Что такое плотность dram
Что такое плотность dram
Версия вашего веб-браузера устарела. Обновите браузер для повышения удобства работы с этим веб-сайтом. https://browser-update.org/update-browser.html
В начале четвертого квартала 2019 года поставщики полупроводников DRAM начали внедрять DRAM высокой плотности нового поколения для модулей памяти DDR4. Новые кристаллы основаны на новой технологии литографии по всей пластине (менее 20нм). Это означает переход от кристаллов DRAM с плотностью 8Гбит к плотности 16Гбит, а значит и более высокую емкостью модулей памяти.
Другими словами, это означает, что можно использовать вдвое меньшее количество кристаллов ИС для достижения той же емкости по сравнению с предыдущим методом. Новые технологии литографии по всей пластине и меньшее количество компонентов в модуле памяти приводят к снижению энергопотребления для всех классов устройств, включая мобильные устройства. Это продлит срок службы батарей портативных компьютеров и обеспечит экономию электроэнергии для центров обработки данных и домашних и офисных настольных компьютеров. Это новое достижение будет способствовать развитию облачных вычислений, периферийных центров обработки данных и сетей 5G.
Кристаллы DRAM 8Гбит снимаются с производства
Модули памяти на базе кристаллов 8Гбит в конечном итоге будут сняты с производства, поскольку производители DRAM ориентируют большую часть своей продукции на кристаллы высокой плотности 16Гбит. Поэтому для вас будет важно соответствующим образом спланировать обновление системы. Компания Kingston будет предоставлять модули памяти на базе кристаллов 8Гбит до тех пор, пока мы сможем их получить, но мы не можем определить, как долго это будет длиться. Если вы в настоящее время планируете сборку системы и срок службы компьютера является важным параметром, вам следует использовать компоненты, совместимые с DRAM 16Гбит. Это обеспечит возможность модернизации системы в дальнейшем.
Это небольшое видео содержит обзор этого перехода: что он означает для вас, каковы его преимущества и на что следует обращать внимание при модернизации памяти. Посмотрите ролик и почувствуйте разницу:
Удвоение плотности для увеличения емкости ОЗУ
Обзор плотности микросхемы памяти
Что такое плотность микросхемы памяти?
Плотность модуля памяти определяется маленькими микросхемами DRAM черного цвета, из которых он состоит. Чем меньше микросхем в модуле, тем выше плотность. Модули высокой плотности обрабатывают то же количество информации с той же скоростью, что и компоненты низкой плотности, но используют меньше микросхем. Производство меньшего количества компонентов стоит дешевле, причем конечный пользователь не заметит разницы в производительности.
Будут ли детали с высокой или низкой плотностью работать с моей исходной памятью?
Ваша система, скорее всего, будет работать с любым типом модуля памяти без каких-либо проблем. Мы производим и продаем оба типа модулей памяти. Однако, если вы смешиваете новую память с существующей, вам нужно будет подойти к подбору модуля памяти как можно тщательнее. В отдельных редких случаях при попытке смешать модули высокой и низкой плотности могут возникнуть проблемы несовместимости. Для обеспечения оптимальной производительности рекомендуется максимально тщательно подбирать модуль, чтобы его параметры соответствовали вашей исходной памяти.
Что лучше? Память высокой плотности или память низкой плотности?
На самом деле, для конечного пользователя нет никакой разницы в производительности. Это можно сравнить с конфигурацией отверстий на колесе. Сами колеса будут работать одинаково — разница состоит только в том, как они сделаны. Единственное, что нужно учитывать, это то, какой тип модуля памяти будет совместим с вашим компьютером. Любая деталь, рекомендованная программным инструментом System Scanner, гарантированно совместима с вашей системой при заказе на сайте Crucial.com. Если вы еще не пользовались инструментом System Scanner, его можно найти здесь.
Какой модуль памяти мне следует приобрести? Высокой или низкой плотности?
Вам всегда необходимо покупать ту память, которую поддерживает ваша система. В этом случае купите тип модуля памяти, совместимый с вашей системой. Если указаны оба типа, то оба модуля должны быть совместимы. Тем не менее, имейте в виду, что для оптимальной производительности рекомендуется по возможности устанавливать память, которая соответствует параметрам вашей системы.
© Корпорация Micron Technology, Inc., 2019. Все права защищены. Продукты, их технические характеристики, а также информация о них могут быть изменены без уведомления. Crucial и Micron Technology, Inc. не несут ответственности за ошибки и неточности в текстовых или фотографических материалах. Micron, логотип Micron, Crucial и логотип Crucial являются товарными знаками или зарегистрированными товарными знаками Micron Technology, Inc. Все остальные товарные знаки являются собственностью соответствующих владельцев.
9 ошибок при выборе оперативной памяти для новой сборки
Содержание
Содержание
При выборе оперативной памяти важен не только объем и цвет радиатора, но также частота, тайминги, тип микросхем. Не зная об этих характеристиках, пользователь подберет комплект методом «два ядра, два гига» — и дело в шляпе. Но через пару дней после запуска компьютера он столкнется с низкой производительностью, фризами и подергиваниями в играх. Чтобы не допустить такого в новом компьютере, нужно знать об основных критериях выбора и ошибках, которые часто совершают пользователи.
При сборке системы легче всего определиться с процессором или видеокартой — устройства ярко очерчены ценовой категорией, поэтому каждый знает наверняка, что ему по карману. С оперативной памятью так не получится.
Пользователь обязательно испытает «неполадки» с выбором: после штудирования ассортимента окажется, что за одну и ту же стоимость можно найти совершенно разные по характеристикам и внешнему виду устройства. Стильный радиатор и ARGB-подсветка или «красивые» цифры на коробке и невзрачный внешний вид — как правило, многие делают ошибки, начиная с этого момента. Дальше — еще интереснее.
Погоня за объемом
Когда-то считалось, что компьютер станет быстрее, если ему «добавить памяти». Это легко объяснить: ПК долго оставался предметом роскоши, поэтому владельцы экономили на комплектующих, чтобы позволить себе даже самый скудный набор «компьютерщика». Первой в списке «ненужных» характеристик оказывалась оперативная память, благодаря чему получалось сэкономить на более мощный процессор. Поэтому после установки второй планки памяти компьютер становился как новый — решение было не в дополнительном, а в достаточном объеме.
С тех пор экономия на объеме вышла из моды, но стереотип «больше-лучше» остался. Поэтому многие пользователи все еще стараются обеспечить систему как минимум двукратным запасом DRAM, делая выбор в пользу объемных модулей с посредственными скоростными характеристиками. При этом они выбирают самые недорогие комплекты, чтобы уложиться в запланированную сумму. На самом деле современной игровой сборке достаточно выделить 16 ГБ оперативной памяти. Если компьютер нужен для работы, то хватит 32 ГБ. Можно установить и 64 ГБ — но это экстремальные цифры, которые вряд ли принесут пользу домашнему юзеру, зато потянут за собой расходы, и могут даже отказаться работать с бюджетной материнской платой.
Разобрались — памяти должно быть достаточно для игр или работы. Сам по себе объем не играет роли в максимальной производительности компьютера. Важнее подобрать модули с хорошими скоростными показателями. Например, 16 ГБ с высокой тактовой частотой и низкими таймингами окажутся в разы эффективнее 32 ГБ или 64 ГБ со средними характеристиками.
Одна, две, четыре? Дайте шесть!
С объемом памяти определились — ставим 16 ГБ или 32 ГБ. Для игр точно хватит, и запас останется на случай, если придется подрабатывать монтажером у Спилберга или рисовать мультфильмы для Disney. Осталось выбрать интересующий нас комплект и нажать кнопку «Сделать заказ». Но постойте — вот комплект на 32 ГБ. А вот еще один комплект на 32 ГБ. Первый набран двумя планками, а второй — четырьмя. Какой покупать? Давайте разбираться.
Современные системы построены на материнских платах с разным количеством разъемов DIMM под установку планок оперативной памяти. На рынке встречаются системы с двумя, четырьмя и даже восемью разъемами. Но это не значит, что для лучшего эффекта пользователь должен заполнить все свободные места. Напротив, некоторым системам противопоказано более двух планок, а другие спокойно переварят четыре. И дело вот в чем.
Многоканальность памяти
Оперативная память может работать с информацией в нескольких режимах. Для обычных настольных компьютеров это одноканальный и двухканальный режимы. В первом случае система заполняет данными сначала первый модуль ОЗУ, затем второй, третий и так далее. Это ограничивает пропускную способность подсистемы памяти. Во втором случае компьютер распределяет данные одновременно по всем установленным модулям памяти и работает с удвоенной скоростью.
Как правило, одноканальный режим включается только при использовании одной планки памяти, а с двумя или четырьмя задействован двухканальный режим. При этом важно соблюдать четность — две планки и четыре включают Dual Channel, а три планки ломают эту идиллию. Многие также думают, что канальность памяти строго привязана к количеству разъемов на плате — это не так. Настольные системы типа Desktop поддерживают только двухканальный режим работы, при этом могут иметь как два, так и четыре разъема DIMM. Другое дело —экстремальные платформы HEDT.
HEDT или High-End Desktop — платформа, которая комбинирует в себе лучшее из настольных и серверных компьютеров. Как правило, эти процессоры обладают большим количеством ядер, а также поддержкой четырехканального режима работы ОЗУ. Для таких сборок справедливо равенство: две планки = двухканальный режим, а четыре планки = четырехканальный режим.
Одноранговая или двухранговая
Кроме объема и каналов памяти существует такая характеристика, как ранг памяти. Если вдаваться в технические подробности, то можно запутаться и забыть, для чего собирается новый компьютер.
Достаточно знать, что оперативная память бывает одноранговой и многоранговой (двух, четырех и даже восьми) — это зависит от типа микросхем. Например, модуль ОЗУ стандарта DDR4 объемом 16 ГБ может быть набран двумя способами — шестнадцать микросхем по 8 бит или восемь микросхем по 16 бит. В первом случае память окажется одноранговой, так как строится только на одноранговых чипах. Во втором случае модуль станет двухранговым — фактически сразу два одноранговых модуля в одной пачке.
Как правило, на стабильность системы ранговость памяти не влияет. Современные материнские платы совместимы практически со всеми актуальными моделями DDR4. Зато в некоторых случаях производительность может быть выше на двухранговых модулях. Этот эффект зависит от контроллера процессора и особенностей программного обеспечения, в котором измеряется производительность. Мы уже разбирались в этом вопросе, и поиск ответов занял целую статью. Тогда же мы выяснили, как влияет канальность памяти на производительность.
Не забываем — принцип «возьму одну, потом докуплю вторую» больше не работает. Современные системы рассчитаны на работу с двумя модулями и больше. При этом не стоит гнаться за количеством планок: два модуля по 8 ГБ или два по 16 ГБ спокойно уживаются на любой актуальной материнской плате. Также следим за совместимостью. Некоторые материнские платы обладают лишь двумя разъемами под ОЗУ, поэтому покупка комплекта памяти из четырех планок будет бессмысленной.
Степпинги памяти и на что они влияют
Уже уходите? Постойте, мы не определились с типом микросхем. Точнее, с их степпингами. Несмотря на то, что чипы DDR4 объединены одной технологией, их качество может отличаться от модели к модели. Производство полупроводниковых деталей сопряжено с большим количеством отбраковки. Микросхемы, не прошедшие контроль высшего качества, попадают на следующий и так, пока микросхема не найдет свою нишу. Градации качества чипов обозначаются как A-die, B-die, C-die, M-die и далее по алфавиту.
Тип микросхем влияет на способность памяти работать на высокой тактовой частоте с низкими таймингами. Вряд ли этот пункт заинтересует сборщика офисных систем, но геймер со стажем должен понимать, насколько ценны для производительности платформы дополнительные 100 МГц. Поэтому перед выбором ОЗУ для нового компьютера нужно помнить про степпинги. Качество чипов определить легко: как правило, модули с заводской частотой от 3600 МГц и выше будут определенно лучше, чем модули с частотой 2133 МГц и даже 3000 МГц. При этом не забываем про тайминги — в этом мы уже подробно разбирались.
Запомним — от качества микросхемы зависит максимальная тактовая частота и тайминги модулей. Чем выше частота и ниже тайминги, тем быстрее работает компьютер. Естественно, с ростом качества чипов меняется и стоимость планок. Чтобы правильно выбрать «ту самую» модель и не ошибиться, читаем подробный материал.
Тактовая частота или XMP-профиль
Тайминги и тактовая частота — это параметры, которые влияют на производительность памяти. Изменяя их значения в сторону улучшения производительности, пользователь разгоняет компьютер. Неправильная настройка может стать причиной ошибок и нестабильной работы, а в некоторых случаях — и полного выхода техники из строя. Чтобы исключить эти проблемы, производители ОЗУ заранее тестируют модули на заводе и присваивают им готовые профили разгона XMP или DOCP.
Основная ошибка при выборе модулей с разными профилями XMP — это слепая гонка за частотой. Производители намеренно возвели тактовую частоту в ранг единственной полезной характеристики, по степени важности идущей сразу после объема, поэтому пользователь выбирает память по гигабайтам и гигагерцам. Но будут ли эти параметры эффективными в тандеме с остальными комплектующими? Не всегда.
Например, платформы с процессорами Intel проще относятся к разгону DRAM, поэтому для флагманских материнских плат с чипсетом Z-серии можно выбрать планку с любой частотой, и она будет функционировать штатно. Другое дело — системы на базе AMD. Известно, что процессоры этого производителя способны стабильно работать с максимальной частотой памяти 3800 МГц. Встречаются редкие экземпляры, которые удерживают 4000 МГц без потери производительности, но это случай один на миллион.
Вывод — не гонимся за экстремальным показателем частоты, а выбираем модули по возможностям системы. Если пользователь не уверен в способностях своей платформы, то можно остановиться на значениях 3600-3800 МГц. Этих цифр достаточно для полноценной работы компьютера в играх и рабочих задачах. Исключения составляют сборки, где вместо дискретной видеокарты используется встроенное в процессор графическое ядро. В таком случае работает правило «больше-лучше» — подробнее об этом здесь.
Радиатор — зло?
Сразу оговоримся — стандартным планкам радиатор не понадобится. Это касается модулей всех производителей и поколений. Для микросхем DRAM существуют безопасные пределы частоты, таймингов и напряжения, которые регулируется стандартами JEDEC. Это значит, что ОЗУ без разгона сможет работать без отвода тепла в любых задачах. Стандартный модуль объемом 8 ГБ поколения DDR4 выделяет максимум 3 Вт тепла — это сразу на все восемь микросхем.
Если же оперативная память работает на повышенных настройках тактовой частоты, то, скорее всего, она также требует повышенного напряжения. Такие планки рекомендуется использовать с радиаторами, хотя в рабочих задачах и играх температура планок поднимется скорее из-за нагрева окружающего воздуха в корпусе, а не от повышенного энергопотребления самих чипов.
Другое дело — специфические задачи, которые используют производительность компьютера точечно. Например, работают только с ОЗУ компьютера. В таком случае оперативная память будет функционировать на пределе, и повышенный нагрев чипов гарантирован. Здесь без радиаторов не обойтись.
Собирая игровой компьютер, пользователь покупает оперативную память с заделом на будущее. Он выбирает комплекты с высокими цифрами в профиле XMP. Значит, модули памяти будут работать на пределе возможностей, что точно «поджарит» компоненты без хорошего теплоотвода. Но не стоит увлекаться гигантизмом охлаждения. Любой заводской радиатор почти избыточен для охлаждения чипов, а лишний сантиметр алюминия норовит задеть систему охлаждения процессора и пустить под откос все старания сборщика-перфекциониста.
Дайте больше света
Подсветка не влияет ни на качество оперативной памяти, ни на ее ходовые характеристики. Наличие разноцветных диодов в радиаторе меняет только один параметр — это стоимость комплекта памяти. При этом переплата за красоту может с легкостью перебить стоимость более качественных моделей с высокой частотой и привлекательным объемом.
Конечно, подсветка — это безобидный элемент, который существует отдельно от конструкции оперативной памяти. Но некоторые пользователи заметили, что модули с включенной подсветкой нагреваются сильнее. Это удивительно, так как светодиоды обладают маленькой мощностью и почти не греются во время работы. Тем не менее встроенные в модули датчики показывали кардинальную разницу. Возможно, это сбой в показаниях термопары при включенной подсветке или дополнительный нагрев от контроллера подсветки. Удивительно, но факт.
Выбирать комплект памяти с подсветкой — не ошибка, а соответствие моде. Выбирать комплект памяти ради подсветки — вот грубая ошибка. Причем так делает большинство юзеров, жертвуя плавностью геймплея ради бутафорской красоты. И в этом случае концепция одна — если хочется красиво и мощно, то готовимся потратить минимум в полтора раза больше, чем планировали.
Выбрали?
Не расслабляемся — после покупки модулей памяти придется проверить их на «свежесть». Оперативная память — сложное техническое устройство, которое может оказаться с недостатком уже с завода. Чтобы избавить себя от проблем со стабильностью и сохранить ценную информацию от сбоев, лучше проверить ОЗУ на ошибки. Как — читаем.
И только после этого можно со спокойной совестью включить компьютер, загрузить любимую игру и насладиться плавным геймплеем на максимальных настройках графики. И в этот момент подсветка планок и размер радиаторов уже не будут никого интересовать.
Что такое плотность dram
DRAM (Dynamic Random Access Memory) — оперативная или энергозависимая память, является рабочей областью процессора. Именно здесь во время работы хранятся активные программы и данные. Оперативная память — это временное хранилище данных и поэтому перед отключением компьютера или нажатием кнопки сброса, внесённые во время работы изменения, должны быть сохранены на устройстве постоянной памяти, как правило, это жёсткий диск. Поскольку обращение к данным, хранящимся в оперативной памяти, не зависят от порядка их расположения, то устройства оперативной памяти иногда ещё называют запоминающим устройством с произвольным доступом.
Содержание
Мировой рынок DRAM
Структура
Основной особенностью DRAM является динамическое хранение данных. Это даёт возможность многократно записывать информацию в оперативную память, но при этом возникает необходимость постоянно обновлять данные. Фактически перезапись происходит каждые 15 мкс. Существует также статическая оперативная (или кеш) память (S-RAM), не требующая постоянного обновления данных. И один и другой вид функционирует только при включённом компьютере. Оперативная память физически представляет собой набор микросхем, которые подключаются к системной плате. Поскольку характеристики этих микросхем весьма различны, то для нормальной работы они должны быть совместимы с системой.
В настоящее время используются запоминающие устройства трёх типов: ROM (read only memory), DRAM (Dynamic Random Access Memory), S-RAM (Static RAM).
В настоящее время DRAM используется в большинстве современных компьютеров. Главное преимущество этого типа памяти заключается в чрезвычайно плотной упаковке ячеек, что позволяет создавать память большой ёмкости, при этом само устройство занимает очень мало места. Каждая ячейка это микро конденсатор, который удерживает заряды (наличием или отсутствием зарядов и кодируются биты информации). Главная проблема такой памяти это необходимость постоянно регенерировать заряд иначе конденсатор «стечёт», что приведёт к потере данных. За обновление которых и, следовательно, сохранность отвечает встроенный контролёр с частотой регенерации 15 мкс. В современных компьютерах, работающих на сверхвысоких частотах, процесс регенерации отнимает не более 1 % времени работы процессора. Поэтому нет смысла увеличивать время между циклами — на работу процессора это существенно не повлияет, и к тому же может примести к разрядке конденсатора и, как следствие, к потере данных.
Особенности DRAM
Структура памяти напоминает таблицу, где сначала выбирают строку, а затем столбец. Эта таблица разбита на банки. Памяти плотностью меньше 64 Мбит (SDRAM) имеет 2 банка, выше — 4. В частности память DDR2 SDRAM предусматривает 4-битную предварительную систему выборки. Работает DDR2 на напряжении 1,8 В. Кстати первые DDR работали на напряжении 2,6 В. В последнее время всё большую популярность приобретает стандарт DDR3, который имеет 8-битовую систему выборки и работает на напряжнии 1,5 В. При этом обеспечивает ту же пропускную способность при вдвое меньшей тактовой частоте. На открытие строки в используемом банке уходит больше времени, нежели в другом (так как используемую строку нужно сначала закрыть). Очевидно, что лучше новую строку открывать в новом банке (на этом основан принцип чередования строк). Популярность DRAM объясняется её относительной дешевизной и чрезвычайно плотной упаковкой ячеек микросхем, что позволяет небольшому устройству иметь очень большую ёмкость. К недостаткам относится невысокое быстродействие, которое намного медленнее процессоров. Чтобы обойти этот недостаток существует несколько типов организации DRAM.
Тайминги
Обычно на микросхеме памяти или в документации к ней есть надпись из четырёх цифр вида 3-4-4-8 или 5-5-5-15. Это сокращенная запись основных таймингов памяти. Тайминг — это задержка, устанавливающая время, необходимое на выполнение какой-либо команды, то есть время от отправки команды до ее выполнения. А каждая цифра обозначает какое именно время необходимо. Схема таймингов включает в себя задержки CL-Trcd-Trp-Tras. Для работы с памятью необходимо для начала выбрать чип, с которым мы будем работать. Делается это командой CS# (Chip Select). Затем выбирается банк и строка. Перед началом работы с любой строкой необходимо ее активировать. Делается это командой выбора строки RAS# (при выборе строки она активируется). Затем нужно выбрать столбец командой CAS#, которая и инициирует чтение. Затем считать данные и закрыть строку, совершив предварительный заряд (precharge) банка.
Типы памяти
Оперативная память типа EDO (Extended Data Out) учитывает перекрытие синхронизации между очередными операциями доступа. Это позволяет совместить следующий цикл с предыдущим и сэкономить 10 нс. в каждом цикле. Следующим шагом в ускорении DRAM стала память Burst EDO (Burst Extended-Data-Out Dynamic Random Access Memory). По сути это та же EDO, но с еще более быстрой передачей данных. Сегодня этот тип памяти не производится, поскольку был полностью вытеснен новым форматом SDRAM. SDRAM (Synchronous DRAM) передает информацию в высокоскоростных пакетах, использующих высокоскоростной синхронизированный интерфейс. Работа этого типа DRAM синхронизируется с шиной памяти, что позволяет избежать многих циклов ожидания. Ещё более усовершенствованным стандартом оперативной памяти является DDR (Double Data Rate — двойная скорость передачи данных). Удвоение скорости происходит за счёт того, что за один цикл данные передаются два раза — в начале и конце цикла. Принципиально новый тип оперативной памяти RDRAM (Rambus DRAM) используется в высокопроизводительных персональных компьютерах. Существуют двух- и четырёхканальные RDRAM, которые позволяют увеличить скорость передачи данных до 3,2 и 6,4 Гбайт\сек соответственно. Контролёр памяти RDRAM позволяет установить до трёх модулей RIMM. Со временем предполагается выпускать модули RIMM с объёмом 1 Гб (сейчас 256 Мб) с большим количеством разъёмов RIMM. А для портативных компьютеров предлагается портативная версия SO-RIMM (Small Outline RIMM).
Изначально оперативная память представляла собой микросхемы с двухрядным расположением выводов (Dual Inline Package — DIP). Системные платы содержали до 36 разъёмов для подключения этих микросхем. Чтобы облегчить процесс подключения их стали монтировать на отдельные платы которые подключались в разъёмы шины. Существует два подобных модуля памяти. SIMМ (Single Inline Memory Module), с однорядным расположением выводов и DIMM (Dual Inline Memory Modulе) с двухрядным расположением выводов или, в качестве альтернативы отдельным микросхемам памяти, модули RIMM. Подключаются они в разъёмы системных плат или плат расширения. Существует два основных типа модулей SIMM: 30-контактный (8 бит плюс 1 дополнительный бит контроля четности) и 72-контактный (32 бит плюс 4 дополнительных бита контроля четности).
Модули памяти DIMM обычно содержат стандартные микросхемы SDRAM или DDR SDRAM и отличаются друг от друга физическими характеристиками. Стандартный модуль DIMM имеет 168 выводов, по одному радиусному пазу с каждой стороны и два паза в области контакта. Модули DDR DIMM имеют 184 вывода, по два паза с каждой стороны и один паз в области контакта. Ширина тракта данных модулей DIMM равняется 64 разрядам (без контроля четности) или 72 разрядам (с контролем четности или поддержкой кода коррекции ошибок ЕСС). На каждой стороне платы DIMM расположены различные выводы сигнала. Именно поэтому они называются модулями памяти с двухрядным расположением выводов. Модуль памяти RIMM также двухсторонний. На сегодняшний день существует только один 184-контактный модуль, имеющий по одному радиусному пазу с каждой стороны и два паза, расположенных в центральной части области контакта. Микросхемы динамической памяти (DRAM), установленные в модулях разных типов (SIMM, DIMM или RIMM), имеют разные характеристики. Быстродействие модулей SIMM варьируется в пределах от 50 до 120 нс на частотах 66, 100 и 133 МГц. Модули памяти DDR DIMM имеют частоту 1600 и 2100 Мбайт/с. Для передачи параметров синхронизации и скорости в модули памяти DIMM и RIMM встраивают ПЗУ (ROM). Из-за этого рабочая частота контроллера памяти и шины памяти в большинстве систем соответствует наименьшей частоте установленных модулей. В модулях DIMM и DDR DIMM используются микросхемы SDRAM. В DIMM передача данных происходит в виде высокоскоростных пакетов, а в DDR дважды в течение одного такта. Микросхемы памяти SDRAM поддерживают частоту шины до 133 МГц, в то время как модули памяти DR DIMM — до 266 МГц. Модули DIMM различаются также наличием или отсутствием буфера и разным напряжением питания. Для нормальной работы всей системы нужно учитывать эти характеристики при замене деталей.
Контроль четности и ECC
Графическая память GDDR является следующей ступенью в развитии высокоскоростных технологий DDR SDRAM. Этот тип оперативной памяти позволяет управлять сложной геометрией и анимацией на уровне современных динамических фильмов. Для коррекции ошибок памяти применяется два метода: контроль чётности и коды коррекции ошибок (ECC).Контроль чётности — это стандарт, по которому информация должна храниться фрагментами по 9 бит. 8 бит или 1 байт предназначены для самой информации, а один для контроля чётности. Именно с его помощью и контролируется целостность данных. Если обнаруживается ошибка, то появляется соответствующее сообщение или компьютер блокируется. Более эффективным решением проблемы являются коды коррекции ошибок (Error Correcting Code — ECC) которые позволяют не только обнаружить ошибку, но и исправить ее в одном разряде, а некоторые системы исправляют ошибки даже в двух разрядах. В кодах коррекции ошибок для каждых 32 бит требуется дополнительно семь контрольных разрядов при 4-байтовой и восемь — при 8-байтовой организации.
Хотя технология DRAM уже долгое время является самым популярным типом оперативной памяти, эксперты предрекают ей скорую кончину. Главная причина это невозможность до бесконечности уменьшать размер ячейки. Среди наиболее вероятных преемников DRAM называют «память с плавающим телом» (FBM), главной особенностью которой является отсутствие конденсатора в ячейке памяти.