Что такое полоса пропускания усилителя
Что такое полоса пропускания усилителя
4. 1. Схемотехника построения антенных усилителей
Электронное устройство, предназначенное для увеличения параметров (тока, напряжения, мощности) электрического сигнала, называется усилителем.
Рабочий режим выбранного транзистора в конкретной проектируемой схеме отличается от параметров, приведенных в ТУ. Значение большинства параметров зависит от рабочего режима и температуры, причем с увеличением температуры зависимость их от режима сказывается более сильно. В справочной литературе, как правило, приводятся типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, частоты и т. д.
Ухудшение характеристик транзисторов на частотах, близких к frp. обусловлено технологическими возможностями и их электрической прочностью (допустимой толщиной базы, длиной затвора). С увеличением частоты возрастает влияние паразитных параметров транзисторов:
междуэлектродных емкостей, индуктивностей выводов, сопротивления базы и др. Увеличение входной резистивной проводимости транзистора уменьшает усиление антенного усилителя и увеличивает Кш, поэтому необходимо уменьшать индуктивность вывода эмиттера и соединительных проводов. Для этого в СВЧ-транзисторах делают два плоских коротких вывода эмиттера, которые обычно припаивают непосредственно к шине нулевого потенциала («земляной»).
В усилителях изменением режима транзисторов и связи с источником и нагрузкой можно добиться максимального усиления либо минимального коэффициента шума. Уровень шумов транзисторных антенных усилителей зависит от способа их
построения и режима работы, величины сопротивления источника сигналов. Снижение шума биполярных транзисторов достигается уменьшением тока коллектора Iк и тока базы Iб (без существенного снижения коэффициента передачи тока h21, а также применением транзисторов
с высокой предельной частотой fв и малым сопротивлением rб. Транзисторы выбирают так, чтобы выполнялось условие
Использование транзисторов с низким коэффициентом шума, выполнение условия согласования их с источником и нагрузкой и выбор оптимального режима работы являются основными способами повышения чувствительности антенных усилителей.
Наиболее распространены три схемы включения усилительного элемента (транзистора).
В схемах с ОБЩИМ КОЛЛЕКТОРОМ (ОК) и ОБЩИМ СТОКОМ (ОС) коэффициент передачи напряжения близок к единице, а выходной сигнал по величине и фазе повторяет входной (Uвыx=Uвx). Эти каскады называют «повторителями напряжения» (эмиттерный или стоковый повторитель). Такая схема включения обеспечивает малую входную емкость и наибольшее входное сопротивление, которое сильно возрастает при увеличении сопротивления нагрузки. Выходное сопротивление схемы наименьшее. Используются эти схемы как согласующие и разделительные, обеспечивающие передачу сигнала от высокоомных источников к низкоомным цепям и каскадам.
В схемах с ОБЩЕЙ БАЗОЙ (ОБ) и ОБЩИМ ЗАТВОРОМ (03) выходной ток примерно равен входному, поэтому их называют «повторителями тока». Такая схема обладает большой входной проводимостью (малым входным сопротивлением), самым большим по сравнению с другими схемами выходным сопротивлением и обеспечивает в основном усиление по напряжению. Коэффициент усиления по току мало изменяется при изменениях режима работы, температуры и замене экземпляров транзистора. Малая входная емкость схемы улучшает параметры каскада (ОБ, 03) на высоких частотах, хотя малое входное сопротивление является недостатком данных схем.
Схема с ОБЩИМ ЭМИТТЕРОМ (ОЭ) для биполярных и, ОБЩИМ ИСТОКОМ (ОИ) для полевых транзисторов обеспечивает наибольшее усиление по мощности, но изменяет фазу выходного напряжения на 180° по отношению к входному. При увеличении сопротивления нагрузки входное сопротивление уменьшается. Используются эти схемы в тех случаях, когда при минимальном числе транзисторов требуется получить наибольшее усиление. Однако входная емкость транзисторов Сэб влияет на сужение полосы пропускания на высоких частотах.
Одним из эффективных методов увеличения входного сопротивления эмиттерного повторителя является увеличение коэффициента передачи транзистора по току h21э. В схеме «суперальфа» (называемой также схемой Дарлингтона) ток эмиттера первого транзистора управляет базой второго транзистора, в связи с чем результирующий коэффициент передачи тока h21э равен произведению коэффициентов передачи по току отдельных транзисторов. Отсюда
Путем различных сочетаний каскадов возможны построения других усилительных схем:
4. 1. 1. Схемные особенности антенных усилителей
При усилении слабых телевизионных сигналов большое значение имеет уровень собственных шумов входных каскадов усилителей. Поэтому в телевизионных антенных усилителях используют СВЧ-транзисторы с низкими величинами шумовых параметров. На шумовые параметры антенных усилителей также влияют и паразитные параметры применяемых пассивных элементов — сопротивлений и емкостей.
