Что такое эмс в электрике

ЭМС в изделиях

1. Актуальность проблемы электромагнитной совместимости.

Электромагнитная совместимость (ЭМС) технических средств — способность технических средств одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных электромагнитных помех и не создавать недопустимых электромагнитных помех другим техническим средствам

Невыполнение требований ЭМС может иметь достаточно серьезные последствия в различных сферах деятельности человека и на производственных предприятиях: привести к сбою в электронных системах управления воздушного, железнодорожного транспорта, автоматических производственных линий, систем управления промышленных объектов и объектов энергетики, медицинского оборудования. В настоящее время, когда в целях повышения эффективности работы, предприятия стали переходить на цифровые устройства, проблема ЭМС встает особенно остро: под воздействием помех основные системы контроля могут выходить из строя и срабатывать ложно. Электромагнитная совместимость нарушается, если уровень помех слишком высок или помехоустойчивость оборудования недостаточна. В этом случае возможны нарушения в работе компьютеров, цифровых устройств релейной защиты, систем цифрового управления и АСУ разного уровня, появление ложных команд в указанных системах, что может привести к катастрофическим последствиям. Над проблемой ЭМС долгое время не задумывались, пока не были зарегистрированы массовые сбои в банковских системах при воздействии помех. Это и привело к появлению директивы 336ЕС 89, которая обязала страны Европейского сообщества ввести единые стандарты по электромагнитной совместимости и разработать систему сертификации. В результате с 1996 года в Европе не допускается продажа технических средств без сертификата соответствия стандартам по электромагнитной совместимости. Решением Комиссии Таможенного союза от 9 декабря 2011 года № 879 принят технический регламент Таможенного союза ТР ТС 020/2011 «Электромагнитная совместимость технических средств». Настоящий технический регламент Таможенного союза распространяется на выпускаемые в обращение на единой таможенной территории Таможенного союза технические средства, способные создавать электромагнитные помехи и (или) качество функционирования которых зависит от воздействия внешних электромагнитных помех.

2. Основные термины и определения.

Основным государственным стандартом в области терминологии электромагнитной совместимости технических средств является ГОСТ 30372-95 (ГОСТ Р 50397-2011), в котором содержится официальное определение терминов в области электромагнитной совместимости: • Электромагнитная обстановка (ЭМО) (electromagnetic environment) — совокупность реальных электромагнитных явлений, существующих в данном месте, в частотном и временном диапазонах. • Электромагнитная совместимость (ЭМС) (electromagnetic compatibility — EMC) — это способность технического средства (ТС) эффективно функционировать с заданным качеством в определенной ЭМО, не создавая при этом недопустимых электромагнитных помех другим ТС. • Электромагнитная помеха (ЭМП) (electromagnetic disturbance) — электромагнитные явления, которые ухудшают или могут ухудшить качество функционирования ТС (электрической сети, приборов и устройств потребителей). Уровень ЭМП — значение величины помехи, измеренное в регламентированных условиях. • Влияние помехи (electromagnetic interference — EMI) — снижение показателей качества функционирования ТС при воздействии помехи. • Устойчивость к ЭМП, помехоустойчивость (immunity) — способность ТС сохранять заданное качество функционирования при воздействии помех. Основные понятия электромагнитной совместимости рассматривают воздействие как излучаемых, так и кондуктивных помех (наводки), распространяющихся по провод­никам (например, наводки по цепям пита­ния), а также чувствительность электрообо­рудования к воздействию помех (помехоус­тойчивость). При этом характеристики электромагнитной совместимости могут оп­ределяться в полосе частот 0. 400 ГГц. Взаи­мосвязь основных понятий электромагнит­ной совместимости приведена на рисунке
Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике


3.
Классификация электромагнитных помех.

В качестве ЭМП может фигурировать практически любое электромагнитное явление в широком диапазоне частот, способное негативно влиять на работу аппаратуры. Ниже представлена краткая классификация помех, которая широко используется инженерами, работающими в области ЭМС.

