Что такое онтологическая модель
С чего начинаются онтологии
И в качестве вводного курса копипаста из перевода на русском языке для поднятия интереса к этой теме.
За перевод спасибо неизвестному переводчику Филяеву А.И.
В будущем, надеюсь, продолжу данную тему по мере освоения материала и получения новых знаний.
Зачем создавать онтологию?
В последние годы разработка онтологий — формальных явных описаний терминов предметной области и отношений между ними (Gruber 1993) – переходит из мира лабораторий по искусственному интеллекту на рабочие столы экспертов по предметным областям. Во всемирной паутине онтологии стали обычным явлением. Онтологии в сети варьируются от больших таксономий, категоризирующих веб-сайты (как на сайте Yahoo!), до категоризаций продаваемых товаров и их характеристик (как на сайте Amazon.com). Консорциум WWW (W3C) разрабатывает RDF (Resource Description Framework) (Brickley and Guha 1999), язык кодирования знаний на веб-страницах, для того, чтобы сделать их понятными для электронных агентов, которые осуществляют поиск информации. Управление перспективных исследований и разработок министерства обороны США (The Defense Advanced Research Projects Agency, DARPA) в сотрудничестве с W3C разрабатывает Язык Разметки для Агентов DARPA (DARPA Agent Markup Language, DAML), расширяя RDF более выразительными конструкциями, предназначенными для облегчения взаимодействия агентов в сети (Hendler and McGuinness 2000). Во многих дисциплинах сейчас разрабатываются стандартные онтологии, которые могут использоваться экспертами по предметным областям для совместного использования и аннотирования информации в своей области. Например, в области медицины созданы большие стандартные, структурированные словари, такие как snomed (Price and Spackman 2000) и семантическая сеть Системы Унифицированного Медицинского Языка (the Unified Medical Language System) (Humphreys and Lindberg 1993). Также появляются обширные общецелевые онтологии. Например, Программа ООН по развитию (the United Nations Development Program) и компания Dun & Bradstreet объединили усилия для разработки онтологии UNSPSC, которая предоставляет терминологию товаров и услуг (http://www.unspsc.org/).
Онтология определяет общий словарь для ученых, которым нужно совместно использовать информацию в предметной области. Она включает машинно-интерпретируемые формулировки основных понятий предметной области и отношения между ними.
Создание явных допущений в предметной области, лежащих в основе реализации, дает возможность легко изменить эти допущения при изменении наших знаний о предметной области. Жесткое кодирование предположений о мире на языке программирования приводит к тому, что эти предположения не только сложно найти и понять, но и также сложно изменить, особенно непрограммисту. Кроме того, явные спецификации знаний в предметной области полезны для новых пользователей, которые должны узнать значения терминов предметной области.
Отделение знаний предметной области от оперативных знаний – это еще один вариант общего применения онтологий. Мы можем описать задачу конфигурирования продукта из его компонентов в соответствии с требуемой спецификацией и внедрить программу, которая делает эту конфигурацию независимой от продукта и самих компонентов (McGuinness and Wright 1998). После этого мы можем разработать онтологию компонентов и характеристик ЭВМ и применить этот алгоритм для конфигурирования нестандартных ЭВМ. Мы также можем использовать тот же алгоритм для конфигурирования лифтов, если мы предоставим ему онтологию компонентов лифта (Rothenfluh et al. 1996).
Анализ знаний в предметной области возможен, когда имеется декларативная спецификация терминов. Формальный анализ терминов чрезвычайно ценен как при попытке повторного использования существующих онтологий, так и при их расширении (McGuinness et al. 2000).
Часто онтология предметной области сама по себе не является целью. Разработка онтологии сродни определению набора данных и их структуры для использования другими программами. Методы решения задач, доменно-независимые приложения и программные агенты используют в качестве данных онтологии и базы знаний, построенные на основе этих онтологий. К примеру, в этой статье мы разрабатываем онтологию вин и еды, а также подходящие комбинации вин и блюд. Затем эту онтологию можно будет использовать как основу для приложений в наборе инструментов для управления рестораном: Одно приложение могло бы составлять список вин для меню на текущий день или отвечать на запросы официантов и посетителей. Другое приложение могло бы анализировать инвентарный перечень винного погреба и предлагать категории вин для пополнения и конкретные вина для закупки к следующим меню или для поваренных книг.