Широкополосные антенные усилители предназначены для усиления сигналов в полосе частот нескольких диапазонов метровых и (или) дециметровых волн. Обычно широкополосный усилитель строится на основе резистивного усилительного каскада, обладающего наиболее равномерной частотной характеристикой в сравнительно широком диапазоне частот. Для расширения полосы пропускания как в сторону низких, так и в сторону высоких частот в схему вводятся специальные цепи коррекции. Однако характеристики транзисторов ухудшаются на верхних частотах, что приводит к сужению полосы пропускания усилителей на этих частотах. В узкополосных усилителях (в пределах полосы пропускания) изменением характеристик транзисторов можно пренебречь.
Апериодический (резистивный) усилитель с емкостной связью называется также RC-усилителем. Название схемы связано с характером сопротивления нагрузки RH и емкостной связью каскада с источником сигнала, или с предыдущим каскадом (или нагрузкой следующего каскада). Апериодические усилители обеспечивают высокую стабильность коэффициента усиления и высокую чувствительность при усилении слабых сигналов. Коэффициент усиления в диапазоне высоких частот можно рассчитать по формуле:
Коэффициент усиления в диапазоне низких частот можно рассчитать по формуле:
Избирательными (селективными) называют усилители, полоса пропускания (задержания) которых сужена для отделения сигналов в нужной полосе частот от сигналов, помех или шумов других частот. По принципу действия и схемному выполнению избирательные усилители можно разделить на резонансные, полосовые и т. д. Резонансные усилители предназначены для усиления сигналов в заданной узкой полосе частот. Основная их особенность состоит в том, что нагрузка каскада — частотно-зависимая, в качестве которой выступает параллельный LC-контур, настроенный на частоту усиливаемого сигнала. Колебательный контур можно включить в усилитель по трансформаторной, автотрансформаторной, емкостной схеме.
Рис. 4. 7. Способы согласования в селективных усилителях
Чем больше добротность контура, тем уже полоса пропускания усилителя, тем больше усиление. Подключая параллельно резонансному контуру сопротивление, можно уменьшать его добротность и тем самым влиять на коэффициент усиления и ширину полосы пропускания усилителя. Дополнительное преимущество селективных усилителей по сравнению с апериодическими заключается в компенсации настройкой колебательных контуров влияния паразитных емкостей монтажа, снижающих усиление на верхних частотах. Увеличивая полное сопротивление нагрузки, компенсируют паразитное емкостное влияние, тем самым повышая усиление. Последнее выполняют с селекцией, распределенной по каскадам усилителя либо сосредоточенной в одном каскаде — с помощью фильтра сосредоточенной селекции (ФСС).
4.1.2. Требования к усилительным устройствам
К параметрам, которые характеризуют схемы усилителей, относятся коэффициент усиления, неравномерность коэффициента усиления, полоса усиливаемых частот и др.
КОЭФФИЦИЕНТОМ УСИЛЕНИЯ (К) усилителя называют отношение выходной величины к входной. В зависимости от рассматриваемой электрической величины, различают коэффициенты усиления по напряжению. току и мощности.
Коэффициент усиления по напряжению в многокаскадных усилителях равен произведению коэффициентов усиления каждого каскада:
КОЭФФИЦИЕНТ УСИЛЕНИЯ ПО ТОКУ(Ki)- это отношение выходного тока к входному:
ПОЛОСА ПРОПУСКАНИЯ (В) или ДИАПАЗОН УСИЛИВАЕМЫХ ЧАСТОТ- область частот, в которой коэффициент усиления изменяется не более, чем это допустимо по техническим условиям. Допустимые изменения коэффициента усиления в пределах полосы пропускания зависят от назначения и условий работы усилителя. Обычно считается допустимым ослабление уровня сигнала на 3 дБ (2^0.5 = 0,707 раз) по сравнению с максимальным значением на резонансной частоте (частотах). Ширина полосы пропускания определяется как разность между верхней fв и нижней fн граничными частотами. B=fв-fн. (4.10)
Рис. 4.8. Полоса пропускания усилителя
В зависимости от назначения антенные усилители могут быть относительно узкополосными [полоса пропускания менее октавы, fв/fн
Д= 20lg(Uвх.max/Uвх.min) (дБ). (4.11)
.
Полоса пропускания усилителя – это диапазон частот, в пределах которого изменение коэффициента усиления не превышает заданной величины (рис. 6).
Рис. 6. Определение полосы пропускания усилителя низкой частоты.
К параметрам усилителей относят и различные искажения сигнала. Искажения бывают частотные, фазовые, нелинейные.
Частотные искажения определяют коэффициентами частотных искажений на верхней и нижней частотах МВ и МН
,
,
tВ и tН – постоянные времени, зависящие от элементов схемы усилителя, влияющих на частотные искажения на верхних или нижних частотах.
Определим постоянные времени tВ и tН для однокаскадного усилителя с общим эмиттером (рис. 7)
где tb – постоянная времени, зависящая от граничной частоты усиления транзистора fb,
;
tK – постоянная времени, зависящая от емкости СК коллекторного перехода транзистора;
,
где rK – дифференциальное сопротивление закрытого коллекторного перехода,
Рис. 7. Однокаскадный усилитель с общим эмиттером.
Таким образом, на частотные искажения на верхних частотах МВ влияют усилительный прибор – транзистор своими параметрами fb, CK и rK и элементы схемы RK и RH.
На нижней частоте wН на частотные искажения МН будут влиять конденсаторы СР, СЭ и СС, так как реактивное сопротивление конденсатора хС=1/wС и с уменьшением рабочей частоты хС будет увеличиваться и конденсаторы будут оказывать все большее влияние:
Зная МН и МВ, можно рассчитать коэффициенты усиления и
.
Определив частотные искажения МВ и МН для однокаскадного усилителя, можно найти МВ и МН для многокаскадного усилителя:
Таким образом, создавая многокаскадный усилитель и добиваясь как можно большего КОБЩ., не нужно забывать что частотные искажения будут увеличиваться по такой же зависимости.
Фазовые искаженияразличны на верхней и нижней частотах:
Нелинейные искажения возникают при работе усилительного прибора на нелинейных участках вольт-амперной характеристики. Оценивают нелинейные искажения коэффициентом нелинейных искажений g или клирфактором
,
Коэффициент полезного действия усилителя
,
P0— мощность, потребляемая от источника питания.
Чтобы распечатать файл, скачайте его (в формате Word).
Что такое ширина полосы пропускания усилителя?
Из-за того что усилитель не усиливает одинаково сигналы различных частот, возникает необходимость уточнения способности усилителя усиливать определенные полосы частот. Эта способность выражается с помощью ширины полосы, определяемой как разность частот между двумя точками амплитудной характеристики, для которых коэффициент усиления на 3 дБ меньше, чем на средних частотах. Одна из этих точек, расположенная в этой части характеристики отражает в диапазоне более низких частот, соответствует на оси частот нижней граничной частоте fн, тогда как другая точка — соответственно верхней граничной частоте fв.
Разность этих частот и является шириной полосы пропускания, которую обычно обозначают буквой В или Δf:
Δf = В = fв — fн
Амплитудная характеристика низкочастотного усилителя с граничными частотами fн и fв
Точки на амплитудной характеристике, в которых усиление (по напряжению и по току) снижается на 3 дБ, называются точками половинной мощности, поскольку соответствующая им мощность уменьшается в 2 раза.
В зависимости от применения усилители могут иметь различную ширину полосы пропускания. Полоса пропускания усилителей звуковых частот, используемых, например, в радиоприемниках и электроакустических устройствах, лежит в полосе от нескольких десятков герц до 10–20 кГц, тогда как в видеоусилителях, предназначенных для усиления сигналов изображения с широким частотным спектром, — от нескольких герц до нескольких мегагерц (например, 6 МГц).
Оба упомянутых усилителя относятся к усилителям типа фильтров нижних частот, поскольку пропускают сигналы с очень низкими частотами. Именно поэтому в подобных усилителях за ширину полосы пропускания принимают значение верхней граничной частоты fв, поскольку разность верхней и нижней граничных частот fв — fн незначительно меньше частоты fв.
Усилитель
Электронный усилитель — это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.
Что такое усилитель?
В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона
слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник
Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:
Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.
Что такое черный ящик в электронике
В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.
То есть по сути черный ящик должен иметь какие-либо «сенсоры» для восприятия информации извне, некий «вход», а также некий «выход» для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.
Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала — значит кошка. Если побежал — значит кот).
Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.
Что такое четырехполюсник
В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник — это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего «электрического черного ящика».
Пассивный четырехполюсник
Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).
В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.
Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.
Активный четырехполюсник
Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.
Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.
В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке — это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.
Обобщенная схема усилителя
Она выглядит примерно вот так:
Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).
Типы усилителей
Усилители можно разделить на три группы:
Усилитель напряжения
Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:
KU — это коэффициент усиления по напряжению
Uвых — напряжение на выходе усилителя, В
Uвх — напряжение на входе усилителя, В
Усилитель тока
Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:
где KI — коэффициент усиления по току
Iвых — сила тока в цепи нагрузки, А
Смысл работы усилителя тока такой: при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.
Если сила тока должна быть постоянной, а значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.
Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим, у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.
Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.
Усилитель мощности
Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.
Чем же УМ отличается от УН и УТ?
Если в УТ мы увеличивали только силу тока, в УН — напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.
Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:
Следовательно, коэффициент усиления по мощности запишется как:
KP — коэффициент усиления по мощности
Pвых — мощность на выходе усилителя, Вт
Pвх — мощность на входе усилителя, Вт
Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).
Выходная мощность усилителя
Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:
Pвых — выходная мощность усилителя, Вт
Iвых — сила тока в цепи нагрузки, А
UВых — напряжение на нагрузке, В
Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:
Pвых — выходная мощность усилителя, Вт
Iвых — сила тока в цепи нагрузки, А
cos φ — где φ — это разность фаз между осциллограммой тока и напряжения
Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид
Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.
Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.
Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:
Виды усилителей по полосе пропускания
По ширине полосы пропускания усилители делятся на:
Усилители низкой частоты
Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц — это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.
Усилители высокой частоты
Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.
Широкополосные усилители
Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.
Узкополосные усилители
Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.
Усилители постоянного тока
Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).
Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.