В зависимости от источника ЭМП можно разделить на естественные и искусственные. Естественная помеха: электромагнитная помеха, источником которой являются природные физические явления. Наиболее распространенной естественной ЭМП является электромагнитный импульс при ударе молнии.

Искусственная помеха: электромагнитная помеха, источником которой является устройство, созданное человеком.

В зависимости от среды распространения ЭМП могут разделяться на индуктивные и кондуктивные. Индуктивными называются ЭМП, распространяющиеся в виде электромагнитных полей в непроводящих средах. Кондуктивные ЭМП представляют собой токи, текущие по проводящим конструкциям и земле. Деление помех на индуктивные и кондуктивные является условным. В реальности протекает единый электромагнитный процесс, затрагивающий проводящую и непроводящую среду. В ходе распространения многие помехи могут превращаться из индуктивных в кондуктивные и наоборот. Так, переменное электромагнитное поле способно наводить токи в кабелях, которые далее распространяются как классические кондуктивные помехи. С другой стороны, токи в кабелях и цепях заземления сами создают электромагнитные поля, т.е., индуктивные помехи. Деление помех на индуктивные и кондуктивные можно считать относительно строгим лишь в низкочастотной (до десятков кГц) области, когда емкостные и индуктивные связи обычно малы.

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Схема приложения помехи «провод-земля» (а) и «провод-провод» (б).

Непрерывная помеха: электромагнитная помеха, уровень которой не уменьшается ниже определенного значения в регламентированном интервале времени.

Кратковременная помеха: электромагнитная помеха, длительность которой, измеренная в регламентированных условиях, меньше некоторой величины, регламентированной для данного технического средства.

Индустриальная помеха: электромагнитная помеха, создаваемая техническими средствами.

Импульсная помеха: электромагнитная помеха в виде одиночного импульса, последовательности или пачки импульсов.

Шумовая помеха: электромагнитная помеха, источником которой является электромагнитный шум.

4. Нормы и стандарты электромагнитной совместимости.

Существует большое количество норм и требований, относящихся к обеспечению электромагнитной совместимости оборудования. Они подразделяются на нормы, регламентирующие характеристики измерительного оборудования, параметры тестовых систем и методику измерений помех различной природы. Определяя методику испытаний электрических устройств на электромагнитную совместимость, эти нормы устанавливают критерии, на основании которых может быть сделан вывод, что испытываемые устройства удовлетворяют требованиям EMC.

Работа по стандартизации требований по электромагнитной совместимости ведётся на международном, европейском и национальных уровнях. На мировом уровне основную нагрузку несут на себе ISO (Международная организация по стандартизации) и IEC (Международная электротехническая комиссия, МЭК), подразделением которой является CISPR (International Special Committee on Radio Interference — Международный специальный комитет по борьбе с радиопомехами). На европейском уровне данную работу осуществляют CEN (Европейский комитет по стандартизации) и CENELEC (Европейский комитет по электротехническим стандартам), а также ETSI (Европейский институт по стандартизации в области телекоммуникаций).

5. Критерии качества функционирования технических средств при воздействии помех:


Обеспечение электромагнитной совместимости.

Организационное обеспечение ЭМС :

организационные решения, постановления, нормативно-технические документы, направленные на исключение или снижение до приемлемого уровня электромагнитных помех между техническими средствами

экспериментальное и (или) теоретическое исследование состояния обеспечения ЭМС технического средства в заданной электромагнитной обстановке.

Техническое обеспечение ЭМС :

Технические решения, направленные на улучшение характеристик их ЭМС.

Сертификация ТС на соответствие требованиям ЭМС :

мероприятия, в результате которых удостоверяется соответствие определенного типа технического средства требованиям государственных, международных или иных нормативно-технических документов, регламентирующих характеристики ЭМС, посредством выдачи предприятию изготовителю сертификата.

Источник

Что такое электромагнитная совместимость

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Электромагнитные помехи могут иметь в качестве своих источников либо природные явления (например разряды молний), либо технические процессы (например переходные процессы в цепях во время быстрых периодических или случайных переключений). Так или иначе помеха подразумевает внезапное изменение напряжения или тока в цепи, которое является нежелательным, распространяется ли оно вдоль кабеля или передается в виде электромагнитной волны.

