Что это значит двоичный код

Двоичный код — где и как применяется?

Сегодня я по-особому рад своей встрече с вами, дорогие мои читатели, ведь я чувствую себя учителем, который на самом первом уроке начинает знакомить класс с буквами и цифрами. А поскольку мы живем в мире цифровых технологий, то я расскажу вам, что такое двоичный код, являющийся их основой.

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Начнем с терминологии и выясним, что означит двоичный. Для пояснения вернемся к привычному нам исчислению, которое называется «десятичным». То есть, мы используем 10 знаков-цифр, которые дают возможность удобно оперировать различными числами и вести соответствующую запись.

Следуя этой логике, двоичная система предусматривает использование только двух знаков. В нашем случае, это всего лишь «0» (ноль) и «1» единица. И здесь я хочу вас предупредить, что гипотетически на их месте могли бы быть и другие условные обозначения, но именно такие значения, обозначающие отсутствие (0, пусто) и наличие сигнала (1 или «палочка»), помогут нам в дальнейшем уяснить структуру двоичного кода.

Зачем нужен двоичный код?

До появления ЭВМ использовались различные автоматические системы, принцип работы которых основан на получении сигнала. Срабатывает датчик, цепь замыкается и включается определенное устройство. Нет тока в сигнальной цепи – нет и срабатывания. Именно электронные устройства позволили добиться прогресса в обработке информации, представленной наличием или отсутствием напряжения в цепи.

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Дальнейшее их усложнение привело к появлению первых процессоров, которые так же выполняли свою работу, обрабатывая уже сигнал, состоящий из импульсов, чередующихся определенным образом. Мы сейчас не будем вникать в программные подробности, но для нас важно следующее: электронные устройства оказались способными различать заданную последовательность поступающих сигналов. Конечно, можно и так описать условную комбинацию: «есть сигнал»; «нет сигнала»; «есть сигнал»; «есть сигнал». Даже можно упростить запись: «есть»; «нет»; «есть»; «есть».

Но намного проще обозначить наличие сигнала единицей «1», а его отсутствие – нулем «0». Тогда мы вместо всего этого сможем использовать простой и лаконичный двоичный код: 1011.

Безусловно, процессорная техника шагнула далеко вперед и сейчас чипы способны воспринимать не просто последовательность сигналов, а целые программы, записанные определенными командами, состоящими из отдельных символов.

Но для их записи используется все тот же двоичный код, состоящий из нулей и единиц, соответствующий наличию или отсутствию сигнала. Есть он, или его нет – без разницы. Для чипа любой из этих вариантов – это единичная частичка информации, которая получила название «бит» (bit — официальная единица измерения).

Условно, символ можно закодировать последовательностью из нескольких знаков. Двумя сигналами (или их отсутствием) можно описать всего четыре варианта: 00; 01;10; 11. Такой способ кодирования называется двухбитным. Но он может быть и:

Скажу честно, единой официальной версии нет, то так сложилось, что именно комбинация из восьми знаков стала стандартной мерой хранящейся информации, именуемой «байт». Таковая могла применяться даже к одной букве, записанной 8-и битным двоичным кодом. Итак, дорогие мои друзья, запомните пожалуйста (если кто не знал):

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Так принято. Хотя символ, записанный 2-х или 32-х битным значением так же номинально можно назвать байтом. Кстати, благодаря двоичному коду мы можем оценивать объемы файлов, измеряемые в байтах и скорость передачи информации и интернета (бит в секунду).

Бинарная кодировка в действии

Для стандартизации записи информации для компьютеров было разработано несколько кодировочных систем, одна из которых ASCII, базирующаяся на 8-и битной записи, получила широкое распространение. Значения в ней распределены особым образом:

Расшифровка значений в ней показано в таблице.

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Если вы считаете, что «0» и «1» расположены в хаотичном порядке, то глубоко ошибаетесь. На примере любого числа я вам покажу закономерность и научу читать цифры, записанные двоичным кодом. Но для этого примем некоторые условности:

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Теперь, мои любознательные друзья, вы не только знаете что такое двоичный код, но и умеете преобразовать зашифрованную им информацию.

Язык, понятный современной технике

Конечно, алгоритм считывания двоичного кода процессорными устройствами намного сложнее. Но зато его помощью можно записать все что угодно:

Помимо этого, благодаря простоте «изложения» возможны различные способы записи бинарной информации:

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Дополняет преимущества двоичного кодирования практически неограниченные возможности по передаче информации на любые расстояния. Именно такой способ связи используется с космическими кораблями и искусственными спутниками.

Так что, сегодня двоичная система счисления является языком, понятным большинству используемых нами электронных устройств. И что самое интересное, никакой другой альтернативы для него пока не предвидится.

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Думаю, что изложенной мною информации для начала вам будет вполне достаточно. А дальше, если возникнет такая потребность, каждый сможет углубиться в самостоятельное изучение этой темы.

Я же буду прощаться и после небольшого перерыва подготовлю для вас новую статью моего блога, на какую-нибудь интересную тему.

Источник

Двоичный код.

Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.

Видя что-то впервые, мы зачастую задаемся логичным вопросом о том, как это работает. Любая новая информация воспринимается нами, как что-то сложное или созданное исключительно для разглядываний издали, однако для людей, желающих узнать подробнее о двоичном коде, открывается незамысловатая истина – бинарный код вовсе не сложный для понимания, как нам кажется. К примеру, английская буква T в двоичной системе приобретет такой вид – 01010100, E – 01000101 и буква X – 01011000. Исходя из этого, понимаем, что английское слово TEXT в виде двоичного кода будет выглядеть таким вот образом: 01010100 01000101 01011000 01010100. Компьютер понимает именно такое изложение символов для данного слова, ну а мы предпочитаем видеть его в изложении букв алфавита.

На сегодняшний день двоичный код активно используется в программировании, поскольку работают вычислительные машины именно благодаря ему. Но программирование не свелось до бесконечного набора нулей и единиц. Поскольку это достаточно трудоемкий процесс, были приняты меры для упрощения понимания между компьютером и человеком. Решением проблемы послужило создание языков программирования (бейсик, си++ и т.п.). В итоге программист пишет программу на языке, который он понимает, а потом программа-компилятор переводит все в машинный код, запуская работу компьютера.

Перевод натурального числа десятичной системы счисления в двоичную систему.

Чтобы перевести числа из десятичной системы счисления в двоичную пользуются «алгоритмом замещения», состоящим из такой последовательности действий:

1. Выбираем нужное число и делим его на 2. Если результат деления получился с остатком, то число двоичного кода будет 1, если остатка нет – 0.

2. Откидывая остаток, если он есть, снова делим число, полученное в результате первого деления, на 2. Устанавливаем число двоичной системы в зависимости от наличия остатка.

3. Продолжаем делить, вычисляя число двоичной системы из остатка, до тех пор, пока не дойдем до числа, которое делить нельзя – 0.

4. В этот момент считается, что двоичный код готов.

Для примера переведем в двоичную систему число 7:

1. 7 : 2 = 3.5. Поскольку остаток есть, записываем первым числом двоичного кода 1.

2. 3 : 2 = 1.5. Повторяем процедуру с выбором числа кода между 1 и 0 в зависимости от остатка.

3. 1 : 2 = 0.5. Снова выбираем 1 по тому же принципу.

4. В результате получаем, переведенный из десятичной системы счисления в двоичную, код – 111.

Таким образом можно переводить бесконечное множество чисел. Теперь попробуем сделать наоборот – перевести число из двоичной в десятичную.

Перевод числа двоичной системы в десятичную.

Для этого нам нужно пронумеровать наше двоичное число 111 с конца, начиная нулем. Для 111 это 1^2 1^1 1^0. Исходя из этого, номер для числа послужит его степенем. Далее выполняем действия по формуле: (x * 2^y) + (x * 2^y) + (x * 2^y), где x – порядковое число двоичного кода, а y – степень этого числа. Подставляем наше двоичное число под эту формулу и считаем результат. Получаем: (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 4 + 2 + 1 = 7.

Немного из истории двоичной системы счисления.

Источник

Что такое двоичный код

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Задача сегодняшней публикации – разобраться в том, что такое двоичный код, для каких целей и где используется двоичный код и зачем вообще он нужен.

