Что характеризует коэффициент множественной регрессии
Множественный регрессионый анализ
Мультиколлинеарность имеет место, если определитель матрицы межфакторной корреляции близок к нулю:
Определение факторов, ответственных за мультиколлинеарность, может быть основано на анализе матрицы межфакторной корреляции. При этом определяют пару признаков-факторов, которые сильнее всего связаны между собой (коэффициент линейной парной корреляции максимален по модулю). Из этой пары в наибольшей степени ответственным за мультиколлинеарность будет тот признак, который теснее связан с другими факторами модели (имеет более высокие по модулю значения коэффициентов парной линейной корреляции).
Еще один способ определения факторов, ответственных за мультиколлинеарность основан на вычислении коэффициентов множественной детерминации (R 2 xj(x1. xj-1,xj+1. xm)), показывающего зависимость фактора xj от других факторов модели x1. xj-1, xj+1. xm. Чем ближе значение коэффициента множественной детерминации к единице, тем больше ответственность за мультиколлинеарность фактора, выступающего в роли зависимой переменной. Сравнивая между собой коэффициенты множественной детерминации для различных факторов можно проранжировать переменные по степени ответственности за мультиколлинеарность.
При выборе формы уравнения множественной регрессии предпочтение отдается линейной функции:
yi =a+b1·x1i+ b2·x2i+. + bm·xmi+ui
в виду четкой интерпретации параметров.
Данное уравнение регрессии называют уравнением регрессии в естественном (натуральном) масштабе. Коэффициент регрессии bjпри факторе хjназывают условно-чистым коэффициентом регрессии. Он измеряет среднее по совокупности отклонение признака-результата от его средней величины при отклонении признака-фактора хj на единицу, при условии, что все прочие факторы модели не изменяются (зафиксированы на своих средних уровнях).
Если не делать предположения о значениях прочих факторов, входящих в модель, то это означало бы, что каждый из них при изменении хj также изменялся бы (так как факторы связаны между собой), и своими изменениями оказывали бы влияние на признак-результат.