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

В теории ЭМС оперируют терминами «приемник» и «передатчик» энергии (помех). Передатчиками помех могут выступать: радиовещательные и телевышки, электрические цепи и сети и т. д. Приемниками помех выступают: радиоприемники, антенны, системы автоматизации, автомобильной электроники, средства автоматики и релейной защиты, системы обработки информации и т. д.

Так или иначе, электромагнитная совместимость необходима сегодня практически любому оборудованию. Даже в самых обычных условиях современного города присутствует колоссальное число разного рода излучений, и если не обеспечить меры поддержания ЭМС, то надежная и корректная работа многих технических средств окажется попросту невозможной, ибо они станут выходить из строя и порождать причины для системных аварий, создавая обратимые или необратимые нарушения.

ЭМС необходима техническим средствам всегда, пока они существуют: ЭМС учитывается на стадии проектирования прибора, ЭМС обеспечивается во время ввода данного прибора в эксплуатацию, ЭМС поддерживается во время его непосредственной эксплуатации.

Наиболее остро проблема электромагнитной совместимости стоит для организаций, которым свойственны следующие характеристики: высокая энерговооруженность (например электростанция), повышенные требования к безопасности информационных систем (например банк), неблагоприятная типичная электромагнитная среда вокруг (например завод по производству электроники, возведенный на территории с высоким уровнем фонового излучения).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Уменьшение помех и, следовательно, электромагнитная совместимость могут быть достигнуты путем решения любой или всех этих проблем, т. Е. Подавления источников помех, предотвращения путей связи и / или усиления защиты потенциальных жертв. На практике многие используемые инженерные методы, такие как заземление и экранирование, применимы ко всем трем вопросам.

СОДЕРЖАНИЕ

Вступление

Помимо понимания явлений самих по себе, EMC также обращается к контрмерам, таким как режимы контроля, дизайн и измерения, которые должны быть приняты, чтобы предотвратить любые неблагоприятные последствия выбросов.

Виды помех

Электромагнитные помехи делятся на несколько категорий в зависимости от источника и характеристик сигнала.

Источник помех, часто называемых в этом контексте «шумом», может быть искусственным (искусственным) или естественным.

Непрерывное вмешательство

Непрерывная или непрерывная волна (CW), интерференция возникает там, где источник непрерывно излучает в заданном диапазоне частот. Этот тип естественным образом делится на подкатегории в соответствии с частотным диапазоном, и в целом его иногда называют «от постоянного тока до дневного света».

Импульсные или переходные помехи

Источники делятся на изолированные и повторяющиеся события.

Механизмы сцепления

Некоторые из используемых технических терминов могут иметь разные значения. Некоторые явления можно обозначать разными терминами. Эти термины используются здесь широко, что согласуется с другими статьями энциклопедии.

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Проводящая муфта

Кондуктивная связь возникает, когда путь связи между источником и жертвой формируется прямым электрическим контактом с проводящим телом, например линией передачи, проводом, кабелем, дорожкой печатной платы или металлическим корпусом.

Кондуктивный шум также характеризуется тем, как он проявляется на разных проводниках:

Индуктивная связь

Емкостная связь

Емкостная связь возникает, когдамежду двумя соседними проводниками существуетпеременное электрическое поле, расстояние между которыми обычно меньше длины волны, что вызывает изменение напряжения на принимающем проводе.

Магнитная муфта

Индуктивная связь или магнитная связь возникает, когдамежду двумя параллельными проводниками существуетпеременное магнитное поле, которое обычно меньше длины волны друг от друга, вызывая изменение напряжения вдоль принимающего проводника.

Радиационная связь

Излучательная связь или электромагнитная связь возникает, когда источник и жертва разделены большим расстоянием, обычно превышающим длину волны. Источник и жертва действуют как радиоантенны: источник излучает или излучает электромагнитную волну, которая распространяется через пространство между ними и воспринимается или принимается жертвой.