Онтологические модели
Онтологическая модель – это описание предметной области, которое:
Отличительные черты онтологических моделей:
Цифровой двойник организации – пример онтологической модели
Цифровые двойники организации – прогнозные модели, описывающие все аспекты деятельности организации (функционального блока, проекта) как компоненты единой интегрированной системы
Применение цифрового двойника для управления инвестициями
Эффекты от применения систем управления знаниями
«Информационные Ресурсы России» №3, 2011
Онтологическая модель предметной области информационной системы поддержки инновационных разработок институтов РАН
В последнее время использование онтологий для моделирования предметных областей автоматизированных информационных систем получает все более широкое распространение [1, 2]. Наиболее часто такой подход применяется для интеллектуальных систем [3], в частности, предназначенных для функционирования в сети Интернет. Это связано с тем, что онтологическая модель позволяет разработать модель метаданных, что значительно улучшает использование системы широким кругом пользователей с точки зрения организации взаимодействия.
Онтология – это структура, описывающая значения элементов некоторой системы, попытка структурировать окружающий мир, описать какую-то конкретную предметную область в виде понятий и правил, утверждений об этих понятиях, с помощью которых можно формировать отношения, классы, функции и пр. Онтологии предметных областей ограничиваются описанием мира в рамках конкретной предметной области.
Задача построения онтологической модели предметной области информационной системы для поддержки коммерциализации результатов инновационных разработок в научных исследованиях является актуальной и сложной научно-практической задачей. Сложность поставленной задачи определяется, в частности, наличием множества межпредметных и междисциплинарных связей и различными целями конечных пользователей системы: ученых, экспертов, бизнесменов, политиков, сотрудников общественных и коммерческих организаций.
Целью настоящей работы является разработка и создание онтологической модели предметной области информационной системы для поддержки коммерциализации результатов научных исследований.
Краткий обзор стандарта CERIF 2008
Во всех странах мира проводится множество различных научных исследований, причем схема проведения научных исследований в разных странах похожа. Как правило, сначала осуществляется стратегическое планирование, потом объявляется программа исследований, проходит поиск предложений, подходящие предложения принимаются к работе, результаты исследований отслеживаются, анализируются и впоследствии используются в тех или иных целях.
Моделированием предметной области научных исследований на основе этого стандарта в последние 14 лет в Евросоюзе активно занимается организация euroCRIS. Основные свойства этого стандарта:
1) стандарт поддерживает концепцию объектов или сущностей с атрибутами: например, таких как проект, человек, организация;
2) стандарт поддерживает n:m отношения между объектами, используя «связывающие отношения», и таким образом обеспечивает богатую семантику, включающую роли и временные характеристики;
3) стандарт полностью интернационален с точки зрения языкового или знакового набора;
4) стандарт расширяем без повреждения основной модели данных, что предоставляет возможность оперирования на основном уровне, не препятствуя ещё более широкому взаимодействию.
Основные объекты в стандарте CERIF – это Person, OrganisationUnit и Project (Человек, Организация и Проект), каждый из которых рекурсивно связан сам с собой и поддерживает отношения с другими объектами. Стандарт описывает множество дополнительных объектов, с помощью которых полностью описываются исследовательские проекты, их участники, результаты их совместной работы и пр. Семантика данных задается на специальном семантическом уровне, в таблицах, описывающих возможные роли и взаимодействия между отдельными объектами.
Взаимоотношения между проектом, человеком, организацией показываются в стандарте CERIF при помощи специальных связей, и их считают одной из сильных сторон модели CERIF. Связь всегда соединяет два объекта. Все связи строятся по одинаковой схеме: они наследуют названия и идентификаторы от объектов-родителей и дополнительно обладают атрибутами даты начала и конца действия связи, в каждой связи отражается семантика через ссылку на семантический слой CERIF посредством специальных идентификаторов. Таким образом, все возможные взаимоотношения между проектами, людьми и организациями задаются с помощью этих связей, а характер взаимоотношений подчиненности (кто чей автор, кто чей подданный, что часть чего и т.д.) показывается благодаря семантическому слою, в котором все эти роли расписаны.
Модель CERIF поддерживает возможность многоязычности для имен, названий, описаний, ключевых слов, обобщений и даже для семантики. Используемый язык хранится в атрибуте LangCode с максимум пятизначными значениями (например, en, de, fr, si, en-uk, en-us, fr-fr, fr-be, fr-nl). Атрибут Trans предоставляет информацию о типе перевода: o=original (язык оригинала), h=human (перевод человеком), или m=machine (машинный перевод). Помимо основных, результирующих и объектов второго уровня многоязычность поддерживают также и классификаторы на семантическом уровне CERIF. Таким образом, становится возможным поддерживать классификационные схемы на различных языках.
Стандарт CERIF рекомендован к использованию в системах CRIS (Current Research Information Systems – информационные системы по актуальным научным исследованиям) [5], которые собирают воедино всю информацию, лежащую в основе научных исследований. Использование подобных систем значительно облегчает взаимодействие инвесторов и исследователей. Исследовательские группы получают лёгкий доступ к информации, необходимой для разработки инновационных идей, руководители и управляющий персонал получают возможность проще отслеживать и оценивать текущую исследовательскую деятельность, инвесторы и исследовательские советы могут оптимизировать процесс финансирования инновационных проектов.
Реальный пример использования стандарта – это портал IST World, построенный на основе стандарта CERIF. Он предоставляет информацию об экспертах, исследовательских группах, центрах и компаниях, задействованных в создании технологий для растущего информационного сообщества. Главный акцент сервиса – экспертиза и опыт основных участников процесса в европейских странах. Репозиторий содержит информацию по проектам пятой, шестой и седьмой рамочных программ Европейской Комиссии, а также информацию, связанную с этими научно-исследовательскими проектами, собранную в Болгарии, Кипре, Чехии, Эстонии, Венгрии, Латвии, Литве, Мальте, Польше, Румынии, России, Сербии, Словении, Словакии и Турции.
В России единой системы по текущим научным исследованиям не существует. Все попытки создания таких систем проходят разобщено в рамках различных программ и проектов. В Черноголовке в рамках Российской академии наук по гранту HAAB реализуется проект, целью которого является создание и разработка информационной системы для поддержки коммерциализации результатов интеллектуальной деятельности для предоставления заинтересованным юридическим и физическим лицам данных об инновационных разработках институтов РАН с возможной их последующей коммерциализацией. В этой системе под инновационными разработками понимаются информационные образы объектов интеллектуальной собственности, технических решений, а также технологические запросы, идеи и иные нематериальные активы, полученные в результате научно-технической деятельности.
Анализируя стандарт CERIF, обнаруживаем, что он не охватывает предметные области, связанные с работой экспертов и подготовкой инновационной разработки к процессу коммерциализации. Поэтому авторами было предложено расширение модели, предлагаемой этим стандартом на указанные выше предметные области.
Инновационный процесс со структурной точки зрения представляет собой комплекс последовательно взаимосвязанных действий по созданию, освоению и распространению инновации. Инновационный процесс предполагает эволюционное изменение состояния инновационного продукта, его превращение из идеи в товар, а также мониторинг его дальнейшей рыночной судьбы.
Модель предметной области для поддержки инновационных разработок
Предметная область информационной системы для поддержки коммерциализации результатов научных исследований является суммой объединения совокупности нескольких предметных областей, а именно предметной области научных исследований, предметной области по возможным областям внедрения и предметной области экспертов по коммерциализации инновационных разработок. При этом последнее слагаемое должно помогать решать следующую задачу: динамически формировать пути взаимодействия в отношении «многие-ко-многим» между первыми двумя слагаемыми.
Онтология области научно-исследовательской деятельности представляет собой структуру системы, отображающей процесс научной деятельности. Научные исследования возможны только при наличии полной и достоверной информации и наборов данных: начиная с этапа подачи заявки и заканчивая этапом публикации рецензии на разработку. Информационные системы по текущим исследованиям должны собирать воедино всю информацию, лежащую в основе научных исследований. Подобные системы могут использоваться широким кругом лиц: от исследователей до инвесторов. Научно-исследовательские организации могут размещать через интернет информацию о своих инновационных разработках и выполнять поиск предложений потенциальных инвесторов и заказчиков, потенциальные инвесторы и заказчики могут размещать заказы на выполнение НИОКР и предложения об инвестициях в сфере высоких технологий и выполнять поиск инновационных разработок.
В предметной области по научным исследованиям можно выделить следующие основные классы (Рис.1):
Рисунок 1. Основные классы предметной области по научным исследованиям
Проект содержит информацию о проектах, исследованиях, результатом которых будут инновационные разработки в том или ином виде, а также об их сроках. Проекты могут быть связаны с другими проектами, связаны с людьми, организациями, патентами, публикациями, продуктами и др. объектами системы.
Организация содержит информацию об организациях, имеющих отношение к проектам. Содержит описание организации: валюту расчётов, численность сотрудников, оборот и т.д. Организации также могут быть взаимосвязаны и связаны с другими объектами системы.
Человек содержит информацию о людях, задействованных в научных проектах. Люди также могут быть взаимосвязаны и связаны с другими объектами.
Дополнительный объект Имена содержит информацию о различных вариантах написания имени одного человека, в том числе и на разных языках.
Публикация содержит информацию о результатах исследований в виде публикаций. Содержит выходные данные о публикации: о дате выхода, издании, серии, страницах, ISBN, ISSN, краткое содержание, комментарии и пр. Публикации могут быть взаимосвязаны и связаны с другими результатами исследований, а также с другими объектами системы: проектом, организациями, людьми и т.д.
Патент содержит информацию о патентах, выданных на результаты исследований. Содержит сведения о стране выдачи патента, дате регистрации и краткое содержание. Патенты могут быть связаны с публикациями, проектами, организациями и людьми.
Продукт содержит информацию о продуктах, полученных в результате исследований, т.е. об инновационных разработках, а также описание продукта. Продукты могут быть связаны с публикациями, проектами, людьми, организациями.
При помощи объектов семантического уровня Класс и КлассификационнаяСхема характеризуются типы отношений, формы заявлений, классификация субъектов. Например, для обозначения типов публикаций или видов продуктов и т.д.
В предметной области возможных областей внедрения можно выделить следующие классы (Рис.2):
Организация содержит информацию об организациях, заинтересованных в инвестировании в инновационные разработки, в проведении НИОКР. Содержит описание организации: валюту расчётов, численность сотрудников, оборот и т.д.
Человек содержит информацию о людях, занятых в организациях, или об индивидуальных потенциальных инвесторах. Люди могут быть взаимосвязаны и связаны с другими объектами. Для данной предметной области также применим объект Имена, который содержит информацию о различных вариантах написания имени одного человека. Предложение содержит информацию о предложениях от потенциальных инвесторов на проведение НИОКР, на инвестиции, на разработку определённой темы. Содержит описания предложений, а так же информацию об их сроках. Предложения могут быть взаимосвязаны, а так же связаны с людьми, организациями и др. объектами системы. Патент содержит информацию о патентах на разработки, в которые организация хочет инвестировать. Продукт содержит информацию об интересных инвесторам продуктах.
По аналогии с предметной областью научных исследований в предметной области возможных областей внедрения можно выделить дополнительные объекты: Язык, Адрес, ЭлектронныйАдрес, Страна, Валюта и др. Для характеристики типов отношений между объектов и для классификации самих объектов также можно использовать объекты семантического уровня Класс и КлассификационнаяСхема.
Рисунок 2. Основные классы предметной области по возможным областям внедрения.
Рисунок 3. Основные классы предметной области экспертов.
В предметной области по экспертной оценке возможности коммерциализации инновационных разработок можно выделить следующие классы (Рис.3):
Человек содержит информацию об экспертах, проводящих оценку и анализ инновационных разработок и выносящих решение о возможности их коммерциализации. Тот же дополнительный объект Имена содержит информацию о различных вариантах написания имени одного человека.
Организация содержит информацию об организациях, в которых заняты эксперты. Продукт содержит информацию о научно-технических разработках, оценкой которых занимаются эксперты. Отдельно можно выделить объект Оценка для хранения заключений экспертов о возможности коммерциализации разработок.
По аналогии с предметными областями научных исследований и возможных областей внедрения в предметной области экспертов можно выделить дополнительные объекты: Язык, Адрес, ЭлектронныйАдрес, Страна, Валюта и др.
Общая структура, объединяющая все три подсистемы, в полной мере отражает процесс проведения научных исследований и оценки возможности их коммерциализации (Рис.4).
Рисунок 4. Предметная область информационной системы для поддержки коммерциализации результатов научных исследований
Основные принципы построения информационной системы и ее пользователи
В информационной системе для поддержки коммерциализации результатов научных исследований РАН можно выделить три подсистемы: подсистема научных исследований, проводимых в институтах РАН (подсистема институтов), подсистема возможных областей внедрения (подсистема потенциальных инвесторов) и подсистема экспертной оценки возможности коммерциализации инновационных разработок (подсистема экспертов). Соответственно, в каждой подсистеме можно выделить три группы пользователей – группа владельцев интеллектуальной собственности (исследователей), группа экспертов и группа инвесторов.
Незарегистрированный в системе пользователь, используя возможности гостевого входа, может также принять заочное участие в работе информационной системы. Ознакомившись с открытыми к просмотру резюме инновационных разработок, предложениям инвесторов, оценками экспертов, он может решить, имеются ли в системе интересующие его разработки или предложения для исследований, понять, по каким критериям идет оценка инвестиционной привлекательности экспертами, а затем принять решение о регистрации и дальнейшей работе в информационной системе по поддержке коммерциализации научных исследований.
Авторы считают, что в данной работе новыми являются следующие положения и результаты: онтологическая модель предметной области информационной системы поддержки жизненного цикла инновационных разработок институтов РАН.
Разработанная модель позволяет разработать программную архитектуру такой системы, разработать метаданные и построить совокупность взаимосвязанных тезаурусов для поддержки семантики запросов конечных пользователей.
Дмитрий Муромцев (ИТМО) — об онтологическом моделировании и формировании разговорного интеллекта
Дмитрий Муромцев, руководитель международной лаборатории «Интеллектуальные методы обработки информации и семантические технологии» ИТМО и заведующий кафедрой ИПМ, рассказал о сущности онтологического моделирования, об использовании графов знаний в бизнес-процессах и о работе по созданию разговорного интеллекта.
Интервьюер: Анна Ангелова (А.А.)
Респондент: Дмитрий Муромцев (Д.М.)
А.А.: В чем суть онтологического моделирования и как проходит составление графов знаний?
Д.М.: Онтологическое моделирование — это составление информационных моделей в виде концептуальных описаний предметных областей, удовлетворяющих определенным стандартам. Есть специальные языки для онтологий, они стандартизованы и уже применяются в индустрии. Основная цель онтологий — описание схем данных и знаний, которые могут существовать в самых различных источниках. Проблема в том, что этих источников много, они сильно отличаются по типу хранения данных, по программной архитектуре и т. д. Чтобы связать их в единое информационное пространство, нужны специальные интеграционные механизмы — ими как раз и являются онтологии. Они применяются при интеграции баз данных, описании слабо структурированных данных в Интернете, при создании баз знаний на определенную тематику или нетематических, больших баз знаний — допустим, на основе сведений Википедии.
Сам процесс создания подразумевает участие экспертов предметной области: всегда привлекаются специалисты по тем вопросам, данные для которых будет представлены в графе знаний. Например, это могут быть вопросы, связанные с культурным наследием, медициной, образованием, с каким-нибудь производством.
Эти специалисты выделяют ключевые концепты — объекты, которые критически важны для данной предметной области. Например, культурное наследие — это объекты искусства, создатели этих объектов, процесс творчества, процессы реставрации или каких-то видоизменений (если это архитектурный объект, он мог перестраиваться), это вопросы экспонирования, хранения и пр. Все, что важно для полноценного описания предметной области, формулирует эксперт. Дальше обозначаются отношения, связи между этими объектами. Это формализованное описание позволяет впоследствии делать к графам знаний запросы.
Технологически процедура трансформации может быть достаточно сложной и включать множество инструментов: средства обработки естественного языка, машинное обучение, распознавание образов и ряд других инструментов. В конечном итоге мы получаем сеть или граф взаимосвязанных объектов. Ключевая особенность такой системы, в отличие от баз данных, в том, что эта сеть является self-descriptive, самодокументируемой. К ней не нужны дополнительные пояснения от разработчика.
А.А.: Какова область применения графов знаний?
Д.М.: Практически любая. Сейчас существуют графы знаний универсального содержания (самый известный — Google), есть Wikidata, Dbpedia, которые больше напоминают Википедию по ширине охвата. Есть специализированные графы знаний: по медицине, по культурному наследию, по открытым государственным данным. Есть корпоративные графы знаний — они находятся в закрытом доступе.
А.А.: Расскажите о проекте для DataFabric. Что им требовалось и каких результатов удалось достичь?
Д.М.: Давайте несколько шире поставим вопрос. Проект для DataFabric — один из примеров, их у нас было несколько. Мы начали свою деятельность около 8 лет назад. Значительную часть времени мы тратим на популяризацию семантических технологий, на проведение различных мероприятий научного и обучающего характера, хакатоны и пр. Регулярно встречаемся с представителями индустрии. Таких встреч происходят десятки ежегодно, и некоторые представители индустрии заинтересовываются.
В ситуации с DataFabric в основном работали их специалисты, которых мы консультировали в плане методологии и рекомендовали те или иные технологии, инструменты. Также мы осуществляли проверку их результатов — анализ того, насколько все сделано корректно. Сам по себе проект этой компании интересен тем, что это первый в России пример, когда бизнес вложил собственные средства в развитие графов знаний, в развитие технологии связанных данных и сумел доказать, что это может быть выгодно. Насколько я знаю, компания продолжает использовать созданный граф знаний и планирует его развивать. Из выступлений ее представителей можно сделать вывод, что благодаря графу знаний им удалось автоматизировать большое количество ручного труда. Но за более точными сведениями лучше обратиться непосредственно в компанию.
Мы хотели сделать умную систему проверки контрагентов и собирать информацию о компаниях. Мы были очень маленькой компанией и хотели получить конкурентное преимущество. Наши конкуренты — Spark Interfax, «Контур.Фокус» — очень большие, мощные, много лет на рынке, и просто так, «в лоб», с ними конкурировать невозможно.
Мы собираем все те же сведения о компании, что и наши конкуренты: данные Федеральной налоговой службы, Росстата и других источников. Мы загружаем их в единую базу. Так как она у нас графовая, в ней появляются связи между всеми объектами. В системе применяется онтологическое моделирование: мы описываем для нее значение абсолютно всех данных, с которыми она работает. Поэтому она начинает понимать контекст, смысловую нагрузку тех или иных данных. Благодаря этому ей можно задавать даже открытые вопросы, например: «Покажи мне все компании, которые с большой вероятностью разорятся в следующем году». Так как она понимает значение каждого слова в этом вопросе, то выдаст список.
Я не знаю, сколько на решение своих задач тратят времени, денег и энергоресурсов конкуренты. Но я знаю, что у них сотни разработчиков, а нас всего 12 человек, и свою систему мы сделали за полтора года. Сейчас она позволяет быстро прототипировать новые кейсы, новые сервисы, поскольку она более умная и гибкая.
А.А.: На сайте лаборатории, которую вы возглавляете, указано множество партнеров. С кем из них идет сотрудничество по текущим проектам?
Д.М.: Если брать сотрудничество в самом широком смысле слова, то по количеству выделяемого времени основным будет Совет по открытым данным РФ. Мы пытаемся проводить там методическую и исследовательскую работу, направленную на продвижение графов знаний в федеральные органы власти и другие структуры, обязанные публиковать открытые данные. Сейчас требование закона по публикации открытых данных выполняется достаточно формально и ограниченно. Мы пытаемся доказать, что это можно делать гораздо более эффективно, и это будет приносить гораздо большую выгоду экономике. Также мы активно сотрудничаем по образовательным технологиям электронного обучения с разными структурами, есть исследовательские проекты с несколькими университетами в Германии, Финляндии, Австрии.
А.А.: За деятельностью каких компаний в отрасли стоит следить?
Д.М.: За сообществом в целом. Понятно, что крупные компании выступают в некотором смысле индикатором того, насколько те или иные технологии являются зрелыми. Но на последней конференции ISWC в Австрии — а это крупнейшая в мире конференция по семантическим технологиям — доклад от компании Google вызвал много вопросов: те проблемы, которые они ставили для себя, часто уже решены компаниями более исследовательского направления.
Характерно, что крупные игроки, как правило, не занимаются исследованиями с нуля. Они ставят определенную проблему, потом находят коллектив, который эту проблему может решить, и начинают с ним сотрудничать или покупают, если это какой-то стартап. То есть крупные игроки скорее играют системную роль.
А если следить за сообществом в целом, то можно увидеть много разных интересных исследовательских групп, компаний, стартапов, которые предлагают самые инновационные решения. Например, сейчас наблюдается очень серьезный тренд в области развития чат-ботов, голосовых интерфейсов и других систем, которые через какое-то время будут фактически полноценными ассистентами, помощниками.
А.А.: Ваша лаборатория также развивает проекты по обработке речи. На сайте их указано два: один завершился, другой продолжается. Расскажите о них.
[прим.: «Разработка компьютерной морфологии для корпусных исследований вариативного текста», 2015–2016 гг.; «Разработка синтаксического анализатора русской спонтанной речи методами интеллектуального анализа данных с использованием семантических баз знаний», 2015–2018 гг.]
Д.М.: Первый проект был инициирован Центром речевых технологий — создание интеллектуального диалогового менеджера. Те решения, которые существуют сейчас, достаточно примитивны. С ними сталкиваются, когда в организацию или банк звонит клиент и ему приходится долго переключаться с одной линии на другую. Более совершенные системы умеют анализировать текст, который получается в ходе распознавания — например, Siri, Amazon Alexa. Но содержание этого текста для машины остается неизвестным. У нас в России, кстати, недавно был запущен проект iPavlov, но пока что данных об их результатах немного.
Дальше, как только мы распознали речевой сигнал, нужно понять, что за вопрос в нем содержится. Проблема в том, что при коммуникации людей речевой канал взаимодействия является лишь одним из множества. Информационно он не самый нагруженный. Есть каналы невербального общения, есть общие знания о мире, контекст, который человек понимает, и т. д. В отсутствие дополнительной информации почти невозможно понять, о чем речь. Если мы возьмем расшифровки текстов и попробуем их кому-то дать, полностью исключив контекст, скорее всего, даже человек не сможет их понять. Поэтому сейчас мы пытаемся создавать анализаторы, которые будут эффективно обрабатывать речь и выявлять объекты и взаимосвязи между ними — то есть создавать информационные модели сообщения, которое содержится в тексте. А дальше планируются работы по обогащению этих моделей информацией из других источников.
А.А.: Можете конкретизировать? Чем отличаются направления исследований у завершенного проекта и проекта, который ведется сейчас?
Д.М.: Это взаимосвязанные направления. Невозможно сделать качественный анализ без корпусных исследований, потому что надо научить алгоритм схемам распознавания закономерностей в тексте. Это мы делали в первом проекте. Второй изучает принципы формирования объектов. Текст содержит описание неких понятий. Сами эти понятия могут быть более информативными, чем та информация, которая присутствует о них в тексте. Соответственно, нужно связываться с другими базами и графами знаний и пытаться дополнить эту информацию из других источников.
Предположим, клиент звонит в службу поддержки и говорит о какой-то проблеме. Он может не назвать правильно устройство или процесс использования системы. Пользователь не обязан обладать полнотой технической информации. Система при понимании контекста может дополнить данные от пользователя информацией из своих источников. Это значительно упрощает процесс идентификации проблемы.
Первый проект был небольшим, выполнялся в сотрудничестве с Центром речевых технологий. Мы в нем доказали, что совместное применение онтологии, системы распознавания речи и синтаксического анализатора текста могут привести к формированию так называемого разговорного интеллекта. Мы достаточно успешно показали, как это работает. Следующий этап — более глубокие исследования по каждому из этих направлений. В области онтологического моделирования мы больше работали не с речью вообще, а с информацией из сети Интернет в области культурного наследия: как ее моделировать, обогащать, как можно сделать структурированный поиск по этой информации. В области синтаксического анализа работы продолжаются. Мы достигли неплохих результатов по качеству обработки текста.
Следующий этап — совмещение этих направлений и создание системы обогащения данных из разных источников, в том числе нетекстовых модальностей.
А.А.: Последний вопрос: над чем лаборатория планирует работать в следующем году?
Д.М.: У нас выкристаллизовались два направления: Интернет вещей и разговорный интеллект. Второе направление станет доминирующим. Интернет вещей — поддерживающее направление: это создание голосовых и текстовых интерфейсов (чат-ботов) для взаимодействия с различными устройствами, роботами, информационными системами.
Все это позволит сделать взаимодействие человека с информационными объектами более прозрачным и естественным.