Что является причиной воспламенения топливной смеси в дизельных двигателях
ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ — ПРИНЦИП РАБОТЫ.
На первый взгляд дизельный двигатель почти не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте. В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.
Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.
КОНСТРУКЦИЯ.
Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.
Поршни и свечи дизеля
Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.
ТИПЫ КАМЕР СГОРАНИЯ.
Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.
Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.
Камеры сгорания дизелей
При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.
Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.
Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.
Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.
Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.
Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.
Система питания дизеля.
Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.
Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название — рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.
Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.
Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.
Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима. Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.
Кардинально изменить ситуацию могла только оптимизация процесса горения топливо — воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом. В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как «волновое гидравлическое давление». При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, «бегающие» по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.
Насос-форсунка
В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.
Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок. Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.
Система Common Rail.
Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска. Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам. Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок — высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля. Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.
Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы». Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха — интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения «высотности» двигателя — в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности. В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.
Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.
Процесс сгорания топливной смеси в дизеле
Для осуществления действительного цикла в дизелях в воздушный заряд, сжатый до давления 2,5—5 МГа и имеющий температуру 750—1000 К, впрыскивается топливо под давлением от 40 до 100 МПа (в зависимости от типа камеры сгорания).
Для эффективного протекания горения топливо должно находиться в парообразном состоянии, но из-за недостатка времени на смесеобразование часть топлива не успеваем испариться и находится в начале горения в капельно-жидком состоянии. Поэтому процессы воспламенения и сгорания в этом случае сложные процессы, и включают в себя физико-химическую подготовку топлива, воспламенение и горение.
Первые очаги пламени появляются одновременно в нескольких точках камеры сгорания. Возникновение этих очагов вызывает нагрев близлежащих участков смеси и общий рост температуры, что вызывает испарение остальных частиц топлива и протекание предпламенных процессов в образующейся горючей смеси. Многоочаговое воспламенение вызывает большую скорость сгорания в начальный период и образующееся пламя практически мгновенно воспламеняет часть поступающего топлива. Однако условия горения этого топлива менее благоприятны из-за недостатка кислорода. Особенно это характерно для последней части впрыскиваемого топлива.
Если учесть характер и интенсивность тепловыделения, изменение температуры и давления в цилиндре в разные моменты времени, то весь процесс горения можно условно разделить на четыре фазы.
Рис. Индикаторная диаграмма и зависимость изменения температуры газов от угла поворота коленчатого вала в цилиндре дизеля
Первая фаза горения (01) — задержка воспламенения, начинается с момента поступления топлива (точка 1) и заканчивается в момент отрыва кривой сгорания от линии сжатия (точка 2) Впрыск топлива происходит до прихода поршня в ВМТ. Угол опережения впрыска топлива находится в пределах 20—35° поворота коленчатого вала.
Во время впрыска струя топлива, выходящая из форсунки под большим давлением, разбивается о плотные слои воздуха на мельчайшие капли, образуя факел распыления. При этом завихрения, которые придаются заряду сжимаемого воздуха, оказывают существенное влияние на развитие этого факела.
Рис. Развитие топливных струй в заряде: а — неподвижном; б — движущимся со скоростью 15 м/с; в — движущимся со скоростью 35 м/с
Концентрация топлива в таком факеле изменяется по поперечному сечению и длине. В ядре факела находятся наиболее крупные, а на периферии — наиболее мелкие капли, находящиеся друг от друга на значительных расстояниях. Следовательно, структура рабочей смеси в дизелях крайне неоднородна, поэтому здесь коэффициент избытка воздуха обычного смысла лишен, так как он не дает представления о действительном составе смеси.
Локальные значения коэффициента избытка воздуха по различным зонам камеры сгорания могут меняться от 0 (жидкие капли) до бесконечности (воздух). Именно наличие всей гаммы составов смеси и температур определяет возможность воспламенения в среднем очень бедной смеси, например, при а = 6 и более.
Таким образом, период задержки воспламенения включает в себя время, необходимое для распада струй на капли, некоторого продвижения капель по объему камеры сгорания, прогрева, частичного испарения и смешения топливных паров с воздухом, а также время саморазгона химических реакций.
Если период задержки воспламенения больше продолжительности впрыска, то все топливо оказывается поданным в цилиндр до начала воспламенения. При этом большая часть его успевает испариться и смешаться с воздухом. В результате объемного воспламенения этой части топлива в цилиндре развивается резкое повышение давления с высокими динамическими нагрузками на детали и повышенным уровнем шума. Поэтому длительный период задержки воспламенения нежелателен.
Продолжительность первой фазы сгорания составляет 1—3 мс, что соответствует 12—25° поворота коленчатого вала.
Факторы влияющие на продолжительность первой фазы сгорания
Рис. Различные конструкции камер сгорания в поршне: а — полусферическая (дизели ВТЗ); б — четырехтактного дизеля ЯМЗ; в — дизеля ЦНИДИ; г —дизеля фирмы «МАНН»; д — дизеля фирмы «Дойтц»; е — дизеля фирмы «Гессельманн»; ж — дизеля фирмы «Даймлер-Бенц»; бнз — надпоршневой зазор
Вторая фаза горения (02) — самовоспламенение и быстрое горение начинается с момента воспламенения (см. рис. точка 2) и заканчивается в момент достижения максимального давления в цилиндре (точка 3). В первую очередь сгорают однородные слои смеси топлива и воздуха хорошо перемешанные между собой. При этом пламя распространяется очень быстро, соответственно быстро растет давление, в определенных случаях с образованием ударной волны, распространяющейся со скоростью звука. Но в отличие от карбюраторных двигателей в дизелях эти волны не переходят в детонационные, так как структура смеси по всему объему камеры сгорания неравномерна. Это позволяет получать более высокую степень сжатия.
Рис. Способы создания вихревого движения заряда в цилиндре при впуске:
а — тангенциальный впускной канал; б — клапан с экраном; в — тангенциальные продувочные окна двухтактного дизеля; г — винтовой канал; д — экран на седле клапана
После того, как сгорит хорошо подготовленная к воспламенению топливовоздушная смесь, горение продолжается в зонах, где структура смеси более неравномерна. Здесь на индикаторной диаграмме наблюдается некоторый спад роста давления.
Рис. Разделенные камеры сгорания: а — вихревая (на верхней проекции показано направление перетекания заряда из основной полости в вихревую камеру при сжатии, на нижней — из вихревой камеры в основную при расширении); б — предкамера: в — вихревая типа «Пинтакс»; г — предкамера малого перепада давления дизеля MWM
В течение второй фазы выделяется 30—45 % всей теплоты. Температура рабочего тела возрастает до 1600—1800 К. Максимальное давление может достичь 6—9 МПа, а при наддуве превысить 10 МПа. Продолжительность второй фазы 0,8—1,5 мс, что соответствует 10—20° поворота коленчатого вала.
Факторы влияющие на развитие и продолжительность второй фазы
Третья фаза горения (G3) — характеризуется плавным изменением давления Началом этой фазы считается конец второй фазы (точка 3), а окончанием — момент, соответствующий достижению максимальной средней температуры газов в цилиндре (точка 4). К началу третьей фазы все несгоревшее топливо, поданное в цилиндр во время первых двух фаз, находится в виде капель или сгустков паров, которые отделены от зон со свободным кислородом фронтом пламени или продуктами горения. В результате происходит термическое разложение капель топлива (крекинг) с образованием частиц углерода в виде сажи, которая, покидая цилиндр вместе с отработавшими газами, вызывает сильное дымление на выпуске. Горение продолжается при увеличивающемся объеме камеры, поэтому давление плавно понижается.
За время третьей фазы выделяется 25—30 % теплоты, поэтому температура продолжает повышаться, достигая в конце фазы 1800—2200 К. Продолжительность третьей фазы — 1—2 мс, что соответствует 15—25° поворота коленчатого вала.
Факторы влияющие на развитие третьей фазы
Четвертая фаза горения (04) — догорание начинается в момент достижения максимальной температуры и продолжается в течение всего времени догорания топлива. В течение этой фазы догорает топливо, не успевшее сгореть в третьей фазе, причем происходит это в условиях недостатка кислорода, так как значительное его количество уже израсходовано. Поэтому догорание протекает медленно.
За время четвертой фазы при полной нагрузке дизеля выделяется 15—25 % теплоты. Таким образом, общее количество тепловыделения к концу четвертой фазы оставляет 90—95 %. Остальные 5—10 % теряются вследствие неполноты сгорания топлива. Продолжительность четвертой фазы 3,5—5 мс. что соответствует 50—60° поворота коленчатого вала.
Разрушители легенд. Смесеобразование и сгорание в дизельном двигателе. Часть №1. Смесеобразование.
Как ни странно это прозвучит, но дизель работает не на обеднённой, а на обогащённой смеси …
Я, как и все, хотел написать «СМЕСИ», но это неправильный и даже вредный термин. Термин, который СРАЗУ очень сильно запутывает всё вИдение процессов, происходящих в дизельном двигателе. Потому я и начну свой опус именно с этого вопроса.
Для сжигания 1 кг бензина или 1 кг керосина или 1 кг пропана или 1 кг бутана или 1кг многих прочих углеводородов требуется около 15 кг воздуха. Для сжигания 1 кг дизельного топлива требуются те же самые 15 кг воздуха. Теплотворная способность всех этих топлив тоже практически не отличается.
Почему же дизельному двигателю требуется в разы большее количество воздуха, чем бензинке?
Потому что дизель работает не на СМЕСИ и это нужно чётко понимать.
Хотя СМЕСЬ в камере сгорания дизельного двигателя, конечно же, присутствует. Но!
Топливо подаётся в камеру сгорания В ЖИДКОМ ВИДЕ через распылитель в виде тумана.
Пыли. Аэрозоли. Взвеси. Суспензии. Мельчайших капелек. Назовите как хотите, но это не СМЕСЬ!
СМЕСЬ — это всё таки нечто более-менее однородное. Нечто, УЖЕ смешанное. Сладкий чай — это смесь. Гомогенная смесь. Если сахар бросили на дно стакана и чай не размешивали — на дне стакана какое-то время будет колыхаться густой сироп — получится та самая «гетерогенная»(неоднородная) смесь. Но чай, в который падает кусок сахара — нихрена не смесь вообще!
В дизеле реальная СМЕСЬ начинает образовываться ВОКРУГ КАЖДОЙ мельчайшей частицы топлива сразу же после распыления топлива форсункой. У поверхности капельки СМЕСЬ будет очень богатой. Чем дальше от поверхности капельки — тем смесь будет беднее. Где-то посередине между этими двумя крайностями концентрация СМЕСИ будет около- и стехиометрической. В области этой довольно тоненькой СФЕРЫ и находятся наиболее благоприятные условия и для САМОВОСПЛАМЕНЕНИЯ и для СГОРАНИЯ. И именно здесь и ТОЛЬКО ЗДЕСЬ и будет происходить ВСЁ сгорание СМЕСИ топлива и… и чего? воздуха?
На первом этапе — да, воздуха. Но сразу после первого этапа СМЕСЬ начинает представлять из себя ТАКОЕ, что ни в сказке сказать, ни вслух произнести…:
Давайте посмотрим ПОДРОБНЕЕ как НА САМОМ ДЕЛЕ происходит сгорание солярки в дизельном двигателе:
Гореть не умеют ни жидкие, ни, тем более, твёрдые вещества. Мало того — гореть не умеют даже отдельные молекулы топлива, которые находятся в таки обнаруженной нами СМЕСИ. В фактическом процессе сгорания участвуют только кирпичики(радикалы) знакомых нам элементов. Потому сразу после образования вокруг капельки топлива сферы стехиометрического состава СМЕСИ процесса горения не возникает. Сразу после испарения молекула углеводородного топлива начинает стремительно нагреваться и оттого разваливаться на части. Грубо говоря — на атомы водорода и углерода. Водород чрезвычайно активный элемент и он начинает взаимодействовать с кислородом воздуха первым. Даже это взаимодействие — чрезвычайно сложный и не быстрый процесс. Можете посмотреть на него поподробнее, если интересно:
Главное в другом. Каждое такое взаимодействие — это кроме молекулы воды ещё и хорошая порция энергии. По мере нагрева таких взаимодействий становится всё больше — выделяющаяся энергия перестаёт успевать рассеиваться в пространстве и начнёт ускорять рядом идущие взаимодействия и температура СМЕСИ вокруг капельки топлива начнёт нарастать ЛАВИНООБРАЗНО. В этот момент и начнётся знакомое нам горение с выделением лучистой энергии и прочими другими сопутствующими эффектами… Кислорода много. Топлива много. Всё замечательно перемешано. Температура высокая и растёт. Давление высокое и растёт. Начинает гореть даже углерод. Вся зона околостехиометрического соотношения вокруг капельки топлива разом воспламеняется. Нечто типа взрыва сверхновой звезды:
В «научно»-популярной литературе пишется, что температура скачком повышается до 2000 градусов. Какие нафиг 2000 градусов?! В серьёзных трудах утверждается, что азот более-менее интенсивно начинает окисляться при температурах выше 2500 градусов. В дизеле окислов азота образуется страшное количество, как и сажи(судя по всему азот окисляется СНАРУЖИ сферы пламени где много кислорода, а сажа образуется ИЗНУТРИ этой сферы, где много углерода, но кислорода почти нет), но подавляющая часть окислов азота при понижении температуры опять восстанавливается до азота. Потому, скорее всего, температура в зонах богатой смеси, где и происходит реальное сгорание, взлетает намного выше 3000 градусов. Потому и сажевые частицы излучают так много лучистой энергии. Давление взлетает до небес…
Цитата из умной книжки:
Т.е. всё сгорание происходит ЛОКАЛЬНО. В ОЧЕНЬ ограниченных, фактически ИЗОЛИРОВАННЫХ зонах.
Согласно исследованиям — температуру больше 2600К имеет всего около 0,2% массы рабочего тела в камере сгорания, больше 2400К – около 2%, больше 2200К – 22%, больше 2000К – 27%, больше 1700К — 28%, остальная часть рабочего тела (около 20%) — никогда не разогреется даже до 1700К…
Из-за такой изолированности тепло относительно слабо передаётся стенкам камеры сгорания.
Вернёмся на мгновение из микромира в макромир. Пока первая капелька впрыснутого топлива готовилась к взрыву(самовоспламенению) форсунка продолжала впрыскивать в камеру сгорания тысячи других капелек, каждая из которых тоже тут же начинала готовится к взрыву — нагреваться, испаряться и образовывать СМЕСЬ. Но как только самовоспламеняется СМЕСЬ вокруг первой капельки — энергии её взрыва хватает на детонацию и воспламенение СМЕСИ вокруг других капелек. Фактически одномоментно воспламеняется ВСЯ образовавшаяся в камере сгорания СМЕСЬ. Хотя правильнее будет сказать так — «ВСЕ образовавшиеся в камере сгорания СМЕСИ» — ведь все эти СМЕСИ изолированы и находятся на расстоянии друг от друга… почти как звёзды в космосе…
Так или иначе — возникает та самая дизельная детонация(взрывное горение) из-за которого дизель и стукатит. Хорошо, что пригодной к сгоранию СМЕСИ к моменту самовоспламенения образуется не так уж и много…
Дальнейшее СМЕСЕОБРАЗОВАНИЕ будет происходить в условиях страшного дефицита кислорода. И сгорание соответственно происходит совсем не так, как это описывается в литературе.
Возвращаемся в микромир. За то время пока мы отлучались зона околостехиометрического соотношения топлива и воздуха вокруг капельки уже вся выгорела. Ни топлива, ни кислорода в ней не осталось. Только продукты сгорания, разогретые до очень высоких температур — вода, углекислота, да щепотка окислов азота… С внешней поверхности этой РАСКАЛЁННОЙ, но ВЫЗЖЕННОЙ зоны начинают ДИФФУНДИРОВАТЬ молекулы воздуха с большим количеством свободного кислорода. Изнутри начинает подниматься та каша, что образовалась из углеводородов топлива в процессе сильного нагрева и сжатия — радикалы водорода и радикалы различных СОЕДИНЕНИЙ углерода. Скорость дальнейшего СМЕСЕОБРАЗОВАНИЯ и сгорания будет определяться скоростью поступления атомов кислорода извне и атомов топлива изнутри.
Весь свободный водород, образующийся в результате температурного разложения продолжающих испаряться углеводородов, даже в условиях сильного дефицита кислорода потихоньку-полегоньку, но начинает НЕОБРАТИМО сгорать по мере взаимодействия с кислородом. Водород очень уж активное вещество. Сгорание его идёт в очень широких стехиометрических и температурных пределах. Скорость его диффузии чрезвычайно высока и сопоставима со скоростью теплопереноса. Для сгорания двум атомам водорода(мы с Томарой ходим парой) достаточно одного атома кислорода. Потому на время все реакции окисления углерода фактически останавливаются… С углеродом начинается очень нехорошая и очень длинная история с образованием и преобразованием всяких формальдегидов, гидроксилов и всяческой другой заразы… Крекинг, гомолиз, пиролиз и много других страшных слов… По мере того как атомы водорода потихоньку сваливают из молекулы углеводорода в условиях дефицита кислорода она, эта самая молекула топлива потихоньку вырождается в молекулу… графита. Да-да. Выделяющиеся в результате пиролиза атомы углерода имеют четыре свободные связи, отдельно не существуют и в зонах недостатка кислорода соединяются между собой, образуя твёрдые кристаллы графита – мельчайшие частицы сажи размером 0,3-0,4 мкм. Сравнительно недавно было обнаружено, что в хорошо нам известной копоти присутствует и большое количество шарообразных молекул, состоящих из 60 и более(до 400) атомов углерода и, иногда, и из 24 и более атомов воды — их назвали фуллеренами, а открытие этой новой формы углерода было ознаменовано присуждением в 1996 году Нобелевской премии по химии. Таких частиц образуется в дизеле неимоверное количество. Но страшный чёрный дым, который извергает дизель при перегрузке, содержит всего около 1% сажевых частиц, образовавшихся в процессе сгорания дизельного топлива — подавляющая часть образовавшихся частиц сажи сгорает в процессе догорания топлива, когда весь свободный водород уже иссякает и перестаёт перехватывать кислород под носом у углерода, каждому атому которого для полного счастия сгорания необходимо СРАЗУ аж ДВА атома кислорода… По иронии судьбы к этому времени почти весь углерод находится в состоянии раскалённой «алмазной» пыли. Начинаются танцы, подобные сгоранию водорода, но намного более сложные и многоходовые, а потому намного более длительные…
А атомов свободного кислорода меж тем остаётся всё меньше и меньше…
Пока тянется этот химический полонез начинает опускаться поршень двигателя и давление(а следовательно и температура) начинают падать. Расстояние между атомами увеличивается, энергия рассеивается в пространстве, скорость атомов падает — реакции начинают стремительно замедляться. За счёт того, что частички сажи чрезвычайно раскалены — они умудряются ещё долго реагировать с кислородом, если тот таки встретится им на пути, но по мере опускания поршня вниз толку от этого догорания становится всё меньше, а вреда всё больше. Температура в камере сгорания — не самоцель, она нужна только для двух задач — вначале максимально ПОЛНО спалить ВСЁ топливо(вытащить ВСЮ энергию) и максимально разогреть РАБОЧЕЕ ТЕЛО(всё содержимое камеры сгорания) чтобы получить максимальное ДАВЛЕНИЕ(тот самый крутящий момент) газов.
Высокая степень РАСШИРЕНИЯ(не сжатия!) дизельного двигателя позволяет полнее преобразовать энергию расширяющихся от нагрева газов в механическую РАБОТУ. Именно поэтому температура выхлопных газов дизеля заметно ниже температуры выхлопа бензинки, притом что максимальная температура сгорания топлива выше у дизеля…
Чёта меня понесло в сторону.
Углерод выгодно сжигать полностью не только с точки зрения экологических норм — при сгорании 1 атома углерода образуется в 3 раза больше энергии, чем при сгорании 1 атома водорода! Недожиг углерода(сажи) очень заметно влияет на энергетический баланс в камере сгорания, а соответственно и на мощность и на расход двигателя любой конструкции и косвенно указывает на проблемы с организацией процессов сгорания. К тому же сажа — это очень компактные кристаллы, а углекислота — это газ, который уже и сам по себе создаёт дополнительное давление на поршень…
Вот для того, чтобы сжечь МАКСИМАЛЬНОЕ количество УГЛЕРОДА и применяют в дизеле избыток воздуха. Как по мне — так эта фраза тоже насквозь лживая и не отражающая сути. А суть в данном случае такова — и в дизеле и в бензинке равного литража на режиме НОМИНАЛЬНОЙ (максимальной) мощности количество воздуха в камере сгорания практически ОДИНАКОВО! НО.
В дизеле невозможно эффективно сжечь столько топлива, столько можно сжечь в бензинке равного литража — НЕ УСПЕВАЕТ дизельное топливо связать ВЕСЬ КИСЛОРОД воздуха за время сгорания — потому в дизеле до четверти(!) кислорода воздуха вылетает в трубу даже на максимальной мощности(когда дизель уже вовсю дымит). Потому дизельным выхлопом можно спокойно дышать длительное время(не верьте сказкам про дизельные душегубки фашистов), в отличие от выхлопа бензинок, где свободного кислорода практически нет. Потому МАКСИМАЛЬНАЯ ЛИТРОВАЯ мощность атмосферного дизеля меньше МАКСИМАЛЬНОЙ ЛИТРОВОЙ мощности атмосферной же бензинки на ОДИНАКОВЫХ оборотах на те самые 25%. Плюс-минус.
Прямовпрысковый дизель имеет эффективные обороты до 3000-3500 оборотов, вихрекамерник — до 4000 с небольшим, а самая захудалая бензинка легко крутится до 6000. Только за счёт этой разницы в максимальных оборотах бензинка уже на треть мощнее дизеля. Потому МАКСИМАЛЬНАЯ паспортная МОЩНОСТЬ бензинки В РАЗЫ превышает МАКСИМАЛЬНУЮ паспортную МОЩНОСТЬ дизеля.
Мало того. Поскольку с конца 80-ых годов дизелестроители сферы легкового транспорта активно боролись с окислами азота, то почти ВСЕ дизеля 80-ых, 90-ых и начала 2000-ых имеют затянутый впрыск топлива, поздний УОПТ, гипертрофированный ЕГР и несоразмерно высокий расход топлива на мощностных режимах. Сколько-нибудь продолжительно работать с максимальной паспортной мощностью эти дизеля не в состоянии уже прямо с завода из-за перегрева камеры сгорания и поршневой. Пробежные эти дизеля мрут как мухи уже при длительных 2\3 максимальной ПАСПОРТНОЙ мощности…
P.S.
Ну и напоследок ещё немного про макромир камеры сгорания дизельного двигателя.
Для полноты картины.
На вихрекамерных дизелях форсунка формирует один факел. У прямовпрысковых дизелей форсунка формирует 4-8 факелов:
Не обращайте внимания на размеры факелов на вышеприведённых фотографиях — они сняты в обычных комнатных условиях. При высоком давлении в камере сгорания реального двигателя дальнобойность факела не превышает сантиметра — топливо практически никогда не попадает на стенки камеры сгорания ни вихрекамерника, ни прямовпрыскового дизеля — именно поэтому это дизеля с ОБЪЁМНЫМ смесеобразованием:
За пределами ФАКЕЛА топлива практически нет и никогда за время впрыска НЕ БУДЕТ! Равномерно распределить частички топлива во ВСЁМ воздухе, находящемся в камере сгорания дизеля не возможно за то короткое время, что отводится на смесеобразование и сгорание. Как ни завихряй воздух в камере сгорания — довольно значительные объёмы воздуха к топливному факелу за время сгорания топлива так никогда и не приблизятся и кислород передать не смогут. При наличии колоссального ОБЩЕГО ИЗБЫТКА кислорода в камере сгорания дизельного двигателя — каждая КОНКРЕТНАЯ частичка топлива при окончании сгорания испытывает СТРАШНЫЙ ДЕФИЦИТ кислорода и буквально захлёбывается продуктами своего сгорания.