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Контроль ЭМС

Повреждающее воздействие электромагнитных помех создает неприемлемые риски во многих областях техники, и необходимо контролировать такие помехи и снижать риски до приемлемых уровней.

Контроль электромагнитных помех (EMI) и обеспечение EMC включает ряд связанных дисциплин:

Риск, создаваемый угрозой, обычно носит статистический характер, поэтому большая часть работы по определению характеристик угроз и установлению стандартов основана на снижении вероятности разрушительных EMI до приемлемого уровня, а не на ее гарантированном устранении.

Для сложной или новой единицы оборудования это может потребовать создания специального плана управления электромагнитной совместимостью, в котором резюмируется применение вышеуказанного и указываются требуемые дополнительные документы.

Характеризуя угрозу

Характеристика проблемы требует понимания:

Законы и регуляторы

Регулирующие органы и органы по стандартизации

Несколько организаций, как национальных, так и международных, работают над продвижением международного сотрудничества в области стандартизации ( гармонизации ), включая публикацию различных стандартов EMC. Там, где это возможно, стандарт, разработанный одной организацией, может быть принят с небольшими изменениями или без изменений другими. Это помогает, например, гармонизировать национальные стандарты по всей Европе.

Международные организации по стандартизации включают:

Среди основных национальных организаций:

Законы

Соответствие национальным или международным стандартам обычно устанавливается законами, принятыми отдельными странами. Разные страны могут требовать соблюдения разных стандартов.

ЭМС дизайн

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Электромагнитный шум создается в источнике из-за быстрых изменений тока и напряжения и распространяется через механизмы связи, описанные ранее.

Прерывание пути связи одинаково эффективно как в начале, так и в конце пути, поэтому многие аспекты надлежащей практики проектирования ЭМС в равной степени применимы как к потенциальным источникам, так и к потенциальным жертвам.

Конструкция, которая легко связывает энергию с внешним миром, одинаково легко передает энергию внутрь и будет восприимчива. Одно улучшение часто снижает как выбросы, так и восприимчивость.

Заземление и экранирование

Заземление и экранирование направлены на снижение выбросов или отвод электромагнитных помех от пострадавшего за счет обеспечения альтернативного пути с низким сопротивлением. Методы включают:

Другие общие меры

Подавление выбросов

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

Дополнительные меры по снижению выбросов включают:

Восприимчивость закаливания

Дополнительные меры по снижению восприимчивости включают:

EMC тестирование

Требуется тестирование, чтобы подтвердить, что конкретное устройство соответствует требуемым стандартам. В целом он подразделяется на испытания на выбросы и испытания на чувствительность.

Испытательные площадки на открытом воздухе, или OATS, являются эталонными площадками для большинства стандартов. Они особенно полезны для испытаний на выбросы большого оборудования.

Как и все испытания на соответствие, важно, чтобы испытательное оборудование, включая испытательную камеру или площадку и любое используемое программное обеспечение, было правильно откалибровано и обслуживалось.

Испытания на выбросы

Эмиссия обычно измеряется для излучаемой напряженности поля и, где это уместно, для кондуктивных помех вдоль кабелей и проводки. Напряженности индуктивного (магнитного) и емкостного (электрического) поля являются эффектами ближнего поля и важны только в том случае, если тестируемое устройство (ИУ) спроектировано для размещения рядом с другим электрическим оборудованием.

Специализированные тестовые приемники EMI или анализаторы EMI используются для тестирования соответствия EMC. Они включают полосы пропускания и детекторы в соответствии с международными стандартами ЭМС. Приемник EMI может быть основан на анализаторе спектра для измерения уровней излучения тестируемого устройства в широкой полосе частот (частотная область) или на настраиваемом узкополосном устройстве, которое качается через желаемый частотный диапазон. Приемники EMI вместе с указанными преобразователями часто могут использоваться как для кондуктивных, так и для излучаемых излучений. Фильтры предварительной селекции также могут использоваться для уменьшения влияния сильных внеполосных сигналов на входной каскад приемника.

Некоторые импульсные излучения более полезно охарактеризовать с помощью осциллографа для захвата формы импульса во временной области.

Тест на восприимчивость

Тестирование восприимчивости к излучаемому полю обычно включает в себя мощный источник радиочастотной или электромагнитной энергии и излучающую антенну для направления энергии на потенциальную жертву или тестируемое устройство (DUT).

Испытания на кондуктивную чувствительность к напряжению и току обычно включают в себя мощный генератор сигналов и токоизмерительные клещи или другой тип трансформатора для подачи тестового сигнала.

Переходные сигналы или сигналы ЭМИ используются для проверки невосприимчивости ИУ к помехам в электросети, включая скачки напряжения, удары молнии и коммутационные помехи. В автомобилях аналогичные испытания проводятся на аккумуляторных батареях и сигнальных линиях. Переходный импульс может быть сгенерирован в цифровом виде и пропущен через широкополосный импульсный усилитель или подан непосредственно на преобразователь от специализированного генератора импульсов.

Испытание электростатическим разрядом обычно выполняется с помощью пьезоискрового генератора, называемого « пистолетом ESD ». Для импульсов с более высокой энергией, таких как моделирование молнии или ядерного ЭМИ, могут потребоваться большие токовые клещи или большая антенна, полностью окружающая ИУ. Некоторые антенны настолько велики, что располагаются на открытом воздухе, поэтому необходимо соблюдать осторожность, чтобы не создавать опасности ЭМИ для окружающей среды.

История

Происхождение

Начало двадцатого века

Можно сказать, что радиопомехи и их коррекция возникли с первым экспериментом Маркони с искровым разрядником в конце 1800-х годов. По мере развития радиосвязи в первой половине 20 века между радиосигналами вещания стали возникать помехи, и была создана международная нормативно-правовая база для обеспечения связи без помех.

Коммутационные устройства стали обычным явлением в середине 20-го века, как правило, в автомобилях и мотоциклах с бензиновым двигателем, но также и в бытовых приборах, таких как термостаты и холодильники. Это вызвало кратковременные помехи внутреннему радио и (после Второй мировой войны) телевизионному приему, и со временем были приняты законы, требующие подавления таких источников помех.

Проблемы ESD впервые возникли при случайных электрических искровых разрядах в опасных средах, таких как угольные шахты, и при заправке самолетов или автомобилей. Необходимо было разработать безопасные методы работы.

Послевоенный период

После Второй мировой войны военные стали все больше беспокоиться о влиянии ядерного электромагнитного импульса (NEMP), удара молнии и даже мощных радиолокационных лучей на автомобили и мобильное оборудование всех видов, и особенно на электрические системы самолетов.

Когда высокие уровни радиочастотного излучения от других источников стали потенциальной проблемой (например, с появлением микроволновых печей ), определенные полосы частот были выделены для промышленного, научного и медицинского использования (ISM), что позволило ограничить уровни излучения только стандартами тепловой безопасности. Разнообразие проблем, таких как излучение боковой полосы и гармоник, широкополосные источники и постоянно растущая популярность электрических коммутационных устройств и их жертв, привели к неуклонному развитию стандартов и законов.

Современная эра

В 1985 году США выпустили диапазоны ISM для маломощной мобильной цифровой связи, что привело к развитию Wi-Fi и дистанционно управляемых ключей от дверей автомобилей. Этот подход основан на прерывистой природе помех ISM и использовании сложных методов исправления ошибок для обеспечения приема без потерь во время тихих промежутков между любыми пакетами помех.

Источник

Что такое эмс в электрике

ГОСТ IEC/TS 61000-1-2-2015

Электромагнитная совместимость (ЭМС)

Методология достижения функциональной безопасности электрических и электронных систем, включая оборудование, в отношении электромагнитных помех

Electromagnetic compatibility (EMC). Part 1-2. General. Methodology for the achievement of functional safety of electrical and electronic systems including equipment with regard to electromagnetic phenomena

Дата введения 2016-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Закрытым акционерным обществом «Научно-испытательный центр «САМТЭС» и Техническим комитетом по стандартизации ТК 30 «Электромагнитная совместимость технических средств» на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 22 июля 2015 г. N 78-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 августа 2015 г. N 1195-ст межгосударственный стандарт ГОСТ IEC/TS 61000-1-2-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2016 г.

Международный документ IEC/TS 61000-1-2:2008, представляющий собой технические требования, подготовлен Техническим комитетом ТК 77 IEC «Электромагнитная совместимость». Он имеет статус основополагающей публикации в области безопасности в соответствии с Руководством IEC 107.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов и документа соответствующие им межгосударственные и национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

7 ПЕРЕИЗДАНИЕ. Июнь 2020 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

Введение

Стандарты серии IEC 61000 публикуются отдельными частями в соответствии со следующей структурой:

— Часть 1. Общие положения: общее рассмотрение (введение, фундаментальные принципы), определения, терминология;

— Часть 2. Электромагнитная обстановка: описание электромагнитной обстановки, классификация электромагнитной обстановки, уровни электромагнитной совместимости;

— Часть 3. Нормы: нормы электромагнитной эмиссии, нормы помехоустойчивости (в тех случаях, когда они не являются предметом рассмотрения техническими комитетами, разрабатывающими стандарты на продукцию);

— Часть 4. Методы испытаний и измерений: методы измерений, методы испытаний;

— Часть 5. Руководства по установке и помехоподавлению: руководства по установке, методы и устройства помехоподавления;

— Часть 6. Общие стандарты;

Каждая часть далее подразделяется на несколько частей, которые могут быть опубликованы в качестве международных стандартов, технических требований или технических отчетов; некоторые из них были уже опубликованы как разделы. Другие будут опубликованы с указанием номера части, за которым следует дефис, а затем номер раздела (например, IEC 61000-3-11).

Настоящее второе издание IEC/TS 61000-1-2:2008 заменяет и отменяет первое издание, опубликованное в 2001 г., и является техническим пересмотром.

Основные технические изменения по отношению к предыдущему изданию следующие:

— для систем, связанных с безопасностью, которые используют электрические/электронные/программируемые электронные технологии, технические данные, определения, терминология и текст настоящего второго издания приведены в соответствии с IEC 61508;

— требования и методологии оценки риска были исключены из этого документа, чтобы не дублировать и не входить в противоречие с IEC 61508;

— в настоящее время устанавливаются четкие различия между полными системами, связанными с безопасностью и образцами оборудования, которые могут быть использованы в таких системах, а также уточняется их применение различными конечными пользователями;

— настоящие технические требования в основном описывают соответствующие методы проектирования и их верификацию и подтверждение;

— методология оценки и определения электромагнитных обстановок была расширена;

— принимается во внимание сочетание электромагнитных и физических/климатических воздействий.

Отдельные соображения для IEC/TS 61000-1-2:2008

Функция электрической или электронной системы не должна быть подвержена такому влиянию внешних воздействий, которое может привести к недопустимому риску причинения ущерба пользователям, другим лицам, животным или собственности. Полный анализ безопасности должен учитывать различные факторы климатического, механического и электрического характера, а также разумно предсказуемое неправильное использование. Электромагнитные помехи являются неотъемлемой частью большинства обстановок и поэтому должны быть учтены при таком анализе.

В отношении согласования с публикациями IEC настоящий документ использует, насколько это приемлемо, соответствующие действующие основополагающие стандарты IEC. В нем учтены работы Подкомитета ТК 65А, связанные с понятиями функциональной безопасности стандартов серии IEC 61508, и Технического комитета 77, его подкомитетов и CISPR (Специальный международный комитет по радиопомехам), связанные с электромагнитными обстановками. Для детализации указанных вопросов следует использовать ссылки на стандарты этих технических комитетов.

IEC 61508 имеет статус основополагающей публикации в области безопасности; ее объектом стандартизации является функциональная безопасность электрических/электронных/программируемых электронных (Э/Э/ПЭ) систем, связанных с безопасностью. Он устанавливает всеобъемлющие требования для достижения функциональной безопасности. Достаточная устойчивость к электромагнитному влиянию является одним из этих требований. Однако область применения IEC 61508 ограничена системами, выполняющими функции безопасности, для которых установлены требования к полноте безопасности, оцениваемые в пределах уровня полноты безопасности (SIL) от SIL 1 до SIL4, и для которых не регламентируются детальные требования, относящиеся к электромагнитной устойчивости.

Настоящая часть IEC 61000-1 представляет собой руководство для достижения адекватной помехоустойчивости систем, связанных с безопасностью, и оборудования, которое предназначено для использования в системах, связанных с безопасностью.

Концепция IEC 61508 основана на модели жизненного цикла систем безопасности (см. рисунок 1). Концепция включает в себя действия, относящиеся к применению оборудования, и действия, относящиеся к проектированию оборудования. Действия, относящиеся к применению, проводятся на стадиях, как предшествующих, так и следующих за стадиями проектирования оборудования. Интерфейс между ранними стадиями, относящимися к применению оборудования, и стадиями, относящимися к проектированию, представляет собой спецификацию требований к безопасности (SRS) (см. таблицу 1). Она устанавливает все соответствующие требования к применению (применениям) по назначению:

a) определение функции (функций), связанных с безопасностью, основанное на оценке риска при применении (применениях) по назначению [для функции (функций), которые могут вызвать опасность в случае отказа];

b) выбор соответствующего уровня полноты безопасности (требуемого), основанный на оценке риска при применении (применениях) по назначению;

c) определение обстановки, в которой система будет функционировать.

Система, связанная с безопасностью, предназначенная для выполнения установленной функции (функций), должна удовлетворять спецификации требований к безопасности (SRS). Оборудование, предназначенное для использования в этой системе, должно удовлетворять соответствующим требованиям, выведенным из спецификации требований к безопасности (SRS).

Система, связанная с безопасностью (IEC 61508)

Спецификация требований к безопасности (SRS):

a) определение функции, связанной с безопасностью, основанное на оценке риска при применении по назначению (IEC 61508) (для функции, которая может вызвать опасность в случае отказа);

b) выбор соответствующего уровня полноты безопасности (требуемого), основанный на оценке риска при применении по назначению (IEC 61508);

c) определение обстановки, в которой система будет работать (IEC 61508, IEC 61000-1-2, IEC 61000-2-5)

Э/Э/ПЭ оборудование, предназначенное для использования в системе, связанной с безопасностью

Изготовитель оборудования должен выполнить соответствующие требования спецификации требований к безопасности (SRS).

Это включает в себя: гарантирование наличия уверенности в том, что воздействие электромагнитных помех не приведет к опасным систематическим отказам (способность исключить систематические отказы, связанные с электромагнитными помехами); представление доказательства того, что были применены соответствующие методы и технические приемы

Что такое эмс в электрике. Смотреть фото Что такое эмс в электрике. Смотреть картинку Что такое эмс в электрике. Картинка про Что такое эмс в электрике. Фото Что такое эмс в электрике

1 Область применения

Настоящий стандарт устанавливает методологию достижения функциональной безопасности электрических и электронных систем и установок, установленных и используемых при рабочих условиях, только в отношении электромагнитных явлений. Эта методология включает в себя влияние электромагнитных явлений на оборудование, используемое в таких системах и установках.

a) применяется к системам, связанным с безопасностью, включающим в себя электрическое/ электронное/программируемое электронное оборудование;

b) рассматривает влияние электромагнитной обстановки на системы, связанные с безопасностью; он предназначен для разработчиков, производителей и монтажников систем, связанных с безопасностью, и может использоваться техническими комитетами IEC в качестве руководства;

c) не касается непосредственных опасностей электромагнитных полей для живых организмов, а также не касается безопасности, связанной с разрушением изоляции или других механизмов, вследствие чего человек может подвергнуться опасному воздействию электрического тока.

Стандарт в основном охватывает аспекты ЭМС на стадии проектирования систем, связанных с безопасностью, и оборудования, используемого в них, и в частности имеет отношение:

— к некоторым основным понятиям в области функциональной безопасности;

— различным конкретным шагам в области ЭМС для достижения и управления функциональной безопасностью;

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *