Что такое отрицательная обратная связь
Отрицательная обратная связь
Иными словами, отрицательная обратная связь — это такое влияние выхода системы на вход («обратное»), которое уменьшает действие входного сигнала на систему.
* Если обратная связь может полностью компенсировать («заглушить») входящий сигнал, система относится к классу регуляторов (поплавковый механизм) или следящих усилителей (гидроусилитель).
Если же обратная связь компенсирует только часть входного сигнала (см. коэффициент обратной связи), то влияние входа на систему (и выход) будет меньше, но более стабильное («чёткое»), так как случайные изменения параметров системы (и, соответственно, колебания выхода) будут в значительной степени скомпенсированы через линию обратной связи.Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров.
Методы математического анализа систем, в том числе и охваченных отрицательной обратной связью, подробно рассматриваются теорией автоматического управления.
Связанные понятия
При включении биполярного транзистора по схеме с общим эмиттером (ОЭ) входной сигнал подаётся на базу относительно эмиттера, а выходной сигнал снимается с коллектора относительно эмиттера. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Данное включение транзистора позволяет получить наибольшее усиление по мощности, потому что усиливается и ток, и напряжение.
Упоминания в литературе
Связанные понятия (продолжение)
Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью.
Предусили́тель-корре́ктор, или усилитель-корректор (УК), или фо́нокорре́ктор — специализированный электронный усилитель тракта воспроизведения граммофонной записи, восстанавливающий исходный спектр записанного на пластинке звукового сигнала и усиливающий выходное напряжение головки звукоснимателя до типичного уровня линейного выхода — от 0,775 В (0 dBu) в бытовой аналоговой аппаратуре до 2 В (8 dBu) в цифровой и радиотрансляционной аппаратуре). Исторически звукозаписывающая промышленность использовала.
Отрицательная обратная связь
Отрицательная обратная связь (ООС) — тип обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое противодействует первоначальному изменению.
Иными словами, отрицательная обратная связь — это такое влияние выхода системы на вход («обратное»), которое уменьшает действие входного сигнала на систему.
Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров.
Методы математического анализа систем, в том числе и охваченных отрицательной обратной связью, подробно рассматриваются теорией автоматического управления.
Содержание
Бытовой пример
Одним из самых простых примеров может служить устройство простейшего сливного бачка. По мере наполнения сливного бачка уровень воды в нем поднимается, что приводит к всплыванию поплавка, который блокирует дальнейшее поступление воды.
Отрицательная обратная связь в электронике
Показательный пример использования отрицательной обратной связи — построение усилителя со стабильным коэффициентом усиления на основе операционного усилителя.
Обычно ООС позволяет добиться хороших параметров усилителя, однако это справедливо в общем случае только для усиления постоянного тока или низких частот. Поскольку с повышением частоты задержка, вносимая усилителем, начинает давать существенный фазовый сдвиг усиливаемого сигнала, то и ООС работает уже не в соответствии с расчётом. Если и далее повышать частоту, то когда задержка станет порядка полупериода сигнала (то есть порядка 180 градусов по фазе), то ООС превратится в ПОС, а усилитель — в генератор. Для предотвращения этого, цепь ООС должна делаться частотно-зависимой.
В СВЧ усилителях обратная связь неприменима, поэтому стабилизировать усиление СВЧ каскадов весьма непросто. Однако, если нужно стабилизировать не усиление, а амплитуду (мощность) выходного сигнала, это легко реализовать в виде АРУ.
Отрицательная обратная связь в живых системах
Отрицательная обратная связь широко используется живыми системами разных уровней организации — от клетки до экосистем — для поддержания гомеостаза. Например, в клетках на принципе отрицательной обратной связи основаны многие механизмы регуляции работы генов (например, лактозный оперон), а также регуляция работы ферментов (ингибирование конечным продуктом метаболического пути). В организме на этом же принципе основана система гипоталамо-гипофизарной регуляции функций, а также многие механизмы нервной регуляции, поддерживающие отдельные параметры гомеостаза (терморегуляция, поддержание постоянной концентрации диоксида углерода и глюкозы в крови и др.). В популяциях отрицательные обратные связи (например, обратная зависимость между плотностью популяции и плодовитостью особей) обеспечивают гомеостаз численности.
Отрицательная обратная связь – определение и примеры
Определение отрицательной обратной связи
Отрицательная обратная связь – это тип регулирования в биологических системах, в котором конечный продукт процесса, в свою очередь, уменьшает стимул этого же процесса. Обратная связь, как правило, является регуляторным механизмом, присутствующим во многих биологических реакциях. Позволяя определенным путям быть выключенными и включенными, организм может контролировать различные аспекты своей внутренней среды. Это похоже на переключение переключателя. Обратная связь позволяет продукту пути управлять коммутатором. Иногда называемый «петлей отрицательной обратной связи», отрицательная обратная связь возникает, когда продукт пути отключает биохимический путь. Положительный отзыв, противоположность отрицательной обратной связи, обнаруживается в других биологических путях, в которых продукт увеличивает путь. Ниже приведены примеры отрицательных отзывов.
Примеры отрицательной обратной связи
Регулирование уровня сахара в крови
Каждый раз, когда вы едите, механизм отрицательной обратной связи контролирует уровень сахара в вашем кровь, Основной сахар в вашей крови – это глюкоза. После того как вы что-то съели, ваше тело поглощает глюкозу из крови и откладывает ее в кровь. Это увеличивает концентрацию глюкозы и стимулирует выработку поджелудочной железой химического вещества, называемого инсулином. Инсулин является клеточной сигнализацией молекула который говорит мускул а также печень клетки поглощать глюкозу. Клетки печени хранят избыток глюкозы в виде гликоген цепочка глюкоз, используемых в качестве продукта хранения. Мышечные клетки могут хранить глюкозу или использовать ее для выработки АТФ и сокращения. Когда этот процесс происходит, концентрации глюкозы в крови истощаются. Глюкоза была основным сигналом для поджелудочной железы для производства инсулина. Без этого поджелудочная железа перестает вырабатывать инсулин, а клетки перестают поглощать глюкозу. Таким образом, уровни глюкозы поддерживаются в определенном диапазоне, и остальная часть тела имеет постоянный доступ к глюкозе. Механизм отрицательной обратной связи в этой системе особенно проявляется в том, как высокие уровни глюкозы приводят к включению пути, что приводит к продукту, предназначенному для снижения уровня глюкозы. Когда уровень глюкозы становится слишком низким, путь прекращается.
Регулирование температуры
Все эндотермы регулируют их температуру. Эндотермы – это животные, которые регулируют свое тело при температуре, отличной от окружающей. Вы можете думать о млекопитающих и птицах как о наиболее распространенных эндотермах. Большинство путей, ответственных за регулирование температуры, контролируются отрицательной обратной связью. По мере повышения температуры ферменты и пути в организме «включаются» и контролируют различные виды поведения, такие как потоотделение, одышка и поиск тени. Когда животное делает это, температура его тела начинает снижаться. Активность этих путей, которая обусловлена высокой температурой, также начинает уменьшаться. В конце концов достигается температура, при которой путь перекрывается. Другие пути присутствуют при слишком низких температурах, а также отключаются, когда организм достигает оптимальной температуры. Эти пути могут дрожать, искать убежище или сжигать жир. Все эти действия снова нагревают тело и блокируются конечным продуктом их реакций – нагреванием.
Заполнение унитаза
Многие студенты склонны бороться с абстрактными биологическими примерами негативных отзывов. Не бойся! Простой и обычный предмет домашнего обихода использует отрицательный отзыв каждый день. В баке на задней панели вашего туалета находится шар или поплавок, который лежит на уровне воды. Когда вы опорожняете бак, уровень воды падает. Давление от поплавка, который удерживал клапан, сбрасывается, и в бак поступает новая вода. Клапан, управляемый поплавком, подобен ферменту, который контролирует уровень продукта, который он создает. По мере того, как больше воды (продукта) заполняет резервуар, поплавок медленно уменьшает количество воды, пропускаемой через клапан. Клапан аналогичен ферменту, который регулируется обратной связью от продукта, который он помогает создать или впустить в клетка.
викторина
1. Что из следующего представляет отрицательный отзыв?A. Тромбоциты крови выделяют химические вещества, которые привлекают больше тромбоцитов крови, а затем заполняют рануB. Одна птица, спасающаяся от хищника, подстегивает трех птиц, что, в свою очередь, пугает всю стаюC. При производстве аминокислоты фермент, используемый клеткой, ингибируется после того, как аминокислота достигает определенной концентрации.
Ответ на вопрос № 1
С верно. Первые две системы представляют положительные отзывы. По мере того, как несколько человек начинают реагировать, гораздо больше поощряют реагировать. Эти системы приводят к реакциям, которые идут к завершению в одном направлении. Например, вся стая улетит или вся рана будет закрыта. В третьем случае продукт регулирует путь. Это означает, что элемент не будет расходовать слишком много энергии и будет производить именно то количество продукта, которое ему необходимо.
2. Пчелы интересным образом контролируют температуру своего улья. Когда температура становится слишком высокой, определенные пчелы посылают сигнал остальной части колонии, чтобы начать определенное поведение. Пчелы испаряют воду изо рта и размахивают крыльями, чтобы значительно снизить температуру. По мере охлаждения колония возобновляет свою нормальную деятельность. Какой из следующих терминов описывает этот сценарий?A. Положительный отзывB. Негативный отзывC. Ингибирование ферментов
Ответ на вопрос № 2
В верно. Это пример отрицательной обратной связи. Стимул вызывает у пчел реакцию, которая снижает стимул. В свою очередь, путь в конечном итоге перекрыт. Помните, что механизмы обратной связи могут быть частью систем всех размеров, от химических путей до деятельности целых групп организмов.
3. Вы забираетесь в горячую плиту, чтобы захватить свой обед. Ваш палец соскальзывает с горячей площадки и касается горячего горячего блюда в духовке. Сигнал отправляется на ваш головной мозг, который говорит вашей руке сжиматься. Когда ваш палец перестает гореть, ваша рука может расслабиться. Что представляет собой этот сценарий?A. Негативный отзывB. Положительный отзывC. Бой или Полет ответ
Ответ на вопрос № 3
верно. Снова, стимул, который вызвал реакцию, удален через процесс. Это отрицательный отзыв. Ответ может быть связан с боем или бегством, но помните, что даже эти процессы должны контролироваться той или иной формой обратной связи, иначе они будут продолжаться вечно. Механизм отрицательной обратной связи позволяет системе переустанавливаться после стимула, что на клеточном уровне позволяет подготовиться к реакции на другой стимул.
AudioKiller’s site
Audio, Hi-Fi, Hi-End. Электроника. Аудио.
Материалы раздела:
Отрицательная обратная связь в усилителе
Обратная связь – процесс передачи сигнала с выхода усилителя обратно на его вход, а также цепь, осуществляющая эту передачу.
Обратная связь (ОС) называется отрицательной (ООС, NFB), если выходной сигнал усилителя вычитается из входного. Для простоты будем рассматривать установившийся режим работы всей системы, причем усилитель работает в активном режиме (т.е. нормально усиливает сигнал без всяких там перегрузок).
Структурная схема усилителя, охваченного ООС, показана на рис.1.
Здесь некоторый «виртуальный» усилитель с коэффициентом усиления по напряжению Ku’ получается из исходного «реального» усилителя, имеющего коэффициент усиления Ku, и охваченного цепью ООС. На самом деле термин «виртуальный» не совсем корректен, но я буду пользоваться им, потому что с точки зрения внешних устройств, подключенных к системе в целом, она представляет собой усилитель с параметрами, отличающимися от параметров реального исходного усилителя без ООС.
С выхода реального усилителя напряжение передается на его вход через цепь ООС с коэффициентом передачи β:
Обычно цепь ООС является пассивной, и β ≤ 1. Если цепь ООС усиливает, то это принципиально ничего не меняет, и все формулы в этом случае выводятся аналогично. Если β = 0, то это означает, что Uоос = 0 и обратная связь отсутствует. Обратите внимание, что совершенно безразлично, какую именно схему имеет цепь ООС. Главное – это насколько (во сколько раз) она ослабляет напряжение.
В данной системе присутствует два разных входных напряжения, и чтобы не путаться, я им дам различные наименования:
1. Напряжение, подаваемое на вход «виртуального» усилителя от источника сигнала. Его будем обозначать Uсигн.
2. Напряжение, приходящее на вход реального усилителя – Uвх.
Итак, выходное напряжение усилителя Uвых превращается цепью ООС в напряжение обратной связи Uоос и вычитается из входного напряжения. Результат – входное напряжение реального усилителя:
Важный момент: Uоос всегда меньше Uсигн, поэтому Uвх всегда больше нуля.
Реальный усилитель усиливает свой входной сигнал в Ku раз:
Преобразуем формулу (3):
Но Uвых/Uсигн – это коэффициент усиления Ku’ «виртуального» усилителя, как он проявляется для внешнего мира, поэтому:
Таким образом, мы получили формулу для вычисления коэффициента усиления для усилителя, охваченного ООС.
Теперь можно объяснить, почему Uоос Uсигн, рассмотрите самостоятельно. С точки зрения математики, исходное утверждение доказывается элементарно:
Рассматривая физику процессов, следует помнить, что выходное напряжение усилителя появляется не само по себе, а является следствием его усиления и образуется из его входного напряжения: Uвых = Ku∙Uвх.
Итак, при охвате усилителя ООС, его коэффициент усиления уменьшается в (1+β∙Ku) раз. Но введение ООС изменяет и другие параметры усилителя.
1. Отрицательная обратная связь изменяет в (1+β∙Ku) раз входное и выходное сопротивления усилителя. При этом они могут как увеличиваться, так и уменьшаться в зависимости от способа соединения цепи ООС со входом и выходом усилителя – последовательно или параллельно. Способы подключения цепи ООС ко входу усилителя показаны на рис. 2, а к выходу усилителя – на рис. 3.
Эти формулы несложно вывести, но мы это делать не будем, а будем пользоваться готовыми. И объяснить их с точки зрения схемотехники также несложно. Например, на рис. 2а, напряжение на входе усилителя после замыкания цепи ООС возросло в (1+β∙Ku) раз: Uсигн = Uвх∙(1+β∙Ku), а входной ток остался прежним. Значит, по закону Ома (R=U/I) и сопротивление возросло в (1+β∙Ku) раз.
При последовательной по выходу ООС через ее цепь проходит выходной ток усилителя (ток нагрузки), поэтому ее часто называют обратной связью по току. Несколько примеров разных включений цепи ООС показано на рис. 4 и рис. 5. Цепь ООС является четырехполюсником, который обычно замыкается через «землю» цепи, явным образом это показано на рис. 4б.
2. Отрицательная обратная связь расширяет частотный диапазон усилителя. Нижняя fн и верхняя fв граничные частоты увеличиваются примерно в (1+β∙Ku), если усилитель имеет спад АЧХ 6 дБ/октаву. На самом деле, при охвате усилителя ООС могут происходить самые разные процессы, вплоть до превращения усилителя в генератор, но если все работает, то частотный диапазон обязательно расширяется. Это иллюстрируют АЧХ исходного усилителя (синяя) и усилителя, охваченного ООС (красная) на рис. 6. Там же показаны границы частотного диапазона без ООС и с ней. Напоминаю, что граничной частотой считается такая частота, где коэффициент усиления уменьшается в корень из двух (примерно 1,41) раз.
3. Введение ООС уменьшает нелинейные искажения усилителя (коэффициент гармоник) примерно в (1+β∙Ku) раз. Это происходит оттого, что ООС линеаризует систему и уменьшает ее ошибки. Изменяется и амплитудная характеристика усилителя (рис.7), на ней плавный переход к области насыщения превращается в довольно острый излом – ООС линеаризует этот участок и «пытается» вытянуть пропорциональное усиление даже там, где оно уже начинает уменьшаться.
На самом деле (1+β∙Ku) – это очень приблизительная оценка, поскольку для анализа нелинейных цепей используется уже совсем другая математика и там все очень сильно зависит от нелинейности усилителя. Но, тем не менее, искажения усилителя снижаются тем сильнее, чем глубже ООС, и в «простых» случаях формула (1+β∙Ku) работает достаточно хорошо.
Итак, мы видим, что охват усилителя отрицательной обратной связью изменяет ряд его основных параметров в (1+β∙Ku) раз. Проанализируем это выражение сначала чисто математически, не вникая пока в его физический смысл. Очевидно, что тут возможны три варианта:
а) β∙Ku > 1. Тут обратная связь очень глубока. Интересно, что для очень глубокой ООС формула (4) превращается вот во что:
То есть, свойства усилителя (коэффициент усиления и АЧХ) определяются исключительно параметрами цепи ООС. При значении β∙Ku = 100, погрешность применения вместо формулы (4) упрощенной формулы (5) составляет 1%, такой погрешностью в большинстве случаев можно пренебречь. А в реальных схемах на операционных усилителях величина β∙Ku может достигать десятков тысяч, делая погрешность «упрощения формулы» практически незначимой.
Обратите внимание, что в формуле присутствует величина β∙Ku, как произведение. При этом одинаковое значение этого произведения можно получить как при большой величине Ku и маленьком β, так и при большом β и небольшом Ku, так что в данном смысле эти два параметра равнозначны. Термин «глубина обратной связи» часто ассоциируется с термином «коэффициент передачи цепи ООС», который обозначает величину β, а хорошо было бы ввести некоторое понятие, отражающее именно величину β∙Ku, как более важную для применения. Так сейчас и поступим, только не забывайте, что у нас β ≤ 1, так что понятие большое или маленькое β означает, например, такие значения: β = 0,1 или β = 0,0001.
Теперь давайте оценим степень влияния отрицательной обратной связи, исходя из физического смысла и электроники. Обратимся к рис. 1. Внутри усилителя присутствует два напряжения: Uвх и Uоос. Очевидно, что степень влияния ООС на усилитель зависит от соотношения этих напряжений. Если Uоос > Uвх, то главную роль во входном сигнале «реального» усилителя играет именно ООС (т.к. Uсигн = Uоос + Uвх и значит входной сигнал «виртуального» усилителя практически равен Uоос). С другой стороны, Uоос получается из напряжения Uвх, после усиления его усилителем и ослабления цепью ООС. Как оно получается? Мысленно разомкнем петлю обратной связи в точке А (разрывать цепь электрически можно не всегда – иногда от этого изменяется величина β), рис. 8.
Со стороны точки приложения сигнала ООС (это точка А), входной сигнал проходит два элемента – усилитель и цепь ООС. Общий коэффициент передачи последовательно соединенных устройств равен произведению их коэффициентов передачи: Ku∙β. Эта величина является коэффициентом усиления сигнала в петле обратной связи и называется петлевым усилением:
Это то самое взаимоотношение между напряжением ООС и входным напряжением «реального» усилителя, которое показывает степень влияния обратной связи. Кроме того, оно полностью соответствует выражению, которое мы вывели, математически анализируя формулу коэффициента усиления усилителя с замкнутой ООС. Так что глубину обратной связи характеризует именно петлевое усиление, и именно его имеют ввиду, когда говорят о глубине ООС. Хотя иногда под глубиной ООС подразумевают коэффициент передачи цепи обратной связи β – в случаях, когда Ku велико, и величину A = β∙Ku определяет в основном β.
Таким образом, именно петлевое усиление определяет свойства усилителя, которые он проявляет для внешнего мира. Именно на эту величину изменяются коэффициент усиления, входное и выходное сопротивления, граничные частоты и коэффициент гармоник.
В некоторых случаях вычисление петлевого усиления по формуле (6) может быть затруднено, тогда можно найти его из изменения коэффициента усиления усилителя при охвате его ООС:
Последнее выражение достаточно точно, при А≥100. Проще всего определять таким способом петлевое усиление по логарифмической АЧХ усилителя (диаграмме Боде). На рис. 9 петлевое усиление А = 100 – 60 = 40 дБ, т.е. 100 раз. На самом деле А = 100 – 1 = 99 раз (39,9 дБ), но этим зачастую можно пренебречь, поэтому обычно в таких случаях говорят, что петлевое усиление равно ровно 40 дБ.
Пока что я ничего не говорил о свойствах и схеме самой цепи ООС. На самом деле, значение ее коэффициента передачи не обязательно являются константой. Эта цепь может быть частотнозависимой, тогда величина β меняется с частотой. Такое свойственно современным усилителям сигналов, когда для постоянного тока стремятся получить стопроцентную обратную связь (β=1), дающую максимальную стабильность режима работы усилителя, а для переменного тока глубину ООС выбирают такой, чтобы Ku’ для него (усиливаемого сигнала) был равен 10…1000 (β≈0,1…0,001). На самом деле при снижении частоты f ниже определенного значения, β начинает расти, доходя до единицы при f = 0, т.е. на постоянном токе. Но это все происходит ниже рабочего диапазона частот усилителя, поэтому в таких случаях глубину ООС принято оценивать двумя значениями: для постоянного тока, и для переменного тока (в рабочем диапазоне частот).
Если вернуться к формуле (5) для коэффициента усиления с замкнутой цепью ООС, то видно, что при достаточно большом значении петлевого усиления, свойства усилителя – это обратная величина от свойств цепи обратной связи. Такая ситуация лучше всего получается, если усилитель имеет очень большой коэффициент усиления без ООС – десятки-сотни тысяч и миллионы. Для работы в таких условиях созданы специальные микросхемы, называемые операционными усилителями (ОУ).
Понятие операционного усилителя появилось во второй половине ХХ века, когда получили широкое распространение аналоговые электронно-вычислительные машины (АВМ). Принцип их применения был основан на том, что подбиралась соответствующая электрическая цепь, описываемая теми же уравнениями, что и исследуемый неэлектрический процесс. Измеряя напряжения и токи в цепи, получали значения параметров исследуемого процесса. Для АВМ требовались блоки (функциональные узлы), выполняющие определенные математические операции: масштабирование (усиление), сложение, вычитание, интегрирование, дифференцирование и др. Довольно быстро пришли к выводу, что вместо того, чтобы разрабатывать каждый такой блок по-отдельности, проще получить их все из одинаковых усилителей, охваченных цепью ООС – так и появились ОУ. В настоящее время возможности цифровых вычислительных машин настолько велики, что моделирование (и управление) проще и точнее выполнять на них, и АВМ практически исчезли, а операционные усилители остались – они оказались очень удобными для применения, ведь из них можно получить практически любое устройство, всего лишь охватив их соответствующей ООС.
Так что получить, например, усилитель с нужной АЧХ достаточно просто, достаточно охватить его ООС, имеющей АЧХ «зеркальной» к требуемой (рис. 10).
Схемы, реализующие данные АЧХ показаны на рис. 11.
Однако, конструируя схемы на операционных усилителях, следует помнить, что их огромный коэффициент усиления сохраняется только на очень низких частотах, а потом начинает падать со скоростью 20 дБ/декада. У большинства ОУ широкого применения спад АЧХ начинается с частоты порядка 10 Гц. Поэтому на частотах в десятки килогерц Ku может быть довольно мал, и при попытке получить на такой частоте большое усиление, глубина обратной связи (петлевое усиление) может оказаться слишком маленьким. При этом возрастет погрешность выполняемой функции, и повышаются нелинейные искажения. На рис. 12 показаны АЧХ усилителя (см. рис. 10 и рис. 11) без ООС и с ООС. На частотах 20 Гц, 1 кГц и 20 кГц глубина ООС (петлевое усиление) составляет 39 дБ, 24 дБ и 11 дБ соответственно. Вполне можно считать, что на частоте 20 кГц обратная связь имеет очень низкую глубину и практически не улучшает параметров усилителя.
В заключение хотелось бы отметить, что это только элементарная теория обратной связи. Здесь, например, не учтен тот факт, что на переменном токе и коэффициент усиления «реального» усилителя, и коэффициент передачи цепи обратной связи обычно величины комплексные (петлевое усиление также является комплекным). Поэтому формула (4) верна только для модулей, а «на все случаи жизни» ее надо записывать так:
При этом цепь ООС может изменять не только амплитуду сигнала, но и его фазу. Причем, если сдвиг фаз в петле ООС станет равным 180 градусам, то сигнал обратной связи будет не вычитаться из сигнала источника, а прибавляться к нему, и обратная связь из отрицательной превратится в положительную. Но это уже совсем другая история…
Главная цель этого материала – дать понимание основ обратной связи для дальнейшего углубленного ее изучения, тем более что физика и математика процессов показана совершенно правильно.
Готовлю продолжение о секретах применения отрицательной обратной связи.
- Что такое отрицательная мотивация ответ на тест
- Что такое отрицательная процентная ставка