казалось не измененным. Выглядит это примерно так:
На схеме b) — реальный ход лучей в пространстве, a) — то, как его видит удаленный от шапки-невидимки наблюдатель
Первые два примера невидимости часто встречаются в природе. К примеру, медузы в толще воды едва заметны из-за своей прозрачности, а активной и пассивной маскировкой пользуется огромное число видов — ящерицы, насекомые, рыбы и так далее. Однако два этих способа предполагают, что скрываемый объект изначально обладает какими-то определенными свойствами. Человека с помощью прозрачности скрыть не удастся, а маскировка ему поможет лишь отчасти.
Универсальным способом создания эффекта невидимости было бы устройство, которое «восстанавливает» световое поле и словно бы заставляет лучи света огибать предмет. Для этого нам необходимы материалы, позволяющие идеально контролировать распространение света.
Видимый свет — это одна из форм электромагнитного излучения, такого же как радиоволны и рентгеновские лучи, гамма-кванты или волны в микроволновке. Подобно тому, как мы умеем управлять радиоизлучением с помощью антенн, мы также можем изменять поведение света других диапазонов. Один из самых ярких примеров абсолютного контроля над излучением — метаматериалы с отрицательным коэффициентом преломления.
Возьмем любой естественный прозрачный материал, например стекло или кварц, и направим на его поверхность луч света. В точке, где луч пересечет поверхность, мы мысленно проведем прямую, перпендикулярную поверхности. Для обычных материалов всегда верно, что луч пересечет эту прямую и продолжит распространяться примерно в том же направлении, немного отклонившись. Если взять вместо обычного материала среду с отрицательным коэффициентом преломления, луч в этой среде продолжит двигаться в другом направлении, не пересекая перпендикуляра.
Такие материалы были предсказаны советским физиком Веселаго еще в 1960-х годах как некоторый курьез, который можно описать в рамках электродинамики Максвелла. В 2000 году физикам впервые показали, что среды с отрицательным коэффициентом преломления действительно существуют — однако реализовать их можно лишь в виде метаматериалов.
В отличие от классических материалов, свойства которых определяются в основном веществом, из которого они состоят, свойства метаматериалов определяются их геометрией. Иными словами, в метаматериале можно заменить один металл на другой и его свойства почти не изменятся. Это можно пояснить на примере среды с отрицательным коэффициентом преломления.
Чтобы добиться отрицательного преломления, необходимо, чтобы отрицательными были сразу два свойства материала — диэлектрическая проницаемость и магнитная восприимчивость. Этими свойствами управляют два разных элемента структуры метаматериала. Возьмем классический пример. Эта среда выглядит как периодический массив маленьких идентичных антенн-ячеек.
Ячейка классического метаматериала с двумя С-образными антеннами
За отклик к электрической составляющей световой (электромагнитной) волны отвечает фрагмент непрерывного провода, тянущегося сквозь все ячейки. За отклик к магнитной компоненте света отвечает пара С-образных антенн, вложенных друг в друга. Все они по отдельности создают отрицательную проницаемость и восприимчивость в материале.
Однако такой материал работает лишь в очень узком диапазоне длин волн, который напрямую определяется размерами и формой антенн. Чем меньше размеры антенны, тем меньше и длина волны, для которой среда имеет отрицательный коэффициент преломления. Первые подобные материалы работали лишь в микроволновом диапазоне.
Вернемся к невидимости. Одного лишь создания среды с постоянным отрицательным коэффициентом преломления, очевидно, недостаточно для того, чтобы скрыть объект от постороннего глаза. В основополагающей работе, посвященной физике невидимости, определяются требования к материалу нашей гипотетической шапки-невидимки. Возьмем для простоты некую специальную сферу, окружающую скрываемый нами предмет. Коэффициент ее преломления должен контролироваться вдоль всей поверхности сферы — с возникновением градиента значений. Лишь тогда можно добиться того, чтобы лучи огибали интересующий нас объект. Для внешнего наблюдателя будет казаться, что лучи не встречают никакого препятствия — что в этой области пространства ничего нет.
Стоит заметить, что из-за волновой природы света даже метаматериалы не смогут замаскировать любой предмет идеально. Это связанно с утверждением, доказанным Адрианом Нахманом в 1988 году: измерив амплитуду и направления распространения лучей света (с помощью специального детектора), мы можем полностью восстановить пространственный профиль коэффициента преломления среды, через которую они прошли. Теорема допускает несколько дискретных положений детектора, при котором нам будет казаться, что маскируемый объект — бесконечно тонкая пластинка, но в остальных случаях шапка-невидимка будет давать сбой.
Однако это утверждение не запрещает «почти идеальной» невидимости. Можно добиться того, чтобы отличия световой картины от света, рассеивающегося на шапке-невидимке и на пустоте, были экспоненциально малы, незаметны из-за ограниченной точности геометрической оптики.
Впервые реализовать шапку-невидимку из метаматериала, работающую в микроволновом диапазоне, удалось в 2006 году физикам из Университета Дьюка. Она представляет собой набор из десяти вложенных цилиндров, каждый из которых состоит из одинаковых ячеек-антенн. Из-за различных радиусов кривизны цилиндров возникал градиент коэффициента преломления, который и заставлял свет огибать скрытый в центре предмет.
В 2012 году та же группа исследователей усовершенствовала подход к созданию микроволновой шапки-невидимки. Новое устройство имело ромбовидную форму и эффективно отклоняло от своего центра лучи, движущиеся вдоль определенного направления. Новая геометрия позволила значительно уменьшить отражение лучей от границы воздух-метаматериал, сделав «шапку» еще невидимее.
Перечисленные материалы обеспечивали эффекты невидимости для микроволнового диапазона — излучения с частотой около 10 гигагерц и длиной волны 3 сантиметра. Чтобы перейти к оптическим диапазонам (длины волн порядка сотен нанометров) необходимо масштабировать устройство — уменьшить размер ячеек в сто тысяч раз. Тогда отдельные антенны будут иметь характерные размеры порядка ста нанометров. Изготовить такие устройства можно лишь с помощью достаточно сложных методов нанолитографии и травления сфокусированным пучком электронов.
Первые устройства, работающие в оптических частотах, были предложены в 2009 году физиками из Корнельского университета и, независимо, коллективом ученых из Калифорнийского университета в Беркли. В обоих случаях «шапка-невидимка» представляла собой специальную среду с изменяющимся коэффициентом преломления. Эта среда скрывала за собой выпуклость на зеркале, за которой мог быть спрятан микроразмерный объект — удаленному наблюдателю зеркало казалось идеально гладким.
Физики из Корнельского университета создали метаматериал в виде «леса» из наноразмерных кремниевых шипов, градиент коэффициента преломления в котором создавался разреженностью вблизи дефекта на зеркале. Устройство работало в инфракрасном диапазоне (1,550 нанометра). Во второй работе для эффекта невидимости использовалась «обратная» среда — набор периодически расположенных пор вблизи зеркала. Это устройство также работало в инфракрасном диапазоне (1400–1800 нанометров).
Позднее, в 2011 году, группа физиков из США и Германии, при участии исследователей из Калифорнийского университета добилась создания «шапки-невидимки» во всем видимом диапазоне — от красного до синего света. Успешным оказался подход с периодически расположенными порами в нитриде кремния. Как и в предыдущей работе, материал эффективно скрывал выпуклость на зеркале, за которой можно было спрятать какой-либо объект.
Собственные разработки оптических метаматериалов ведутся, в частности, в НИТУ «МИСиС». За подробностями мы обратились к заведующему лабораторией «Сверхпроводящие метаматериалы», доктору физико-математических наук, заведующему кафедрой и лабораторией экспериментальной физики Технологического института Карлсруэ, руководителю группы «Сверхпроводящие квантовые цепи» в Российском квантовом центре Алексею Устинову и доценту лаборатории «Сверхпроводящие метаматериалы» и кафедры Теоретической физики и квантовых технологий Алексею Башарину. Вот что они нам ответили:
N + 1: Как устроены оптические метаматериалы?
Метаматериалы состоят из искусственно созданных метаатомов, которые гораздо меньше длины волны (360–760 нанометров). Поэтому, если речь идет об оптических метаматериалах, размеры метаатомов должны быть порядка 100 нанометров и меньше. Это предъявляет особые требования к нанотехнологическим процессам. Из чего же состоят метаатомы? Это могут быть металлические или диэлектрические наночастицы различной формы (сферы, диски) и их модификации и более сложные конфигурации в виде спиралей, систем колец.
Насколько сложно создать материал, работающий в оптическом диапазоне электромагнитного излучения?
Поскольку мы говорим о нанотехнологиях, то все упирается в разрешение микроскопии и средства литографии. Важно также обеспечить повторяемость при изготовлении наночастиц. Второй важной особенностью является тот факт, что включения метаматериалов должны быть высокорезонансными. Это означает, что метаатомы сильно взаимодействуют с падающим на них излучением. Однако резонансные свойства ухудшаются из-за того, что металлы на оптических частотах сильно греются — это потери. А диэлектрические не имеют таких сильных резонансных свойств, как металлические.
Существуют ли технологии, позволяющие менять коэффициент преломления в конкретной области пространства?
Речь идет о так называемой трансформационной оптике. Если создать метаповерхность таким образом, что каждой точке пространства будет соответствовать свой метаатом, со своими спектральными свойствами, то можно менять направление распространения света под тем углом, какой нам нравится.
Как идет работа с метаматериалами в НИТУ «МИСиС»?
Направление метаматерилов в НИТУ «МИСиС» развивается в лаборатории «Сверхпроводящие метаматериалы», и также мы обучаем метаматериалам студентов на кафедре Теоретической физики и квантовых технологий. Есть несколько направлений, которыми мы занимаемся, это классические, сверхпроводящие и квантовые метаматериалы.
Мы выполняем как теоретические, экспериментальные, так и технологические исследования. Для этого у нас построена прекрасная лаборатория с современным оборудованием. Мы развиваем направления кубитов — элементов квантового компьютера, создаем невидимые покрытия, занимаемся исследованием таких экзотических явлений, как анаполь и различные прикладные аспекты для космоса.
Стоит заметить, что метаматериалы используют не только для разработки технологии невидимости. Идеальное управление волновым фронтом света позволяет создавать плоские линзы. Для этого антенны определенным образом смещают фазу падающего на линзу света — этого оказывается достаточно, чтобы пучок впоследствии сфокусировался в точку. Недавно физики показали, что такие линзы не хуже традиционных оптических приборов.
Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.