Двоичный код – это система обозначений из двух элементов, различные комбинации которых служат для представления (кодировки) информации.

В качестве элементов системы наиболее часто выступают цифры «0» и «1». Но в действительности обозначения могут быть произвольными, исходя из характера сведений, которые требуется кодировать.

Главное – чтобы соответствующие элементы обозначали взаимоисключающие либо противоположные по значению данные.

Великолепным примером двоичного кода могут служить любые пары антонимов, к примеру, «да/нет», «белое/черное», «включено/выключено» и т.д.

Для описания двоичного кода используется понятие разряда (более точно – двоичного разряда), объединяющего целочисленную группу элементов двоичного кода.

Например, в системе, использующей базовые элементы 0 и 1, два двоичных разряда могут быть представлены следующими четырьмя комбинациями: 00, 01, 10 и 11.

Три двоичных разряда могут иметь следующий вид: 000, 001, 010, 011, 100, 101, 110 и 111.

Число двоичных разрядов может быть сколь угодно большим в зависимости от характера решаемых задач и объема кодируемой информации.

Форма представления данных с помощью двоичных разрядов характерна для позиционного двоичного кода, лежащего в основе двоичной системы счисления, применяемой сплошь и рядом во всех типах вычислительной техники.

Увеличение разрядности на единицу приведет к удвоению числа комбинаций в позиционном двоичном коде.

При двух символах (смотри примеры выше) мы имеем 4 комбинации, при трех – 8 комбинаций, при четырех – 16 комбинаций, при n символах – 2 n комбинаций.

С помощью двух символов можно закодировать практически любую информацию. Доказательством тому служат современные компьютеры, работа которых невозможна без такой кодировки.

Характерная особенность систем счисления, использующих разрядный двоичный код, заключается в возможности обозначения одного и того же числа различной комбинацией символов, отличающихся между собой по разрядности.

Например, в двоичной системе счисления единицу можно представить по-разному: 1, 01, 001, 0001 и т.д.

Нумерация двоичных разрядов осуществляется справа налево.

Если взять двоичный код 01011, то первый разряд будет иметь значение 1, второй разряд – 1, третий разряд – 0, четвертый – 1 и пятый разряд – 0:

Примеры двоичного кода

С помощью трех двоичных разрядов можно обозначить восемь десятичных чисел от 0 до 7:

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

Эта таблица отражает перевод десятичных чисел в двоичный код.

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Поскольку число двоичных разрядов ничем не ограничено, с помощью такой кодировки можно зашифровать любое привычное нам десятичное число.

111 → 1 * 2 2 + 1 * 2 1 + 1 * 2 0 = 4 + 2 + 1 = 7

101 → 1 * 2 2 + 0 * 2 1 + 1 * 2 0 = 4 + 0 + 1 = 5

Зачем нужен двоичный код

Основное назначение двоичного кода – шифрование и кодирование информации.

Его главные преимущества – минимальное число символов, используемых для кодирования информации, и удобство – с машинной точки зрения – оперирования зашифрованными с их помощью данными.

Допустим, нам необходимо закодировать фразу «ХОЛОДНОЕ ЛЕТО».

Установим произвольные соответствия букв двоичному коду: Х – 000, О – 001, Л – 010, Д – 011, Н – 100, Е – 101, Т – 111.

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Фото 2. Двоичный код лежит в основе двоичной системы счисления

Тогда закодированная фраза примет следующий вид: 000001010001011100001101010101111001 (36 символов).

Если получатель зашифрованного кода знает, что в основе кодировки каждой буквы лежат три двоичных разряда, то расшифровать фразу ему не составит никакого труда.

В данном случае мы имеем дело с однозначно декодируемым кодом (то есть код может быть расшифрован одним единственным способом).

Для сокращения длины кода может применяться неравномерный двоичный код.

Тогда кодировщик сознательно отступает от принципа разрядности, присваивая буквам произвольное число разрядов.

Например, если Х будет иметь обозначение 01, О – 00, Л – 100, Д – 101, Н – 110, Е – 111, Т – 1111, то фразе «ХОЛОДНОЕ ЛЕТО» будет соответствовать строка 01001000010111000111100111111100 (32 символа).

В данной фразе будет однозначно декодироваться фрагмент «ХОЛОДНО», после чего дешифровщику придется ломать голову над выбором приемлемой трактовки кода: «Е ЛЕТО», «Е ЛЕЕЛ», «Е ЛТЕО», «ТОЕЕЛ» и т.д.

Данный пример указывает на проблемы с использованием непродуманных комбинаций двоичного кода.

При правильном же подборе кодов неравномерный двоичный код позволяет не только сократить объем передаваемого сообщения, но и начать его дешифровку после поступления уже первых нескольких символов, не дожидаясь пока сообщение будет получено в полном объеме.

Виды двоичных кодов

Представление в памяти компьютера целочисленных значений производится с помощью беззнакового двоичного кода, основанного на представлении двоичных разрядов степенями двойки.

К примеру, для шестнадцатиразрядного кода допустимыми будут значения чисел от 0 до 65535.

На практике приходится решать задачи посложнее.

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный код

Фото 3. С помощью двоичного кода можно закодировать все что угодно

Машине или компьютеру достаточно трудно объяснить разницу между положительными и отрицательными числами. Отдельного представления требуют и числа с плавающей запятой, дробные или трансцендентные числа.

Инженеры придумали способ, как обходить эти проблемы, не выходя за пределы использования двоичного кода. Для решения озвученных проблем используется знаковый двоичный код.

В частности, для определения знака числа используется старший разряд в слове.

Если слово начинается с символа «0», значит число положительное (имеет знак «+»), если с символа «1», значит оно – отрицательное (имеет знак «-»).

Недостаток знакового двоичного кода кроется в необходимости раздельной обработки цифрового и знакового разрядов, что заставляет разработчиков программного обеспечения прибегать к усложненным алгоритмам обработки данных.

Как следствие, программный код увеличивается в объеме, а скорость его работы замедляется.

Видео о двоичном коде:

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный кодКакой материк самый жаркий?

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный кодЧто такое рыбоводческая ферма?

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный кодЛесостепи и степи Европы

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный кодПочему мою одежду надо стирать?

Что это значит двоичный код. Смотреть фото Что это значит двоичный код. Смотреть картинку Что это значит двоичный код. Картинка про Что это значит двоичный код. Фото Что это значит двоичный кодКак услышать небеса?

Источник

Двоичное счисление на пальцах

Все знают, что компьютеры состоят из единиц и нулей. Но что это значит на самом деле?

Если у вас в школе была информатика, не исключено, что там было упражнение на перевод обычных чисел в двоичную систему и обратно. Маловероятно, что кто-то вам объяснял практический смысл этой процедуры и откуда вообще берётся двоичное счисление. Давайте закроем этот разрыв.

Эта статья не имеет практической ценности — читайте её просто ради интереса к окружающему миру. Если нужны практические статьи, заходите в наш раздел «Где-то баг», там каждая статья — это практически применимый проект.

Отличный план

Чтобы объяснить всё это, нам понадобится несколько тезисов:

Система записи — это шифр

Если у нас есть девять коров, мы можем записать их как 🐄🐄🐄🐄🐄🐄🐄🐄🐄 или как 9 × 🐄.

Почему 9 означает «девять»? И почему вообще есть такое слово? Почему такое количество мы называем этим словом? Вопрос философский, и короткий ответ — нам нужно одинаково называть числа, чтобы друг друга понимать. Слово «девять», цифра 9, а также остальные слова — это шифр, который мы выучили в школе, чтобы друг с другом общаться.

Допустим, к нашему стаду прибиваются еще 🐄🐄🐄. Теперь у нас 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄 — двенадцать коров, 12. Почему мы знаем, что 12 — это «двенадцать»? Потому что мы договорились так шифровать числа.

Нам очень легко расшифровывать записи типа 12, 1920, 100 500 и т. д. — мы к ним привыкли, мы учили это в школе. Но это шифр. 12 × 🐄 — это не то же самое, что 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄. Это некая абстракция, которой мы пользуемся, чтобы упростить себе счёт.

Мы привыкли шифровать десятью знаками

У нас есть знаки 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 — всего десять знаков. Этим числом знаков мы шифруем количество единиц, десятков, сотен, тысяч и так далее.

Мы договорились, что нам важен порядок записи числа. Мы знаем, что самый правый знак в записи означает число единиц, следующий знак (влево) означает число десятков, потом сотен и далее.

Например, перед нами число 19 547. Мы знаем, что в нём есть:

Если приглядеться, то каждый следующий разряд числа показывает следующую степень десятки:

Нам удобно считать степенями десятки, потому что у нас по десять пальцев и мы с раннего детства научились считать до десяти.

Система записи — это условность

Представим бредовую ситуацию: у нас не 10 пальцев, а 6. И в школе нас учили считать не десятками, а шестёрками. И вместо привычных цифр мы бы использовали знаки ØABCDE. Ø — это по-нашему ноль, A — 1, B — 2, E — 5.

Вот как выглядели бы привычные нам цифры в этой бредовой системе счисления:

0 — Ø
1 — A
2 — B
3 — C
4 — D
5 — E
6 — AØ
7 — AA
8 — AB
9 — AC
10 — AD
11 — AE
12 — BØ
13 — BA
14 — BB
15 — BC
16 — BD
17 — BE
18 — CØ
19 — CA
20 — CB
21 — CC
22 — CD
23 — CE
24 — DØ
25 — DA
26 — DB
27 — DC
28 — DD
29 — DE
30 — EØ
31 — EA
32 — EB
33 — EC
34 — ED
35 — EE
36 — AØØ
37 — AØA
38 — AØB
39 — AØC
40 — AØD
41 — AØE

В этой системе мы считаем степенями шестёрки. Число ABADØ можно было бы перевести в привычную нам десятичную запись вот так:

A × 6 4 = 1 × 1296 = 1296

B × 6 3 = 2 × 216 = 432

1296 + 432 + 36 + 24 + 0 = 1788. В нашей десятичной системе это 1788, а у людей из параллельной вселенной это ABADØ, и это равноценно.

Выглядит бредово, но попробуйте вообразить, что у нас в сумме всего шесть пальцев. Каждый столбик — как раз шесть чисел. Очень легко считать в уме. Если бы нас с детства учили считать шестёрками, мы бы спокойно выучили этот способ и без проблем всё считали. А счёт десятками вызывал бы у нас искреннее недоумение: «Что за бред, считать числом AD? Гораздо удобнее считать от Ø до E!»

То, как мы шифруем и записываем числа, — это следствие многовековой традиции и физиологии. Вселенной, космосу, природе и стадам коров глубоко безразлично, что мы считаем степенями десятки. Природа не укладывается в эту нашу систему счёта.

Двоичная система (тоже нормальная)

Внутри компьютера работают транзисторы. У них нет знаков 0, 1, 2, 3… 9. Транзисторы могут быть только включёнными и выключенными — обозначим их 💡 и ⚫.

Мы можем научить компьютер шифровать наши числа этими транзисторами так же, как шестипалые люди шифровали наши числа буквами. Только у нас будет не 6 букв, а всего две: 💡 и ⚫. И выходит, что в каждом разряде будет стоять не число десяток в разной степени, не число шестёрок в разной степени, а число… двоек в разной степени. И так как у нас всего два знака, то получается, что мы можем обозначить либо наличие двойки в какой-то степени, либо отсутствие:

8 — 💡 ⚫⚫⚫
9 — 💡 ⚫⚫ 💡
10 — 💡 ⚫ 💡 ⚫
11 — 💡 ⚫ 💡 💡
12 — 💡 💡 ⚫⚫
13 — 💡 💡 ⚫ 💡
14 — 💡 💡 💡 ⚫
15 — 💡 💡 💡 💡16 — 💡 ⚫⚫⚫⚫
17 — 💡 ⚫⚫⚫ 💡
18 — 💡 ⚫⚫ 💡 ⚫
19 — 💡 ⚫⚫ 💡 💡
20 — 💡 ⚫ 💡 ⚫⚫
21 — 💡 ⚫ 💡 ⚫ 💡
21 — 💡 ⚫ 💡 💡 ⚫
23 — 💡 ⚫ 💡 💡 💡
24 — 💡 💡 ⚫⚫⚫
25 — 💡 💡 ⚫⚫ 💡
26 — 💡 💡 ⚫ 💡 ⚫
27 — 💡 💡 ⚫ 💡 💡
28 — 💡 💡 💡 ⚫⚫
29 — 💡 💡 💡 ⚫ 💡
30 — 💡 💡 💡 💡 ⚫
31 — 💡 💡 💡 💡 💡32 — 💡 ⚫⚫⚫⚫⚫
33 — 💡 ⚫⚫⚫⚫ 💡
34 — 💡 ⚫⚫⚫ 💡 ⚫
35 — 💡 ⚫⚫⚫ 💡 💡
36 — 💡 ⚫⚫ 💡 ⚫⚫
37 — 💡 ⚫⚫ 💡 ⚫ 💡
38 — 💡 ⚫⚫ 💡 💡 ⚫
39 — 💡 ⚫⚫ 💡 💡 💡
40 — 💡 ⚫ 💡 ⚫⚫⚫
41 — 💡 ⚫ 💡 ⚫⚫ 💡
42 — 💡 ⚫ 💡 ⚫ 💡 ⚫
43 — 💡 ⚫ 💡 ⚫ 💡 💡
44 — 💡 ⚫ 💡 💡 ⚫⚫
45 — 💡⚫💡💡⚫💡
46 — 💡⚫💡💡💡⚫
47 — 💡⚫💡💡💡💡
48 — 💡💡⚫⚫⚫⚫
49 — 💡💡⚫⚫⚫💡
50 — 💡💡⚫⚫💡⚫
51 — 💡💡⚫⚫💡💡
52 — 💡💡⚫💡⚫⚫
53 — 💡💡⚫💡⚫💡
54 — 💡💡⚫💡💡⚫
55 — 💡💡⚫💡💡💡
56 — 💡💡💡⚫⚫⚫
57 — 💡💡💡⚫⚫💡
58 — 💡💡💡⚫💡⚫
59 — 💡💡💡⚫💡💡
60 — 💡💡💡💡⚫⚫
61 — 💡💡💡💡⚫💡
62 — 💡💡💡💡💡⚫
63 — 💡💡💡💡💡💡

Если перед нами число 💡 ⚫💡⚫⚫ 💡💡⚫⚫, мы можем разложить его на разряды, как в предыдущих примерах:

256 + 0 + 64 + 0 + 0 + 8 + 4 + 0 + 0 = 332

Получается, что десятипалые люди могут записать это число с помощью цифр 332, а компьютер с транзисторами — последовательностью транзисторов 💡⚫💡⚫⚫ 💡💡⚫⚫.

Если теперь заменить включённые транзисторы на единицы, а выключенные на нули, получится запись 1 0100 1100. Это и есть наша двоичная запись того же самого числа.

Почему говорят, что компьютер состоит из единиц и нулей (и всё тлен)

Инженеры научились шифровать привычные для нас числа в последовательность включённых и выключенных транзисторов.

Дальше эти транзисторы научились соединять таким образом, чтобы они умели складывать зашифрованные числа. Например, если сложить 💡⚫⚫ и ⚫⚫💡, получится 💡⚫💡. Мы писали об этом подробнее в статье о сложении через транзисторы.

Дальше эти суммы научились получать супербыстро. Потом научились получать разницу. Потом умножать. Потом делить. Потом всё это тоже научились делать супербыстро. Потом научились шифровать не только числа, но и буквы. Научились их хранить и считывать. Научились шифровать цвета и координаты. Научились хранить картинки. Последовательности картинок. Видео. Инструкции для компьютера. Программы. Операционные системы. Игры. Нейросети. Дипфейки.

И всё это основано на том, что компьютер умеет быстро-быстро складывать числа, зашифрованные как последовательности включённых и выключенных транзисторов.

При этом компьютер не понимает, что он делает. Он просто гоняет ток по транзисторам. Транзисторы не понимают, что они делают. По ним просто бежит ток. Лишь люди придают всему этому смысл.

Когда человека не станет, скорость света будет по-прежнему 299 792 458 метров в секунду. Но уже не будет тех, кто примется считать метры и секунды. Такие дела.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *