Что такое полное давление вентилятора
Что такое напор вентилятора и от чего он зависит?
Напор – это одна из основных характеристик вентилятора, которая показывает, как изменяется давление потока воздуха до и после вентилятора. Именно за счёт этого давления воздух «проталкивается» через сеть воздуховодов, повороты, тройники, решетки и другое вентиляционное оборудование.
Различают статический, динамический и полный напоры вентилятора.
После вентилятора воздух имеет более высокое давление, чем до вентилятора. Разность давлений воздуха – это и есть статический напор вентилятора (статическое давление вентилятора).
Кроме того, после вентилятора воздух приобретает некоторую скорость движения – так называемый скоростной напор. Если на пути воздуха поставить стенку, то, очевидно, достигнув стенки, воздух остановится, при этом слегка сжавшись. Возле стенки кинетическая энергия воздуха (скорость) превратится в потенциальную энергию (давление). Именно этот прирост давления и есть скоростной напор вентилятора. Иными словами, динамическое давление вентилятора – это давление, которое мог бы иметь движущийся поток воздуха, если его внезапно остановить.
Полное давление вентилятора – суть сумма статического и динамического давлений вентилятора.
Давление (напор) вентилятора зависит от его конструктива. Наименее напорными являются осевые вентиляторы. Их напор измеряется единицами и десятками паскалей.
Средненапорные вентиляторы – как правило, вентиляторы радиального и центробежного типов. Такие вентиляторы «выдают» сотни паскалей. Именно такие вентиляторы чаще всего применяются в общеобменных системах вентиляции.
Вентиляторы высокого давления создают напор, измеряемый тысячами паскалей. Такие вентиляторы используются в промышленных системах вентиляции для прокачки воздуха через длинные воздуховоды, применяются в качестве дымососов, а также для надува при сжигании топлива.
Несколько иная классификация вентиляторов принята в канальных кондиционерах. Канальные кондиционеры также бывают низкого, среднего и высокого давления. Чем выше напор кондиционера, тем более разветвленную сеть воздуховодов можно к нему подсоединить.
К низконапорным кондиционерам подсоединять воздуховоды не рекомендуется.
Они комплектуются всасывающими и нагнетательными адаптерами, которые имеют отверстия для всасывания и нагнетания воздуха. Средненапорные канальные кондиционеры предусматривают подключение воздуховодов средней длины. Обычно речь идёт о рукавах длиной по нескольку метров. Наконец, высоконапорные канальные кондиционеры способны прокачивать воздух на 10 и более метров.
Фрагмент № 4В. Основные параметры вентиляторов.
Работа вентиляционного аппарата характеризуется рядам технических параметров. Некоторые параметры соответствуют техническим параметрам насосного оборудования. Поэтому использование теории лопастных насосов для описания рабочего цикла вентиляторов вполне обосновано, так как давление, которое создает движение лопаток вентилятора, невелико, а сжимаемостью газового потока можно пренебречь. Основные формулировки и определения:
Степень повышения давления (ε) – это отношение газового давления на выходе из вентиляционного аппарата (р2) к газовому давлению на входе вентилятора р1 :
ε = р2/р1
Полное вентиляционное давление – это разность давления газа перед вентилятором и за ним (Па):
рv = р2 – р1
Давление динамическое – давление потока газа при выходе из вентилятора, рассчитанное по выходному сечению и средней вентиляционной скорости (Па):
Давление статическое – разность между полным и динамическим давлениями (Па):
psv = pv – pdv
Вентиляционная подача – объемное количество воздуха (газа), который поступает в вентиляционный аппарат в единицу времени, отнесенное к условиям входа в вентилятор, м3/с:
где Dр – диаметр рабочего колеса вентилятора по наружным кромкам его лопастей, м; φп – коэффициент подачи вентилятора, который характеризует его пропускную способность; u – окружная скорость, определяемая по частоте вращения колеса и диаметру Dр:
Таким образом, подача вентилятора определяется по одному геометрическому размеру Dр с введением коэффициента φп, который определяется эмпирическим путём и зависит от аэродинамических и конструктивных особенностей аппарата. Величина коэффициента изменяется от 0,01 до 0,9 единиц.
Полезной мощностью называется энергия, которая сообщается газу от вентиляционного аппарата в единицу времени, (Вт):
Nп = рvQ
Потребляемой мощностью называется мощность на вентиляционном валу без учета потерь мощности в элементах привода и подшипниках (Вт):
N = рvQ/η,
где η – полный КПД вентилятора, который определяется как
η = ηоηгηм,
где ηо – объёмный КПД вентилятора; ηм – механический КПД; ηг – аэродинамический КПД (аналогичный гидравлическому КПД).
Для вентиляторов радиального типа значение КПД составляют: ηо = (0,990…0,999; ηг = 0,6…0,9; ηм = 0,85…0,98; а для осевых вентиляторов – ηо = 1; ηг = 0,75…0,92; ηм = 0,94…0,98; η = 0,7…0,9.
Полный КПД вентилятора равен отношению полезной мощности вентилятора к потребляемой мощности.
Иногда для характеристики вентиляторов используют не полное давление, а лишь его статическую часть. В таких случаях энергетическую эффективность вентиляционного аппарата рассчитывают при помощи статического КПД:
ηs = Q psv/N,
ηs = (0,7…0,8) η.
Удельная быстроходность вентилятора — критерий для оценки пригодности работы вентилятора в режиме, определяемом частотой вращения n и величинами Q, Dp, pv.
Удельная быстроходность nу – частота вращения рабочего колеса вентиляционного аппарата, при которой подача при нормальных условиях составляет 1 куб. м/с и развивается давление величиной в 10 Па при максимальном КПД. Параметр определяется по следующей формуле:
Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе
Статическое давление — вентилятор
Статическое давление вентилятора, которое представляет собой полное давление вентилятора за вычетом скоростного напора.
Статическое давление вентилятора определяется как разность полного давления Яп и динамического давления Янд в нагнетательном патрубке вентилятора.
Роль статического давления вентилятора довольно значительна и при принятом в настоящее время способе подбора вентилятора по полному давлению об этом забывать не следует. Особенно большое значение это имеет при расчете вентиляционной сети, состоящей только из всасывающей ветви: подсчитывать сопротивление всасывающей ветви и по этой величине подбирать вентилятор, забывая о динамическом давлении на выходе из вентилятора, которое, кстати говоря, может быть весьма значительным, недопустимо.
Таким образом, статическое давление вентилятора, работающего в вентиляционной сети, расходуется на преодоление суммарных потерь давления в сети за вычетом разности между динамическим давлением на выходе воздуха из вентилятора и динамическим давлением на выходе воздуха из сети.
Таким образом, статическое давление вентилятора, работающего в вентиляционной сети, расходуется на преодоление сопротивления сети за вычетом разности между динамическим давлением на выходе воздуха из вентилятора и динамическим давлением на выходе воздуха из сети.
В первом приближении задают статическое давление вентилятора.
Рассмотрим, на что расходуется статическое давление вентилятора, работающего в сети при отсутствии в ней объемов всасывания и нагнетания.
Поскольку при этом pdv йвых, psv — hBC, т.е. статическое давление вентилятора равно сопротивлению сети.
Коэффициент рабочей ( условно) производительности Qp, определяемый абсциссой точки пересечения характеристики статического давления вентилятора и кривой аэродинамического сопротивления электрической машины.
Классификация вентиляторов по типу привода. |
Если вентилятор подобран правильно, то сопротивление системы изменяется пропорционально квадрату расхода воздуха ( см. рис. 20 — 5), а статическое давление вентилятора приблизительно обратно пропорционально изменению расхода воздуха, что значительно сдерживает тенденцию как к повышению расхода воздуха, так и увеличению нагрузки электродвигателя. Это в свою очередь указывает на нецелесообразность установки электродвигателя с большим запасом. Кроме того, электродвигатели обычно работают более экономично, когда они полностью загружены. Так как расход мощности изменяется пропорционально кубу числа оборотов, для электродвигателя требуется небольшой пусковой момент.
При наличии нагнетательной сети динамическое давление всегда учитывается, и поэтому роль статического давления просто не проявляется в явном виде. Если же вентиляционная система смонтирована без соответствия с ее расчетом, то значение статического давления вентилятора сразу обнаружится.
К определению режима работы вентилятора, устано-вленного в сети. |
В этой точке полное давление вентилятора равно потерям полного давления в сети. Если вентилятор работает на всасывание, то динамическое давление вентилятора следует также относить к потерям давления в сети или определять режим работы вентилятора точкой пересечения характеристики сети Др ( 2) с характеристикой psti ( Q) статического давления вентилятора В таких случаях целесообразно на выходе из вентилятора установить диффузор, чтобы уменьшить динамическое давление вентилятора.
Такая диаграмма позволяет определить размеры и частоту вращения вентилятора выбранного типа без проведения каких-либо дополнительных расчетов. Для этого по заданным значениям производительности Q и полного давления рс на диаграмме отмечают точку, соответствующую рабочему режиму вентилятора. Определяют ближайшую к этой точке кривую р0 ( У), по привязной точке которой устанавливают диаметр и частоту вращения вентилятора. Диаграммой нельзя пользоваться, если задано не полное, а статическое давление вентилятора и если рабочий режим вентилятора находится вне рабочего участка характеристики.
Особенности расчета напора
Измерение давления в воздушной среде усложняется из-за ее быстро меняющихся параметров. Манометры следует покупать электронные с функцией усреднения результатов, получаемых за единицу времени. Если напор резко скачет (пульсирует), пригодятся демпферы, которые сглаживают перепады.
Следует помнить такие закономерности:
Измерить статическое давление на выходе не составит труда. Для этого используют трубку для статического напора: один конец вставляют в дифманометр, а другой направляют в сечение на выходе из вентилятора. По статическому напору вычисляют скорость потока на выходе из вентилирующего прибора.
Динамический напор тоже измеряют дифманометром. К его соединениям подключают трубки Пито — Прандтля. К одному контакту — трубку для полного напора, а к другому — для статического. Полученный результат будет равняться динамическому давлению.
Чтобы узнать потери давления в воздуховоде, можно проконтролировать динамику потока: как только вырастает скорость движения воздуха, повышается сопротивление вентиляционной сети. Напор теряется из-за этого сопротивления.
При росте скорости вентилятора статический напор падает, а динамический растет пропорционально квадрату увеличения расхода воздуха. Полное давление не изменится.
С правильно подобранным устройством динамический напор изменяется прямо пропорционально квадрату расхода, а статический — обратно пропорционально. В таком случае количество используемого воздуха и нагрузка электродвигателя если и будут расти, то несущественно.
Некоторые требования к электродвижку:
Мощность вентилятора зависит от полного напора, а также от КПД и расхода воздуха. Последние два показателя коррелируют с пропускной способностью вентсистемы.
На стадии ее проектирования придется расставить приоритеты. Учесть затраты, потери полезного объема помещений, уровень шума.
Проверка герметичности системы отопления
Почему в отопительной системе падает или растет давление
Для обеспечения эффективной и надежной работы системы обогрева, не только проверяют давление теплоносителя, но и тестируют оборудование на герметичность. Как это происходит, видно на фото. В результате можно проконтролировать наличие протечек и предотвратить поломку оборудования в самый ответственный момент.Проверку герметичности осуществляют в два этапа:
Чтобы добиться оптимального значения давления в системе отопления расчет схемы ее обустройства лучше всего доверить специалистам-теплотехникам. Сотрудники таких фирм не только могут произвести соответствующие испытания, но еще и промоют все ее элементы.
От параметров давления в схеме теплоснабжения многоэтажного дома зависит, насколько комфортно можно проживать в каждой комнате. В отличие от собственного домовладения с автономной системой обогрева в многоэтажке у владельцев квартир не имеется возможность самостоятельно регулировать параметры отопительной конструкции, в том числе температуру и подачу теплоносителя.
Но жильцы многоэтажных домов при желании могут установить такие измерительные приборы как манометры в подвале и в случае малейших отклонений давления от нормы сообщать об этом в соответствующие коммунальные службы. Если после всех предпринятых действий потребители по-прежнему недовольны температурой в квартире, возможно, им следует подумать над организацией альтернативного отопления.
Типы вентиляторов для систем охлаждения и вентиляции
Вентилятор – электромеханическое устройство, предназначенное для перемещения воздуха по помещениям или воздуховодам. Работа основана на вращении лопастей электрическим двигателем. Воздух, сталкиваясь с лопастями, выбрасывается со скоростью под воздействием центробежной силы.
Сжимаемый поток
Много авторов определяют динамическое давление
только для несжимаемых потоков. (Для сжимаемых потоков эти авторы используют понятие давления воздействия.) Однако некоторые британские авторы расширяют свое определение
динамического давления
, чтобы включать сжимаемые потоки.
Если рассматриваемую жидкость можно считать идеальным газом (который обычно имеет место для воздуха), динамическое давление может быть выражено как функция жидкого давления и Числа Маха.
Применяя идеальный газовый закон:
определение скорости звука и Числа Маха:
и также, динамическое давление может быть переписано как:
где (использование единиц СИ):
Расчет естественной вытяжной вентиляции
Потом, в связи от участка открытия верхних и нижних соответственно, приточных и вытяжных фрамуг в помещении приблизительно в центре высоты сооружения получается степень одинаковых давлений, в этом месте влияние точно также нулю. В соответствии, влияние в степени сосредоточении нижних просветов станет равняться:
На уровне центров верхних просветов, выше плоскости одинаковых давлений образуется избыточное напряжение, Па, равняющееся:
Именно это давление и оказывает воздействие на вытяжку воздуха. Общее напряжение, располагающее для обмена воздушных потоков в комнате:
Как вычислить давление в вентиляции?
Каким должно быть давление в системе отопления частного дома
Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.
Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди – минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.
Схема приемника полного давления: 1 — приемная трубка, 2 — преобразователь давления, 3 — камера торможения, 4 — держатель, 5 — кольцевой канал, 6 — передняя кромка, 7 — входная решетка, 8 — нормализатор, 9 — регистратор выходного сигнала, α — угол при вершинах, h — глубина впадин
Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.
Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.
Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.
Трубка Прандтля является усовершенствованным вариантом трубки Пито: приемники выпускают в 2 вариантах — для скоростей меньше и больше 5 м/с
Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.
Напор тогда измеряют по следующему методу:
От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.
Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.
Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.
Перепады давления можно регистрировать напоромерами, тягомерами по ГОСТ 2405-88 и дифманометрами по ГОСТ 18140-84 с классом точности 0,5—1,0
В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.
Также рекомендуем прочесть наш материал о выборе труб для вентиляции.
Расчет вытяжной вентиляции пример
Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.
Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.
Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.
Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.
Допустим, в доме живут два человека, тогда:
В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.
Превышение давлением теплоносителя предельной величины
Нормативы на давление воды в водопроводе в квартире, способы его измерения и нормализации
Если процесс эксплуатации сопровождается частыми «подрывами» предохранительного клапана, следует проанализировать возможные причины происходящего:
Наличие бачка емкостью от 10 % полной емкости системы отопления является практически стопроцентной гарантией исключения первой причины. Впрочем 10 % не являются минимально возможной емкостью. Грамотно спроектированная система может нормально работать и при меньшей величине. Однако определить достаточность емкости бачка сможет только специалист, владеющий методикой соответствующего расчета.
Вторая и третья причины тесно взаимосвязаны между собой. Предположим, что воздух/газ накачан до 1,5 бара, а место установки бачка выбрано вверху системы, где рабочее давление, допустим, всегда ниже 0,5 бара. Газ всегда будет занимать весь объем бачка, а расширяющийся теплоноситель останется снаружи. Внизу системы теплоноситель будет давить на трубы теплообменника котла особенно сильно. Регулярный «подрыв» предохранительного клапана будет обеспечен!
Виды вентиляторов по месту установки
Исходя из того, где планируется установка, зависит тип вентилятора, мощность и способы монтажа. По месту и способу установки вентиляторы условно делятся на группы.
Стандартные
Стандартные модели – это обычные настольные и напольные модели. Общим признаком стандартных устройств служит крепление на опору, подставку, ножку, раму и т.д. Однако ошибочно считать, что все стандартные модели бытовые. Существует большое количество производственных вентиляторов со стандартным вариантом установки.
Среднее динамическое давление
Среднее динамическое давление вычисляется как частное от деления суммы замеренных динамических давлений на число измерений. Подставив значение среднего динамического давления в формулу ( 1 34) или ( 1 34), находят для данного сечения среднюю скорость.
По измерениям среднего динамического давления в тракте газов окисления рассчитывают их расход W, М3 / с, в нормальных условиях.
В напорных усреднителях перепад давления происходит в зависимости не от местного, а от некоторого среднего динамического давления потока. Усреднение может осуществляться в пределах одного, а также двух радиусов или диаметров при кольцевой площади или иным способом.
Предложено несколько разновидностей напорных усредняющих устройств или усреднителей, перепад давления в которых образуется в зависимости не от местного, но от некоторого среднего динамического давления потока.
Принципиальным отличием напорных усредняющих устройств от напорных трубок является то, что первые имеют по две группы отверстий, создающих перепад давления в зависимости не от местного, а от некоторого среднего динамического давления потока. При этом осреднение производится не по всей площади потока, а в зависимости от конструкции устройства либо по одному или двум перпендикулярным радиусам ( или диаметрам), либо по кольцевой площади трубы.
Среднее динамическое давление вычисляется как частное от деления суммы замеренных динамических давлений на число измерений. Подставив значение среднего динамического давления в формулу ( 1 34) или ( 1 34), находят для данного сечения среднюю скорость.
Высота сброса HQ должна обеспечивать такое среднее динамическое давление в момент удара, при котором в образце под индентором в результате деформации появляется зона пластичности.
Динамическое пластовое давление ра вдоль контура воронки депрессии меняется в зависимости от изменения ее формы. На среднем радиусе воронки депрессии или на радиусе влияния скважины действует только некоторое среднее динамическое давление.
Эти параметры регистрировались в покое перед нагрузкой, в период решения задач в начале, в середине и в конце рабочего периода и в период отдыха через 10 мин после окончания рабочего периода. Артериальное давление измерялось по методу Короткова, по математической формуле Хикема вычислялось среднее динамическое давление, частота сердечных сокращений определялась по второму отведению электрокардиограммы.
Сумма статического и динамического давлений называется полным давлением и может быть замерена с. Вторая трубка служит для замера статического давления в той же точке внутри воздуховода. Разность между полным давлением и статическим является динамическим давлением и фиксируется на шкале отсчета микроманометра. Для определения среднего динамического давления по сечению воздуховода замеры производят в нескольких точках.
При выполнении измерений одну пневмометрическую трубку устанавливают в контрольной точке на расстоянии 30 — 100 мм от оси воздуховода. Рабочую напорную трубку перемещают по линии измерения последовательно устанавливая в точках измерения, при этом входные отверстия трубок должны быть направлены навстречу газовому потоку. Измерение давления обеими трубками производят одновременно. В каждой точке необходимо выполнить не менее трех измерений динамического давления; по результатам измерений определяется среднее динамическое давление для данной точки измерения.
Приборы для испытания и регулирования вентиляционных систем. |
Расход воздуха, проходящего через воздуховоды, определяют косвенным способом — путем измерения динамического давления движущегося потока воздуха. Для измерения давления применяют микроманометры ( рис. 151, а), пневмометрические трубки и резиновые шланги для их соединения. Воздуховоды на всасывающей стороне вентилятора находятся под некоторым статическим разрежением, а на нагнетающей стороне — под статическим напором. Сумма статического и динамического давления называется полным давлением и может быть замерена с помощью одной из двух спаянных трубок пневмометрического устройства, введенного в воздуховод. Вторая трубка служит для замера статического давления в той же точке внутри воздуховода. Разность между полным давлением и статическим является динамическим давлением и фиксируется на шкале отсчета микроманометра. Для определения среднего динамического давления по сечению воздуховода замеры производят в нескольких точках сечения.
Каким прибором измеряют скорость движения воздуха
Все устройства такого типа компактны и несложны в использовании, хотя и тут есть свои тонкости.
Приборы для измерения скорости воздуха:
Крыльчатые анемометры одни из самых простых по конструкции устройств. Скорость потока определяется скоростью вращения крыльчатки прибора.
Температурные анемометры имеют датчик температуры. В нагретом состоянии он помещается в воздуховод и по мере его остывания определяют скорость воздушного потока.
Ультразвуковыми анемометрами в основном измеряют скорость ветра. Они работают по принципу определения разницы частоты звука в выбранных контрольных точках воздушного потока.
Анемометры с трубкой Пито оснащены специальной трубкой малого диаметра. Ее помещают в середину воздуховода, тем самым измеряя разницу полного и статического давления. Это одни из самых популярных устройств для измерения воздуха в воздуховоде, но при этом у них есть недостаток — невозможность использования, при высокой концентрации пыли.
Дифманометры могут измерять не только скорость, а и расход воздуха. В комплекте из трубкой Пито, этим устройством можно измерять потоки воздуха до 100 м/с.
Балометры наиболее эффективны при измерениях скорости воздуха на выходе из вентиляционных решеток и диффузоров. Они имеют раструб, который захватывает весь воздух, выходящий из вент-решетки, тем самым сводя погрешность измерения к минимуму.
Уравнение Бернулли стационарного движения
Одно из важнейших уравнений гидромеханики было получено в 1738 г. швейцарским учёным Даниилом Бернулли (1700 — 1782). Ему впервые удалось описать движение идеальной жидкости, выраженной в формуле Бернулли.
Идеальная жидкость — жидкость, в которой отсутствуют силы трения между элементами идеальной жидкости, а также между идеальной жидкостью и стенками сосуда.
Уравнение стационарного движения, носящее его имя, имеет вид:
где P — давление жидкости, ρ − её плотность, v — скорость движения, g — ускорение свободного падения, h — высота, на которой находится элемент жидкости.
Смысл уравнения Бернулли в том, что внутри системы заполненной жидкостью (участка трубопровода) общая энергия каждой точками всегда неизменна.
В уравнении Бернулли есть три слагаемых:
Это уравнение объясняет почему в узких участках трубы растёт скорость потока и падает давление на стенки трубы. Максимальное давление в трубах устанавливается именно в месте, где труба имеет наибольшее сечение. Узкие части трубы в этом отношении безопасны, но в них давление может упасть настолько, что жидкость закипит, что может привести к кавитации и разрушению материала трубы.
Объем и скорость потока
Объем жидкости, проходящей через определённую точку в заданное время, рассматривается как объем потока или расход. Объем потока обычно выражается литрами в минуту (л/мин) и связан с относительным давлением жидкости. Например, 10 литров в минуту при 2,7 атм.
Скорость потока (скорость жидкости) определяется как средняя скорость, при которой жидкость движется мимо заданной точки. Как правило, выражается метрами в секунду (м/с) или метрами в минуту (м/мин). Скорость потока является важным фактором при калибровке гидравлических линий.
Объём и скорость потока жидкости традиционно считаются «родственными» показателями. При одинаковом объёме передачи скорость может меняться в зависимости от сечения прохода
Объем и скорость потока часто рассматриваются одновременно. При прочих равных условиях (при неизменном объеме ввода), скорость потока возрастает по мере уменьшения сечения или размера трубы, и скорость потока снижается по мере увеличения сечения.
Так, замедление скорости потока отмечается в широких частях трубопроводов, а в узких местах, напротив, скорость увеличивается. При этом объем воды, проходящей через каждую из этих контрольных точек, остаётся неизменным.
Принцип Бернулли
Широко известный принцип Бернулли выстраивается на той логике, когда подъем (падение) давления текучей жидкости всегда сопровождается уменьшением (увеличением) скорости. И наоборот, увеличение (уменьшение) скорости жидкости приводит к уменьшению (увеличению) давления.
Этот принцип заложен в основе целого ряда привычных явлений сантехники. В качестве тривиального примера: принцип Бернулли «виновен» в том, что занавес душа «втягивается внутрь», когда пользователь включает воду.
Разность давлений снаружи и внутри вызывает силовое усилие на занавес душа. Этим силовым усилием занавес и втягивается внутрь.
Другим наглядным примером является флакон духов с распылителем, когда нажимом кнопки создаётся область низкого давления за счёт высокой скорости воздуха. А воздух увлекает за собой жидкость.
Принцип Бернулли для самолётного крыла: 1 — низкое давление; 2 — высокое давление; 3 — быстрое обтекание; 4 — медленное обтекание; 5 — крыло
Принцип Бернулли также показывает, почему окна в доме имеют свойства самопроизвольно разбиваться при ураганах. В таких случаях крайне высокая скорость воздуха за окном приводит к тому, что давление снаружи становится намного меньше давления внутри, где воздух остаётся практически без движения.
Существенная разница в силе попросту выталкивает окна наружу, что приводит к разрушению стекла. Поэтому когда приближается сильный ураган, по сути, следует открыть окна как можно шире, чтобы уравнять давление внутри и снаружи здания.
И ещё парочка примеров, когда действует принцип Бернулли: подъем самолёта с последующим полётом за счёт крыльев и движение «кривых шаров» в бейсболе.
В обоих случаях создаётся разница скорости проходящего воздуха мимо объекта сверху и снизу. Для крыльев самолета разница скорости создаётся движением закрылков, в бейсболе — наличием волнистой кромки.
Уравнение Бернулли
Подробности Категория: Гидравлика
Документальные учебные фильмы. Серия «Физика».
Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 — 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.
Закон (уравнение) Бернулли
является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:
— плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения.
Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.
В научной литературе закон Бернулли, как правило, называется уравнением Бернулли
(не следует путать с дифференциальным уравнением Бернулли),
теоремой Бернулли
или
интегралом Бернулли
.
Константа в правой части часто называется полным давлением
и зависит, в общем случае, от линии тока.
Размерность всех слагаемых — единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости
Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»)
Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли
. В современном виде интеграл был получен Иоганном Бернулли около 1740 года.
Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.
Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.
Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.
Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.
В статье были спользованны материалы Wikipedia
Мощность и производительность
Под производительностью понимают объем проходимого воздуха за единицу времени (куб.м/час). Производительность или воздухообмен зависит от типа вентилятора, размера лопастей, сопротивления воздуха и мощности двигателя (не путайте с мощностью вентилятора).
Небольшие бытовые приборы имеют мощность 15-20 Вт и при этом способны переместить от 100-200 м 3 /час. Модели посерьезней мощностью от 50 Вт работают с большими потоками и перегоняют более тысячи кубометров в час. Но для бытовых целей редко встречаются модели, превышающие мощность 150Вт. Для промышленных целей могут использоваться вентиляторы, мощность двигателя которых достигает 500 кВт, а производительность 1 000 000 м 3 /ч.
Коэффициенты воздухообмена в жилых помещениях:
Из расчётов видно, что для организации полноценного воздухообмена на кухне требуется приобретать модели с производительностью не менее 405 м 3 /ч.
А теперь разберемся, что же такое мощность вентилятора и чем она отличается от потребляемой мощности двигателя.
Мощность вентилятора – это количество энергии, которое требуется устройству на перемещение определенного объемы массы воздуха. Этот параметр получается из произведения производительности и давления делённого на КПД конкретного типа вентилятора умноженного на 1000.
(Производительность м 3 /с*давление Па)/(1000*КПД) = кВт
Полезная мощность всегда ниже подаваемой мощности, что связанно с потерями при передаче энергии (трение, сопротивление).
Лучший вентилятор для ПК – первое знакомство
Noctua NF-A8 PWM – лучший 80-миллиметровый вентилятор
Не позволяйте внешности (и размеру!) обмануть вас. Он выглядит как простой 80-миллиметровый вентилятор, но генерирует поток воздуха столь же мощный, как лучшие вентиляторы в этой категории.
Вентилятор Noctua NF-A8 PWM имеет рамку с улучшенной акустической оптимизацией (AAO) и сложный аэродинамический дизайн. Кроме того, он оснащен подшипником с самостабилизирующимся давлением масла версии 2 (SSO2) и 4-мя вибрационными компенсаторами, – вы получаете очень тихий коричневый вентилятор охлаждения.
Этот 4-контактный ШИМ-вентилятор (с широтно-импульсной модуляцией) также может управляться на лету с помощью программного обеспечения. Если вы хотите остаться в пределах более низких оборотов, вам не придётся возиться с программным обеспечением сторонних производителей, он также поставляется с малошумящим адаптером (LNA).
CORSAIR LL120 RGB – лучший 120-мм RGB вентилятор
Если вам нравится RGB, Corsair LL120 вас порадует. Ваша сборка «поблагодарит вас» за отличный воздушный поток, а система будет прекрасно освещаться в RGB!
Эти вентиляторы добавляют фантастические варианты освещения в ваш корпус, при этому эффективно удаляя горячий воздух. Даже при скорости вращения 1500 об/мин этот вентилятор генерирует только 24,8 дБа шума.
Этот вентилятор также поставляется в нескольких разных размерах и в пачках по два или три, если вам нужен полный комплект для сборки!
Corsair ML140 Pro – лучший 140-мм вентилятор
Магнитная левитация – это новая фишка от Corsair, и, поскольку она почти не создаёт трения, вы получаете отличную производительность.
Серия Corsair ML может похвастаться подшипником на магнитной левитации, что значительно повышает производительность, при этом без генерации лишнего шума даже при 100% использовании.
При 2000 оборотах в минуту эта штука обеспечивает поток в 97 кубометров в минуту при уровне шума 37 дБА. Углы также сделаны из вибропоглощающих прокладок, обеспечивающих бесшумную работу вентилятора.
Cooler Master Silencio FP 120 – самый тихий вентилятор
Если вам требуется максимальное снижение шума, то Cooler Master Silencio FP 120 является идеальным кандидатом. При максимальном уровне шума 14 дБА вы вряд ли что-либо услышите вообще.
Благодаря технологии IC Silent Driver Cooler Master, вентилятор генерирует меньший импульс крутящего момента, что означает минимальную вибрацию и сверхнизкий уровень шума. Он также разработан для обеспечения сбалансированного статического и воздушного потока.
Конструктивные особенности вентиляторов
Различаются по множеству параметров, начиная от конструктивных особенностей, типов крепления и заканчивая местом установки и уровнем шума. Рассмотрим подробней каждый тип вентиляторов по принципу работы и конструктивным особенностям.
Первоначально отметим, что по принципу работы все вентиляторы принято делить на два типа:
Все остальные типы вентиляторов: диагональный, диаметральный, безлопастной и т.д. — модификации радиальных и осевых конструкций.
Радиальный (центробежный)
Конструктивно состоит из кожуха в форме спирали (улитки) в котором находится крыльчатка – полый цилиндр с лопастями, расположенных параллельно стенкам кожуха. При вращении колеса воздух, через входное отверстие попадает в прорези между лопастями и благодаря центробежной силе движется по спирали корпуса, а затем выходит через выходное отверстие.
От расположения и наклона лопаток зависит уклон воздушного потока. При направлении лопаток назад, скорость потока уменьшается, но при этом уменьшается уровень шума и количество потребляемой энергии. Устройство характеризуется высокой мощностью.
Радиальный тип вентиляторов может вращаться в правую или левую сторону. Вращение крыльчатки осуществляется двигателем при помощи ременной передачи или напрямую от вала, но улитки предназначенные для производственных нужд никогда не имеют собственного двигателя.
Применяются радиальные модели для вытяжки или подачи воздуха в помещения с большой протяженностью воздуховодов и большим аэродинамическим сопротивлением. Например, в гостиничных комплексах с обширной системой вентиляции или в производственных цехах, где воздух содержит большое количество примесей (пыль, влага, дым).
Радиальные устройства носят другое название – центробежные вентиляторы, а в народе получили простое название «улитка».
Осевой (аксиальный)
Представляет собой цилиндрический корпус (наличие корпуса зависит от конструкции), в центре которого расположена крыльчатка с лопастями расположенных по диагонали — перпендикулярно относительно оси двигателя. Крыльчатка устанавливается на вращающуюся ось. При вращении лопастей воздух движется вдоль оси и отбрасывается усиленным потоком. Аксиальная конструкция имеет наиболее высокий КПД среди всех существующих конструкций и требует незначительных мощностей, если отсутствует встречное сопротивление воздуха.
Осевые вентиляторы применяются для установки в свободные проемы для вытяжки или подачи воздуха из помещения во внешнюю среду, в технике для охлаждения нагревающихся элементов и даже известные нам напольные модели так же относятся к одной из модификаций осевого типа.
Благодаря несложной конструкции, простоты в монтаже и низком потреблении энергии осевые модели чаще всего применяются в быту.
Динамическое пластовое давление
Пластовое давление, установившееся на какую-либо определенную дату в продуктивном пласте находящейся в разработке залежи, называют теку-щ и м, или динамическим, пластовым давлением.
В пласте, разрабатываемом рядом скважин, статическое забойное давление, замеренное в одной из них после ее остановки, является по существу динамическим пластовым давлением. Это объясняется тем, что другие скважины продолжают работать и в пласте не устанавливается абсолютного статического равновесия. Для определения текущего статического ( пластового давления требуется одновременная остановка всех скважин, эксплуатирующих данную залежь, чего практически никогда не производится. Поэтому давления, замеренные в остановленных скважинах, в которых установилось относительное статическое равновесие, условно будем называть в дальнейшем статическими пластовыми давлениями, а давления, замеренные в работающих скважинах — динамическими пластовыми ( забойными) давлениями.
Схематический профиль приведенного пластового давления залежи при внутриконтурном нагнетании воды. |
Скважины: 1 — нагнетательные, 2 — добывающие; части пласта: 3 — нефтенасыщенные, 4 — промытые водой, 5 — динамическое пластовое давление ( общие воронки депрессии давления); 6 — локальные воронки депрессии ( репрессии); Рпл.
Представление о проходимых пластах и скважине как единой гидродинамической системы позволяет, наряду с гидродинамическим давлением на стенку скважины, считать необходимым и введение понятия динамического пластового давления.
К обработке кривых прослеживания уровня жидкости в скважине после ее остановки. |
Для обработки данных исследований скважины Як определяют по результатам измерения статического уровня жидкости после полной ее стабилизации, т.е. полного восстановления забойного давления, приравниваемого к текущему динамическому пластовому давлению.
К обработке кривых прослеживания уровня жидкости в i. |
Для обработки данных исследовании скважины Як определяют по результатам измерения статического уровня жидкости после полной ее стабилизации, т.е. полного восстановления забойного давления, приравниваемого к текущему динамическому пластовому давлению.
Кроме того, при разобщении пластов, в процессе эксплуатации скважины на цементный стакан в интервале подошва верхнего пласта — кровля нижнего пласта действует перепад давлений, абсолютная величина которого и направление зависят как от величины динамических пластовых давлений, так и создаваемых депрессий на пласт.
Разбурив нефтеносную площадь некоторым числом скважин, расставленных на ней в каком-то порядке, и снизив противодавление в скважинах, мы возбуждаем в залежи течение жидкостей, В результате совместного действия скважин, их интерференции, в залежи в данный момент устанавливаются определенная картина движения жидкостей и определенное распределение динамического пластового давления.
Если выполнение условия однофазности нефти не сопряжено с превышением критической скорости на забое, то забойные давления во всех скважинах залежи должны быть одинаковы и равны давлению насыщения. Вследствие уменьшения динамического пластового давления в направлении от контура нефтеносности к куполу залежи депрессия в скважинах внутренних рядов принимает все меньшее значение; вместе с нею падают и дебиты скважин.
В промысловой практике пластовое давление измеряют на забое скважины. При этом следует различать начальное, текущее, статическое и динамическое пластовое давление, забойное давление.
Тип управления
Управление вентиляторами может осуществляться следующими способами:
Благодаря управляющим механизмам можно изменять основные характеристики работы устройства:
Снижение давления теплоносителя ниже нормы – следствие его утечки
Если значение величины, показываемое при отсутствии циркуляции, снизилось от 0,02 бара, причем давление газа в расширительном бачке нормальное, можно начинать искать утечки жидкости. Хорошо, если они визуально проявляются. Малозаметные мелкие утечки выявляют путем пневмоиспытаний системы. Закачав внутрь сжатый воздух, ожидают появления шипения (свиста) в местах разгерметизации. Обычно они наблюдаются в местах соединений трубопроводов с элементами арматуры и отопительными приборами.Хорошей профилактикой появлению утечек теплоносителя является опрессовка системы. Так именуются гидроиспытания повышенным давлением. Для заполнения системы водой используется ручной насос, позволяющий плавно поднимать его величину. Подняв ее до определенного уровня, делают паузу на полчаса, контролируя показания манометра. Спад первоначального значения – явный признак утечки, которую вновь ищут визуально или на слух, проводя пневмоиспытания.
Технология проведения опрессовки.
Технологии проведения ремонтов систем отопления постоянно развиваются. Относительно недавно в России получил распространение метод устранения утечек в трубопроводных системах, включая отопительные, основанный на добавлении внутрь системы (посредством насоса) жидкого герметика. Растворяясь в объеме теплоносителя, герметик в местах утечек реагирует с воздухом, образуя прочный уплотняющий слой, ликвидируя любые течи за 1-7 дней (срок определяется размерами дефектов). Соотношение герметик/теплоноситель для продукта германской марки BCG равно 1:100. Поэтому ремонт системы емкостью 100-200 л обеспечит всего 1-2 л герметика.
Что такое напор вентилятора и от чего он зависит?
Напор – это одна из основных характеристик вентилятора, которая показывает, как изменяется давление потока воздуха до и после вентилятора. Именно за счёт этого давления воздух «проталкивается» через сеть воздуховодов, повороты, тройники, решетки и другое вентиляционное оборудование.
Различают статический, динамический и полный напоры вентилятора.
После вентилятора воздух имеет более высокое давление, чем до вентилятора. Разность давлений воздуха – это и есть статический напор вентилятора (статическое давление вентилятора).
Кроме того, после вентилятора воздух приобретает некоторую скорость движения – так называемый скоростной напор. Если на пути воздуха поставить стенку, то, очевидно, достигнув стенки, воздух остановится, при этом слегка сжавшись. Возле стенки кинетическая энергия воздуха (скорость) превратится в потенциальную энергию (давление). Именно этот прирост давления и есть скоростной напор вентилятора. Иными словами, динамическое давление вентилятора – это давление, которое мог бы иметь движущийся поток воздуха, если его внезапно остановить.
Полное давление вентилятора – суть сумма статического и динамического давлений вентилятора.
Давление (напор) вентилятора зависит от его конструктива. Наименее напорными являются осевые вентиляторы. Их напор измеряется единицами и десятками паскалей.
Средненапорные вентиляторы – как правило, вентиляторы радиального и центробежного типов. Такие вентиляторы «выдают» сотни паскалей. Именно такие вентиляторы чаще всего применяются в общеобменных системах вентиляции.
Вентиляторы высокого давления создают напор, измеряемый тысячами паскалей. Такие вентиляторы используются в промышленных системах вентиляции для прокачки воздуха через длинные воздуховоды, применяются в качестве дымососов, а также для надува при сжигании топлива.
Несколько иная классификация вентиляторов принята в канальных кондиционерах. Канальные кондиционеры также бывают низкого, среднего и высокого давления. Чем выше напор кондиционера, тем более разветвленную сеть воздуховодов можно к нему подсоединить.
К низконапорным кондиционерам подсоединять воздуховоды не рекомендуется.
Они комплектуются всасывающими и нагнетательными адаптерами, которые имеют отверстия для всасывания и нагнетания воздуха. Средненапорные канальные кондиционеры предусматривают подключение воздуховодов средней длины. Обычно речь идёт о рукавах длиной по нескольку метров. Наконец, высоконапорные канальные кондиционеры способны прокачивать воздух на 10 и более метров.
Перепады давления
Чтобы компенсировать перепады, в контур встраивается дополнительное оборудование:
Скачки рабочего давления в системе отопления могут быть спровоцированы различными причинами. В процессе эксплуатации может наблюдаться повышение или понижение давления. Рассмотрим основные причины такого явления и будем разбираться, как с этим бороться.
Причины понижения
При понижении рабочего давления циркуляция воды может просто остановиться, так отключится нагреватель. Помимо этого, низкая скорость теплоносителя приведет к тому, что на отдаленные участи контура вода будет доходить с большими теплопотерями, или, вообще, не дойдет. Причинами такого явления может быть:
Чтобы найти место, где протекает вода надо обследовать каждый узел. Делать это следует очень внимательно. Бывают случаи, когда утечка настолько мизерна, что незаметна визуально. Также могут образоваться микроскопические трещины на теплоносителе.
Если насосы перестают качать воду по трубам, то норма давления в системе отопления не может быть соблюдена. Все насосы электрические, поэтому причиной может стать его обесточивание. В первую очередь, надо проверить его подпитку от электросети. Если все в порядке, возможно, сломался механизм. В этом случае насос придется заменить.
неисправность расширительного бачка;
Бачок компенсирует расширение воды при нагревании. Он состоит из двух камер, которые разделены резиновой мембраной. Одна камера с газом, вторая для воды. В газовой камере есть ниппель, через который можно подкачивать воздух обычным насосом. Падение давления может наблюдаться, если в газовой камере недостаточный объём воздуха или если порвалась мембрана. В первом случае надо открутить бачок, спустить с него воду и воздух, а потом накачать необходимое количество атмосфер. Во втором случае – только замена. Также причиной падения рабочего давления в системе отопления может быть недостаточный объём бачка. В этом случае необходимо установить дополнительный бак.
Причины повышения
Повышенное давление в открытой или закрытой системе отопления свидетельствует о ее неисправности. Почему это происходит:
образование воздушной пробки;
Воздушная пробка может стать причиной изменения рабочего давления
Если в трубе есть воздух, он оказывает сильное сопротивление потоку теплоносителя, не пропуская его дальше. Таким образом, горячая вода просто не доходит до некоторых участков. Вследствие — холодные радиаторы и опасность размораживания. Для удаления воздушных пробок в вероятных местах их образования устанавливаются воздухоотводы.
Характеристики вентиляторов по типу окружающей среды
Вентиляторы предназначенный на установку в вытяжку ванной нельзя применять в условиях высоких температур. Первоначально все устройства делятся на две группы: бытовые модели и приборы специального назначения.
Вентиляторы особого назначения предназначены для функционирования в неблагоприятных условиях. Они подразделяются на: