демон максвелла что это

Демон Максвелла

Возможно ли нарушение второго начала термодинамики?

В науке, как и в художественной литературе, встречаются фантастические персонажи. Пожалуй, больше всего их было вымышлено в процессе обсуждения второго начала термодинамики. Самым популярным из них стал демон Максвелла, которого придумал Джеймс Клерк Максвелл, автор знаменитой системы уравнений Максвелла, полностью описывающей электромагнитные поля. Второе начало (или закон) термодинамики имеет множество формулировок, физический смысл которых, однако же, идентичен: изолированная система не может самопроизвольно переходить из менее упорядоченного состояния в более упорядоченное. Так, газ, состоящий из молекул, движущихся с различными скоростями, не может самопроизвольно разделиться на две части, в одной из которых соберутся молекулы, движущиеся, в среднем, быстрее среднестатистической скорости, а в другой — медленнее.

Многие физические процессы относятся к категории обратимых. Воду, например, можно заморозить, а полученный лед снова растопить, и мы получим воду в прежнем объеме и состоянии; железо можно намагнитить, а затем размагнитить и т. п. При этом энтропия (степень упорядоченности) системы в начальной и конечной точке процесса остается неизменной. Есть и необратимые в термодинамическом понимании процессы — горение, химические реакции и т. п. То есть, согласно второму началу термодинамики, любой процесс в итоге приводит либо к сохранению, либо к снижению степени упорядоченности системы. Такая дисгармоничная ситуация сильно озадачила физиков второй половины XIX столетия, и тогда Максвелл предложил парадоксальное решение, позволяющее, казалось бы, обойти второе начало термодинамики и обратить неуклонный рост хаоса в замкнутой системе. Он предложил следующий «мысленный эксперимент»: представим себе герметичный контейнер, разделенный надвое газонепроницаемой перегородкой, в которой имеется единственная дверца размером с атом газа. В начале опыта в верхней части контейнера содержится газ, а в нижней — полный вакуум.

Теперь представим, что к дверце приставлен некий микроскопический вахтер, зорко следящий за молекулами. Быстрым молекулам он дверцу открывает и пропускает их за перегородку, в нижнюю половину контейнера, а медленные оставляет в верхней половине. Понятно, что если такой мини-вахтер будет дежурить у дверцы достаточно долго, газ разделится на две половины: в верхней части останется холодный газ, состоящий из медленных молекул, а в нижней скопится горячий газ из быстрых молекул. Тем самым система упорядочится по сравнению с исходным состоянием, и второе начало термодинамики будет нарушено. Мало того, разницу температур можно будет использовать для получения работы (см. Цикл и теорема Карно). Если такого вахтера оставить на дежурстве навечно (или организовать сменное дежурство), мы получим вечный двигатель.

Этот забавный вахтер, которому остроумные коллеги ученого дали прозвище «демон Максвелла», до сих пор живет в научном фольклоре и волнует умы ученых. Действительно, вечный двигатель человечеству бы не повредил, но вот беда: судя по всему, чтобы демон Максвелла заработал, ему самому потребуется энергопитание в виде притока фотонов, необходимых для освещения приближающихся молекул и их просеивания. Кроме того, просеивая молекулы, демон и дверца не могут не вступать с ними во взаимодействие, в результате чего они сами будут неуклонно получать от них тепловую энергию и наращивать свою энтропию, в результате чего суммарная энтропия системы всё равно уменьшаться не будет. То есть таким объяснением теоретическая угроза второму началу термодинамики была отведена, но не безоговорочно.

Первый по-настоящему убедительный контраргумент был сформулирован вскоре после зарождения квантовой механики. Для сортировки подлетающих молекул демону нужно измерять их скорость, а сделать это с достаточной точностью он не может в силу принципа неопределенности Гейзенберга. Кроме того, в силу этого же принципа он не может точно определить и местонахождение молекулы в пространстве, и часть молекул, перед которыми он распахивает микроскопическую дверцу, с этой дверцей разминутся. Иными словами, демон Максвелла на поверку оказывается макроскопическим слоном в посудной лавке микромира, который живет по собственным законам. Приведите демона в соответствие с законами квантовой механики, и он окажется не в состоянии сортировать молекулы газа и просто перестанет представлять какую-либо угрозу второму началу термодинамики.

Другой веский аргумент против возможности существования демона-вахтера появился уже в компьютерную эру. Предположим, что демон Максвелла — это компьютерная автоматизированная система управления открыванием дверцы. Система производит побитовую обработку входящей информации о скорости и координатах приближающихся молекул. Пропустив или отклонив молекулу, система должна произвести сброс прежней упорядоченной информации — а это равносильно повышению энтропии на величину, равную снижению энтропии в результате упорядочивания газа при пропускании или отклонении молекулы, информация о которой стерта из оперативной памяти компьютерного демона. Сам компьютер, к тому же, также греется, так что и в такой модели в замкнутой системе, состоящей из газовой камеры и автоматизированной пропускной системы, энтропия не убывает, и второй закон термодинамики выполняется.

Источник

Хитрый, расчетливый и нереальный: кто такой демон Максвелла

В конце XIX века британский физик Джеймс Максвелл предложил мысленный эксперимент, который, казалось бы, нарушает законы термодинамики. В итоге центрального персонажа этого эксперимента назвали демоном Максвелла. Попробуем разобраться, чем же примечательна эта вымышленная сущность.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Демон Максвелла — гипотетическая сущность, предложенная Джеймсом Клерком Максвеллом в одном из его мысленных экспериментов, предположительно, в 1871 году.

При чем тут демон и Максвелл? В общем говоря, сущность, предложенная Максвеллом, — эдакий противоречащий бог из машины, можно сказать, обнаруживший способ обойти один из самых фундаментальных и неоспоримых законов Вселенной — второе начало термодинамики. Изначально коллеги ученого не восприняли мысленный эксперимент всерьез и даже были сбиты с толку, ведь эта «сущность» могла означать, что наконец-то можно забыть о трате угля и просто бесконечно получать работу, по сути, из ничего.

Однако в реальности все не совсем так. О втором законе термодинамики и энтропии вы можете прочитать в другом нашем материале. А сейчас мы попробуем разобраться, почему демон Максвелла вызвал недоумение у светочей науки конца XIX века.

Демон Максвелла — лазейка в энтропии

Изначально мысленный эксперимент Максвелла был упомянут в переписке ученого с Питером Тейтом примерно в 1867 году. Позже он был представлен общественности в книге Максвелла о термодинамике под названием «Теория теплоты» (Theory of Heat), опубликованной в 1872 году.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Джеймс Клерк Максвелл / © Gresham College

Несмотря на то что сам Максвелл никогда не использовал слово «демон», описывая эксперимент, его агент открывал дверь (в перегородке в нашем ящике с газом) между камерами, как «ограниченное существо». Впервые эту сущность назвал «демоном» Уильям Томсон, известный как Лорд Кельвин, для описания агента Максвелла в журнале Nature в 1874 году. В качестве обоснования он утверждал, что хотел таким образом обозначить посреднический характер сущности и ни в коем случае не собирался делать упор на негативный оттенок самого слова.

Итак, вернемся к эксперименту. Речь идет прежде всего о закрытой системе. Предполагаемый аппарат состоит из простого кубоида, в котором содержится какой-то произвольный газ. Кубоид разделен на две секции равного размера с одинаковой, равномерной температурой. На стенке, разделяющей секции, сидит демон, тщательно отбирающий случайным образом разбросанные частицы так, что все частицы с высокой кинетической энергией собираются в одной секции, а остальные — с низкой кинетической энергией — остаются в другой.

Можно сказать, что этот демон — метафора приспособления или машины, способной тщательно анализировать скорость или кинетическую энергию каждой частицы в каком-либо контейнере. Основываясь на своем анализе, приспособление может точно определить, какие частицы ему следует, грубо говоря, оставить себе, а от каких — избавиться.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Слева: две секции, заполненные газом. Справа: демон Максвелла, открывающий и закрывающий дверь в перегородке между секциями / © J. Hirshfield

Между тем это противоречит общепринятому мнению, что частицы газа при постоянной температуре движутся с одинаковой скоростью. Тем не менее эта же скорость — их средняя скорость, а значит, есть частицы, движущиеся с более высокой скоростью, и есть частицы, движущиеся с более низкой скоростью, сводя все к среднему значению.

При помощи этого процесса — действий демона Максвелла — все частицы с высокими энергиями впоследствии загоняются в одну секцию. Демон повысил температуру одной части ящика по сравнению с другой. Эту избыточную температуру или давление можно использовать для питания турбины либо поршня. Да, из этого следует, что мы получаем энергию буквально из ничего. Другими словами, демон уменьшил энтропию, не затратив при этом усилий.

Необходимо понять, однако, что коварный демон применил свои уловки и в итоге смог противоречить закону энтропии, но закон сохранения энергии он не нарушил. Он просто перераспределил случайную кинетическую энергию для создания разницы в давлении, достаточной для получения энергии из изначально уравновешенной системы. Хитрость демона обманула саму природу!

Может ли такой аппарат существовать

Как бы то ни было, подобный аппарат в реальности создать невозможно. Природу не так легко обмануть. Конечно, коварный и умный демон смог избежать гнетущих санкций второго начала термодинамики, но ему никуда не деться от всевидящего ока первого начала термодинамики.

Согласно первому началу термодинамики, никакая машина не способна функционировать без источника тепла, а в процессе работы еще и частично его поглощать. Или же производительность процесса никогда не достигнет 100 процентов. Машинам нужен не только стимул в виде тепла, им еще необходимо впитывать его, тем самым повышая собственную температуру.

Преобразование тепловой энергии в механическую энергию в паровых двигателях не абсолютна. Часть тепла поглощается самим двигателем, понижая общую производительность и повышая окружающую его энтропию.

Если же демон — это высокотехнологичная машина, избирательно отслеживающая определенные частицы, возникает вопрос: откуда он берет энергию для выполнения своей работы? Даже если он каким-то образом умудряется это делать, то расширение в отношении тепловой производительности машины все равно отрицает возможность снижения энтропии.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Переход закрытой системы от низкой энтропии к высокой / ©Socratic

Демону или машине пришлось бы получить информацию относительно частиц. Возьмем, к примеру, фотоны. В процессе взаимодействия с ними сложный аппарат вроде демона Максвелла неизбежно будет тратить энергию и сам впитывать часть тепла, повышая общую энтропию и приводя ее к изначальному значению.

Суть аргумента в том, что, по расчетам, любой демон будет неминуемо «генерировать» больше энтропии, разделяя молекулы, чем он когда-либо сможет ее «уничтожить», — это соответствует принципам, на которых он основан. Другими словами, ему потребовалось бы гораздо больше термодинамической работы для определения скорости молекул и их отбора для прохода через дверь между секциями, чем количество энергии, полученной в результате разности температур, возникшей после проделанной работы.

Как бы то ни было, нельзя не отметить, что Максвелл был весьма хитер. Однако, если бы не первое начало термодинамики, ничто бы не спасло второе начало от публичного позора.

Что за детский лепет:

Как бы то ни было, нельзя не отметить, что Максвелл был весьма хитер.

Они не видели в жизни настоящих хитрых и расчётливых! Эти древние, как аппендикс мамонта, учёные 19-го века даже не могли себе представить, до чего дойдёт прогресс в 20-м веке и особливо в 21-м столетии. Если бы им довелось побывать в Краснодарском крае, то эти ретрофантазёры смогли бы легко провести не мысленный, а самый что ни на есть реальный эксперимент.

Вместо этой нелепой детской херни

Максвеллу надо было взять двух простых кубаноидов и посадить в цистерну, разделённую перегородкой на две части. Каждому кубаноиду надо пообещать по восемьсот, а лучше по девятьсот сорок рублей. И пока один кубаноид будет палкой дубасить демона Максвелла по башке, второй успеет продать на пляже два мешка варёной кукурузы. Профит!

Только почему никто не указал, что если разделять молекулы по кинетической, то оставшиеся будут иметь в среднем меньшую энергию, а значит и температура (или давление) будет в одной половине уменьшаться. Д, б.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Госпидя! Вот блин проблему нашли!

Нагрейте кусок чугуна, или банку с водой в вакууме.

Вот все что испарится и есть искомые молекулы, чья энергия превысила удерживающие силы!

Если вы еще потом уменьшите объем этих газов, то получите то самое повышение температуры.

Если у вас этот бассейн (кусок чугуна) будет лежать под поршнем то вы можете получить давление, которое будет двигать поршень вверх.

Назовите это двигателем DalekoNaSevere и не парьтесь. 😉

Пока вода будет теплая и в наличии, она будет над собой формировать облако газа где молекулы будут иметь большую энергию и они будут давить на поршень,

Поршень будет двигаться вверх.

И будет так делать, пока в воде есть молекулы с более высокой энергией способные вырваться из жидкости!

И никаких демонов не надо!

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Температура, что это?

В своём прошлом посте я остановился на том, что о температуре как физической величине, люди мало что знают. В школе так вообще отделываются лишь «мерой движения молекул» и на этом заканчивают. А ведь это довольно любопытная штука, смысл которой далеко за простой «средней энергией частиц». Давайте попробуем разобраться, что про неё известно и какие определения температуры есть, и можно ли как-то например дать температуру одной молекуле.

Если копаться всерьез, то очень больно для головы. Потому что количество определений для температуры слишком большое. У разных разделов физики порой разные определения, так и даже в самой термодинамике есть куча вариантов аксиоматики. На одной вики их штук 10, если копать научные статьи, то вполне можно еще десяток другой вариантов найти. Мы не полезем в эти дебри и разберем лишь два определения, первое из классической термодинамики, второе из статистической физики (в которой становится понятнее, как всё же её пощупать можно).

Если грубо разделить аксиомы классической термодинамики на две группы, то в одних аксиоматических построениях температуру просто постулируют как некую физическую величину, которая просто есть (неопределяемая переменная), является интенсивной величиной и количественно выражает интуитивное понятие о различной степени нагретости тел. В других построениях, как неопределяемую базовую переменную вводят энтропию, а температуру определяют как частную производную энергии от энтропии.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Хоть эта запись и пугает всех, кто не знаком с курсом математического анализа, на человеческом языке, она означает «температура это скорость роста энергии при росте энтропии, при неизменном объеме, массе веществ, площади поверхностей и т.д.»

Отлично, а что там в статистической физике? Ну условно, там та же формула, что и на картинке выше. Но лучше показать на простейшем примере.

Для примера я возьму систему с десятью монетками. Давайте договоримся, что если монетка орлом вверх, то она имеет энергию 0, если решкой вверх, то энергия такой монетки будет у нас 1.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

У системы на картинке энергия 2. У системы с десятью орлами, энергия будет 0. В прошлом посте я объяснял, как считают энтропию в статистике. Так что давайте посчитаем сколько микросостояний дает нам разную энергию.

E = 0 можно получить имея все монетки орлом вверх, это одно состояние, энтропия 0.

E = 1 можно получить имея одну решку, она может быть на первом, втором. и т.д. месте, микросостояний 10, энтропия k*ln10

E = 2 еще больше вариантов, их 45, а энтропия k*ln45

E = 3, вариантов 120, энтропия k*ln120

Реальные физические системы с таким простым набором состояний существуют, например система спинов в магнитном поле: типичная начинка квантового компьютера, атомы водорода в ЯМР спектрометре или они же в томографе.

У обычных больших тел (стакан воды, суп на плите, пробирка) квантовых состояний в невероятное количество раз больше, но с ростом энергии количество возможных вариантов аналогично растет, функцию E(S) можно вполне себе считать непрерывной. Для макрообъектов расстояние между уровнями энергии настолько мало, они так сгущаются, что измерить этот зазор невозможно даже в теории. Энтропию можно ввести и через классическую механику, рассматривая молекулы как шарики, правда там немного иначе она будет считаться, но ответ совпадает с квантовым рассмотрением.

Внимательные наверное уже заметили, что в определении температуры формула содержит производную, а в примере у меня дискретная функция, у которой нельзя посчитать производную. Именно так, понятие температуры в строгом смысле работает только для макроскопических объектов с кучей уровней, где мы не можем заметить, что функция E(S) дискретная. Для описания температуры объектов с малым количеством уровней, приходится сначала утверждать, что такая система находится в состоянии термического равновесия с термостатом (модельная среда, с конкретной температурой), но тогда наша система уже не имеет конкретную энергию, и имеет лишь вероятности находиться на том или ином уровне, ведь между маленькой системой и большим термостатом возникают флуктуации. Эти вероятности легко посчитать, пользуясь нашими формулами. Собственно для маленьких систем, температура уже будет иметь немного другой смысл, и быть скорее параметром, который описывает распределение вероятностей по уровням. О как!

Возьмем всё ту же систему с монетками, и попробуем выяснить как температура окружающей среды будет влиять на её энергию. Представим, что она находится в равновесии и контакте с какой-то другой системой, огромной по сравнению с ней, но при этом конечной.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Всё вместе мы представим изолированной системой с энергией E. Попробуем найти вероятность быть нашей системе в каком-нибудь состоянии с энергией E0.

У нас вся система, обладает каким-то набором микросостояний, пусть их W штук. Нам просто нужно найти сколько из них, подходят нам и поделить это число на общее количество.

Если наша подсистема, в состоянии с энергией E0, то на термостат остается E-E0. Учитывая, что W=exp(S), получаем, что вероятность пропорциональна exp(S(E-E0)), но как это посчитать? Мы не зря посчитали, что термостат НАМНОГО больше чем наша подсистема, поэтому E0

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Во всем выводе я убрал константу Больцмана, считайте, что я принял её единичкой, это не так важно.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

В формуле появилась производная энтропии от энергии (что есть 1/T по определению из начала поста). И в конце концов мы получаем

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Вероятность должна быть пропорциональна W, при этом в сумме они все должны давать единичку, поэтому вероятность нашей маленькой системке находиться в n-ом состоянии (у которого энергия En), будет

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Если вернуть везде постоянную Больцмана, получится так

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Снизу в формулах энергии всех остальных уровней. Очень симпатичная формула, называется распределением Гиббса. Из неё можно вывести распределения Максвелла, Больцмана и прочие прекрасные частные случаи. По ней видно, что если температура абсолютный ноль, то система находится в низшем состоянии с вероятностью 1, если же температура бесконечна, то система равновероятно может находиться во всех состояниях от низшего до наивысшего, что немного контринтуитивно (кажется, что бесконечная температура, это наивысшее состояние по энергии), но как видите это не так. Температура это сложный статистический параметр, а не просто энергия тела как нам кажется интуитивно.

Еще один интересный вывод из такой формулы вытекает если наша система имеет конечное количество состояний (как наш пример с монетками имеет всего 1024 состояний, и 10 уровней), то возможно представить себе отрицательную температуру. Это состояние будет отвечать энергии системы даже большей чем, энергия системы при бесконечной температуре, ибо высшие уровни заселены чаще чем низшие (при бесконечной они поровну все заселены). Мы можем создать искусственно такие состояния в реальности, ведь системы с ограниченным количеством уровней существуют, а способы «перевернуть заселенность» существуют.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Но откуда же у нас всех берется знание, что температура отвечает за скорость молекул? А дело в том, что если мы применим распределение Гиббса к идеальному газу, то средняя кинетическая энергия молекулы будет 3/2kT, об этом нам рассказывают в школе сразу в готовом виде (исторически температуру с этого случая вводили и в науке), и на этом же эту тему заканчивают, отсюда и остается подобный обрубок понимания довольно сложного понятия температуры.

Учитывая, что статистическая физика и термодинамика стоят на очень простых принципах из математики, выходит довольно любопытная ситуация. Дело в том, что и общая теория относительности, и квантовая механика отлично стыкуются с термодинамикой. Но как мы знаем, между собой ОТО и КМ очень плохо стыкуются, и квантовую теорию гравитации до сих пор не разработали. Так же мы знаем, что внутренности и поверхности черных дыр, обладая страшной кривизной пространства-времени, должны описываться той самой пока несуществующей квантовой теорией гравитации, но мы точно понимаем, что эта теория должна тоже хорошо стыковаться с термодинамикой. Изучение термодинамики черных дыр сразу показало, что они должны обладать температурой и излучать, позже Хокинг более подробно описал это излучение, которое назвали в его честь, но это уже совсем другая история.

Закончу пост цитатой Эйнштейна:

«Теория производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает, и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела на меня классическая термодинамика. Это единственная теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута»

Эйнштейн А. Собр. науч. трудов М.: Наука, 1967. Т. 4. с. 270

Закон Ома и закон Джоуля-Ленца для чайников: почему может меняться фактическая мощность одного и того же электронагревательного прибора

Это объявленная ранее публикация о том, как благодаря закону Ома и закону Джоуля-Ленца один и тот же водонагреватель может как заработать, так и не заработать через автоматический выключатель одного и того же номинала, а один и тот же чайник может нагревать воду с разной скоростью.

Читатель мог подумоть, что физика в объеме школьной программе никогда не понадобится в обычной жизни, но вот прямо сейчас она как понадобится.

Простой бытовой сюжет начинается с мыслей о ежегодном плановом отключении горячей воды и поиска проточного водонагревателя, который можно включать в «обычную» розетку на 16 ампер. Рынок предлагает несколько моделей с заявленной мощностью в 3500 ватт. В описании так и указано: «мощность 3500 ватт». Делим 3500 ватт на 220 вольт – получаем силу тока 15.91 ампера, как раз немного меньше, чем 16 ампер.

Именно поэтому мощность не 3400 и не 3600 – выбрано максимальное «круглое» значение мощности, которое должно безопасно получаться из обычной розетки на 16 ампер. Это в теории, а на практике.

. читаем отзывы на одну и ту же модель водонагревателя. Одни покупатели пишут, что водонагреватель работает через автоматический выключатель на 16 ампер, другие – что такой выключатель стабильно отключается через несколько минут работы водонагревателя. Одни покупатели пишут, что работает без нареканий, другие – что проводка становится теплой.

Это ЖЖЖЖЖ явно неспроста. Неправильные пчелы? Нет, это проявление закона Ома и закона Джоуля-Ленца.

В описании водонагревателя рядом с текстом «мощность 3500 ватт» также написано «напряжение 220 вольт». Читать нужно так: «мощность составляет 3500 ватт при напряжении питания 220 вольт».

Фактическое значение сетевого напряжения может отличаться от номинального по целому ряду причин. В зависимости от состояния электросетей и настройки трансформаторов на подстанциях напряжение может постоянно быть немного ниже или немного выше номинального. Помимо этого фактическое напряжение может меняться в течение суток из-за колебаний потребления электроэнергии.

Это нормально, пока отклонение от номинала остается в пределах, установленных нормативами. Бывает еще, что напряжение отличается от номинального в нарушение требований нормативов – читатель наверняка слышал истории о даче, где электросети изношены или перегружены и чайник еле-еле греет, а стиральная машина не включается и надежно работает только зарядное устройство с диапазоном входных напряжений 100–240 вольт.

Все производители электроприборов, которые не хотят разориться на замене сломавшихся электроприборов и компенсации вреда от их возгораний, делают электроприборы так, чтобы они безопасно работали в широком диапазоне допустимых по нормативам напряжений. Безопасная работа – хорошо, но при изменении напряжения может меняться сила тока через электронагревательный прибор и в результате будет изменяться его фактическая мощность.

Пришло время вспомнить закон Ома.

Закон Ома для участка цепи записывается обычно вот так:

I – сила тока в участке цепи, U – напряжение на его границах, R – электрическое сопротивление участка.

Из этого соотношения прямо следует, что при неизменном электрическом сопротивлении и возрастании напряжения сила тока возрастает линейно. Напряжение возрастает на 10 процентов – сила тока тоже возрастает на 10 процентов. При убывании напряжения сила тока линейно убывает.

При протекании электрического тока через участок цепи в нем выделяется тепло, это так называемое тепловое действие электрического тока. Мощность выделяемого тепла определяется так (следствие закона Джоуля-Ленца):

P – мощность выделяемого тепла, I – сила тока, R – сопротивление.

Из этого соотношения следует, что при неизменном электрическом сопротивлении и возрастании силы тока мощность тепла возрастает квадратично. Сила тока возрастает на 10 процентов – мощность выделяемого тепла возрастает на 21 процент (1.10 × 1.10 = 1.21).

Поэтому при неизменном электрическом сопротивлении и возрастании напряжения мощность выделяемого тепла возрастает квадратично. Это следствие двух указанных выше соотношений. Напряжение возрастает на 10 процентов – сила тока также возрастает на 10 процентов и мощность выделяемого тепла возрастает на 21 процент.

Это не бесполезная теория. Производители бытовой техники, которые собираются продавать технику в как можно большее число государств, учитывают, что входное напряжение может немного отличаться, и в описании чайника указывают например следующее: «220–240 вольт 2000–2400 ватт». Верхнее значение диапазона напряжения на 9 процентов выше нижнего, а верхнее значение диапазона мощности на 19% выше нижнего – мощность выделяемого тепла квадратично растет с ростом напряжения. Это следствие закона Ома и закона Джоуля-Ленца.

Да, один и тот же чайник может потреблять разную мощность в зависимости от фактического напряжения в электросети. Сила тока через нагревательный элемент чайника также может изменяться в зависимости от напряжения. Скорость нагревания одного и того же объема воды на одну и ту же разность температур будет разной в зависимости от напряжения в электросети. Это следствие закона Ома и закона Джоуля-Ленца.

И то же самое с водонагревателями. «мощность 3500 ватт напряжение 220 вольт». А фактическое напряжение не 220, а 230 вольт – это допустимо по действующим в России в 2021 году нормативам. Фактическое напряжение выше указанного на табличке водонагревателя на 4.55 процента. Сила тока будет выше также на 4.55 процента – не 15.91 ампера, а 16.63 ампера. Мощность составит 3825 ватт.

При фактическом напряжении 235 вольт (на 6.8 процента выше указанного на табличке) сила тока будет 17 ампер, а мощность – 3993 ватта.

Надо бы подумоть о таком неудобстве: повышение силы тока приведет к увеличению нагрева проводов, их соединений и розетки. Розетка-то как была на 16 ампер, так и осталась, и провода все те же и скрутки и клеммники никуда не делись. Но пока не будем обращать на это внимание, пока попробуем оценить.

. сколько времени потребуется автоматическому выключателю, чтобы сработать при таких превышениях силы тока выше номинала? Здесь придется выйти за пределы школьной программы по физике.

Ответ на этот вопрос дает так называемая время-токовая характеристика автоматического выключателя. Она показывает, сколько времени требуется для срабатывания автоматического выключателя в зависимости от того, насколько фактическая сила тока превышает номинал выключателя. Время срабатывания разное при разной температуре воздуха – если автоматический выключатель хуже охлаждается, он при той же силе тока быстрее прогреется и сработает раньше. Это не знакомый электрик – сын маминой подруги – сказал, это написано.

. в увлекательном документе ГОСТ Р 50345-2010 (является действующим на 2021 год).

Неисправимо оптимистичные читатели могут написать в комментариях о пункте 3.5.15 этого стандарта («условный ток нерасцепления») и заявить, что автоматический выключатель обязан не отключаться в течение не менее часа, если фактическая сила тока не превышает номинал выключателя более чем на 13%. В случае выключателя на 16 ампер речь идет о токе силой чуть больше 18 ампер. Вроде бы есть простор (на возможный перегрев проводов, соединений и розетки все еще не обращаем внимания).

Но помимо пункта об «условном токе нерасцепления» есть и другие интересные и важные. Например, в 8.6.1. рассказывают о «нормальной время-токовой характеристике» – она задается для «температуры окружающего воздуха» 30 градусов.

«Температура окружающего воздуха» – это не температура воздуха в помещении, а температура воздуха вокруг выключателя внутри электрощита. Внутри того же самого щита метры проводов, клеммники, другие выключатели, и все они могут нагреваться, вместе сильно прогревая воздух вокруг выключателя (а заодно и собственную изоляцию).

Время срабатывания выключателя, через который включен водонагреватель, будет зависеть и от фактической величины сетевого напряжения, и от охлаждения воздуха внутри электрощита, в котором находится выключатель, и от выделения тепла всем остальным содержимым того же электрощита. Здорово, правда?

Кстати, при увеличении силы тока на 13% его тепловое действие увеличивается. да, на 27.7 процентов. Это дополнительный нагрев всей цепи, в которой протекает избыточный ток. Это нагрев проводов, соединений, розеток. Здорово, правда? Именно о таком испытании своих электрических цепей, которые далеко не всегда сделаны с требуемыми по нормативам запасами, мечтает каждый покупатель бытовых приборов. Условный ток нерасцепления в нормальной время-токовой характеристике уже не выглядит таким привлекательным и теперь не только «решает» проблемы, но быть может и создает новые.

Поэтому электронагревательный прибор с мощностью «на пределе возможного» – это интригующая неопределенность. Может заработать без нареканий, а может беспокоить покупателя перегревом проводов или вызывать срабатывание автоматических выключателей.

Разгадывание таких ребусов – явно не то, к чему обычно готовится покупатель, выбирая бытовой электроприбор, который поставляется с сетевым проводом с вилкой для включения в «обычную» розетку. Он хотел просто помыться теплой водой. Такой наивный.

А теперь. краткий пересказ написанного выше.

1. Чем выше фактическое напряжение, тем большую фактическую мощность потребляет тот же электронагревательный прибор, тем выше сила тока через него и тем больше разогреваются все элементы электрической цепи, в которую он включен, – провода, вилка, розетка, автоматические выключатели и другое содержимое электрощита. Это следствие закона Ома и закона Джоуля-Ленца.

2. Фактическое напряжение может быть разным в разных домах одного квартала, разных подъездах одного дома, разных квартирах одного подъезда и изменяться в течение суток. Это нормально, это случается повсюду, так устроены распределительные электрические сети.

3. Чем выше температура воздуха вокруг автоматического выключателя и чем больше превышение фактической силы тока над номиналом автоматического выключателя, тем быстрее он срабатывает. Так устроены автоматические выключатели. ГОСТ Р 50345-2010 – увлекательный документ.

4. Электронагревательные приборы с мощностью «на пределе возможного» – неоднозначное решение для бытовых приборов, которые покупатель привозит из магазина и включает в «обычную» розетку. Покупатель, который наивно надеялся помыться теплой водой, может застрять в разгадывании разнообразных ребусов.

Что может проточный водонагреватель: поток теплой воды на выходе проточного нагревателя с заявленной мощностью 3.5 киловатта

Под публикациями о ежегодном отключении горячей воды в комментариях часто разворачивается обмен мнениями о том, есть ли толк в проточном водонагревателе. Например, под этой недавней публикацией. Есть мнение, что либо водонагреватель должен быть очень мощным, либо поток воды на выходе будет едва теплым и очень очень слабым.

Ниже два видеоматериала общей продолжительностью чуть менее двух минут, но сначала совершенно необходимая совершенно беспощадная физика.

Требуемая мощность зависит от трех параметров.

Первый – объем воды, проходящей через водонагреватель в единицу времени. Чем больше литров в минуту – тем большая нужна мощность.

Второй – температура воды на входе. Чем она ниже – тем большая нужна мощность. Третий – требуемая температура воды на выходе. Чем она выше – тем большая нужна мощность. В общем, чем больше разность температур на входе и выходе – тем большая нужна мощность.

Зная значения этих трех параметров, можно посчитать требуемую мощность по формуле.

мощь в ваттах = (число литров в минуту) × (разность между температурами на входе и выходе) × (удельная теплоемкость) / (число секунд в минуте)

Число литров в минуту определим, измерив секундомером время наполнения мерного ведра из душа при открытой «как обычно при мытье» воде. Может получиться четыре литра в минуту – зависит от аппетитов и душа. Разность температур примем тридцать градусов – нагрев воды с десяти до сорока градусов. Удельную теплоемкость возьмем из таблицы и округлим до 4200. Число секунд в минуте примем равным 60.

. и получим 8400 ватт требуемой мощности. Столько из «обычной» розетки на 16 ампер безопасно получить нельзя, нужно правильно сделанное подключение проводом большого сечения через автоматический выключатель на большой ток в правильно доработанном вводном щите. У многих читателей общее разрешенное потребление ниже этой требуемой мощности по техническим причинам, и им о потреблении такой мощности остается только мечтать.

Чтобы обойтись «обычной» розеткой на 16 ампер, нужно снизить мощность до 3–3.5 киловатт.

С температурой водопроводной воды на входе мало что можно сделать. Ожидаемую температуру на выходе можно уменьшить, но тогда затея с водонагревателем теряет смысл. Остается уменьшать число литров в минуту.

И самое время вспомнить о технических способах экономии воды. Чтобы расходовать меньше воды, придумали душ с пониженным расходом воды. В нем меньше отверстий, а скорость воды на выходе выше. Некоторые водонагреватели идут в комплекте с такими. Вот этот видеоролик наглядно показывает разницу между «обычным» душем и душем с пониженным расходом воды.

С 0:02 по 0:12 похоже на насмешку. Все остальное время видеоролика – намного интереснее, мыться удобнее, чем при использовании ковша и кадки теплой воды с ограниченным объемом.

В следующем видеоролике автор показывает, как водонагреватель нагревает воду с 13 до 38 градусов, это 25 градусов разности температур – почти та же разность температур, что была принята в расчетах выше.

Чтобы нагреть 4 литра воды в минуту на 25 градусов, потребовалась бы мощность в семь киловатт (та же формула, что и ранее). Внимательный читатель может заметить, что это вдвое больше мощности нагревателя в видеоматериале – следовательно, в видеоматериале нагреватель нагревает вдвое меньше воды в единицу времени, это примерно два литра в минуту.

Физика беспощадна, с ней в комментариях не поспоришь. Если нужно обойтись «обычной» розеткой на 16 ампер – есть выбор. Либо мощность около трех с половиной киловатт и показанный выше душ, либо предварительный нагрев воды в чайнике или ведре, либо накопительный водонагреватель подходящего объема, либо «да ладно, холодная вода не такая и холодная».

Можно попытаться убавить поток воды и в результате еще немного повысить температуру на выходе, но в водонагревателе может сработать автоматическое отключение нагрева. Температура воды на входе зависит от конкретного водопровода и времени года, водонагреватель только повышает температуру воды на некоторую разницу, температура на выходе при этом может оказаться недостаточно интересной.

Большое спасибо автору двух показанных в этой публикации видеоматериалов. В общей сложности чуть менее двух минут видеоматериала намного полезнее, чем недели изучения рекламы, описаний, обзоров и отзывов.

Очень внимательные читатели могли обратить внимание, что в середине текста содержится такая фраза: снизить мощность до 3–3.5 киловатт. Они могли подумоть: почему там не одно значение мощности, а диапазон? А потому что закон Ома, вот почему. В зависимости от напряжения в электросети водонагреватель «на 3.5 киловатта» может потреблять больше или меньше заявленной мощности и может как заработать через автоматический выключатель на 16 ампер, так и не заработать. Об этом будет отдельная публикация.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Ответ на пост «Кто прав?»

Звучит подобный рассказ о продавце дико и похож на выдумку, но я встречал подобную туристку.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Как работает атомный энергоблок. Часть 2

В прошлый раз я говорил про то, откуда берётся тепловая энергия для генерации электричества. А как эта тепловая энергия преобразуется? Почему коэффициент полезного действия у атомной станции около 33%? Зачем вообще нужен конденсатор? Для ответов на эти вопросы мы должны переместиться в прошлое, и постепенно, слой за слоем, нарастить это знание.

Все слышали про первый закон термодинамики. По сути, он является конкретизацией закона сохранения энергии для тепловых двигателей. Этот закон гласит, что невозможно создание двигателя, который работал бы без получения энергии от внешнего источника. Также невозможно создание двигателя, который совершал бы больше работы, чем к нему подводилось бы энергии. Для нас это сейчас логично и понятно, и совершенно очевидно, что КПД не может превышать 100%.

В виде формулы это будет записано следующим образом:

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Термический КПД для теплового цикла

Где Q1 это подведённая теплота, Q2 отведённая, соответственно Q1-Q2 это работа, которую совершило рабочее тело.

Но какой максимум мы можем выжать из тепла для совершения работы? Этим вопросом задался не кто иной как Сади Карно.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Какой сладкий пирожочек

Вопрос звучал примерно так: «А почему паровоз жрёт так много и производит так мало, может у нас плохой двигатель? Или конструкция не очень?». Резонно, и многие хотели бы иметь такую систему, которую можно греть, а всё затраченное тепло тратить на работу и ехать, рассекая пространство. КПД такого двигателя мог бы достигать 100%! Но, как оказалось, такое в природе невозможно.

Давайте задумаемся вот над чем. Представим, что у нас на столе стоит чашка горячего чая. Постепенно она остывает, и это происходит неизбежно. В чем причина? Дело в том, что тепло произвольно переходит только от более горячего тела к более холодному, и никак иначе. При отсутствии разницы температур тепло рабочего тела не может быть преобразовано в работу, отсутствует поток теплоты. Это было установлено эмпирически на основе опыта. Поскольку в реальной жизни недостижима температура равная абсолютному нулю, то и КПД теплового цикла не может составлять 100%.

Чтобы показать, как это выглядит в жизни, посмотрим на следующую иллюстрацию:

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Тепловой двигатель и вечный двигатель второго рода

Вечный двигатель второго рода не нарушает первого закона термодинамики, энергия не берется из ниоткуда. Но такой двигатель невозможен, ведь нет стока для теплоты. Невозможность такого цикличного процесса объясняет требование наличия конденсатора в любой тепловой системе. Получается, что для работающего цикла нам нужны минимум 4 составляющие:

1) Источник теплоты

2) Сток, или холодильник

3) Устройство для совершения работы

4) Какой-либо возвратный механизм

С этим разобрались, а теперь давайте вернёмся к КПД. Какова максимальная эффективность цикла? И чем она обусловлена?

На оба этих вопроса и ответил Карно. Максимальная эффективность обусловлена только температурами горячего и холодного источников, не зависит от рабочего тела, не зависит от конструкции двигателя. В итоге, второй закон термодинамики приводит нас к следующему определению максимального КПД цикла (или КПД цикла Карно):

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

КПД цикла Карно. На этом простая математика, увы, заканчивается.

Где T1 – температура источника тепла, T2 – температура холодильника (стока).

Этот КПД является предельным для заданной разницы температур. То есть, можно увеличить его подняв температуру горячего источника, либо снизив температуру холодного. Естественно, что температура не может быть бесконечно большой или бесконечно маленькой. Так что в существующих реалиях мы вынуждены прибегать к температуре окружающей среды в качестве стока, и к допустимым температурам для оборудования в качестве источника. Для каждого циклического процесса наибольшая температура подбирается так, чтобы можно было выжать максимум из топлива, и при этом система справилась бы с отводом теплоты.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Закачиваем, нагреваем, в турбине работу совершаем, остужаем, и по-новой

Цикл Карно представляет из себя замкнутую систему из двух адиабатных (1-2, 3-4) и двух изотермических (2-3, 4-1) процессов.

Краткий экскурс в процессы происходящие с рабочим телом

1) Изотермический процесс – при подводе или отводе теплоты меняется давление и объем, причём произведение этих величин остаётся постоянным, температура остаётся неизменной.

2) Изобарный процесс – энергия расходуется на изменение температуры и объема, при этом отношение объёма к температуре остаётся постоянным, то есть оба параметра одновременно либо растут, либо уменьшаются.

3) Изохорный процесс – энергия расходуется на изменение давления и температуры при этом отношение давления к температуре остаётся постоянным, то есть оба параметра одновременно либо растут, либо уменьшаются.

4) Адиабатный процесс – газ совершает работу при изменении своей внутренней энергии, то есть тепло к рабочему телу не подводится и не отводится, изменяются все параметры в зависимости от показателя адиабаты.

Все процессы являются частными случаями политропного процесса. Я нашёл отличную табличку в интернете для пояснения (Физика в таблицах и формулах, Трофимова Т. И., 2002 г., стр. 94)

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Первый закон термодинамики говорит о количественной составляющей теплового цикла. Второй говорит о качественной. А вот увидеть на диаграмме давления и объема потери в реальном цикле не так просто. Но этот вопрос решаем.

Внимание! Дальше частичка неизбежного матана!

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Если мы проанализируем соотношение изменения теплоты при изотермическом расширении, рассмотрев цикл Карно как сумму бесконечно малых циклов, то получим новую величину, которая известна как термодинамическая энтропия.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Этот замкнутый интеграл ещё называют интегралом Клазиуса

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Вот так можно очень просто аналитически записать Второй закон термодинамики.

Что это такое? Энтропия (S) — это мера беспорядочности движения частиц вещества. Иными словами, очень приближённо можно назвать энтропию мерой качества процессов. При подводе теплоты энтропия всегда растёт в равной или в большей степени, чем отношение подведённого тепла к температуре. Это означает, что часть тепла всегда рассеивается без совершения работы. Логично, что при идеальном адиабатном процессе энтропия не изменяется. Для цикла, как очевидно, изменение энтропии всегда нулевое, потому что рабочее тело каждый раз перед началом следующего цикла возвращается в исходное состояние, со своим исходным значением энтропии.

Каждому состоянию вещества (каждой точке на диаграммах) соответствуют определённые значения термодинамических параметров. По двум из них можно определить все остальные. Энтропия является как раз таким параметром, в дополнение к давлению, температуре и объему. Это то, что нам нужно! Вперёд, строить новые диаграммы!

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Вот так будет теперь выглядеть цикл Карно на диаграмме T-S, то есть такой, где каждое состояние вещества можно наглядно показать с помощью значений температуры и энтропии:

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Цикл Карно с учетом потерь и рассеяния тепла

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Диаграмма состояний реального вещества для двух фаз

Внутренняя часть «купола», изображённого на картинке, это область фазового перехода между жидким и газообразным состоянием. Зелёная линия – это линия кипящей жидкости, фиолетовая – линия сухого насыщенного пара (в паре не остаётся влаги если эту линию переступить). Как можно заметить, при определённом давлении p3 вода не имеет фазового перехода, то есть нет стадии перехода жидкости в газ. При параметрах, превышающих критические давление и температуру, уже отсутствует понятие пара, это закритическая жидкость. Для воды критическое давление и температура это 22.064 МПа и 373.95 °C (в абсолютных единицах 647.1 Кельвин). При фазовом переходе из жидкости в газ температура не изменяется при подведении тепла. Это связано с тем, что энергия, передаваемая рабочему телу, расходуется не на повышение температуры, а на разрыв связей в жидкости.

А давайте теперь посмотрим, как будет выглядеть цикл Карно в случае двухфазной среды:

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Цикл Карно для реального газа

Замечательно, но точка 3 находится в области влажного пара, а значит, чтобы перекачать весь этот объём на участке 3-4r нам потребуется большой мощный компрессор, потери в котором будут существенными. Для того, чтобы этого избежать, сконденсируем пар до состояния жидкой воды, то есть получим состояние вещества на зелёной линии. Тогда вместо компрессора мы сможем использовать относительно миниатюрный конденсатный насос.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Таким образом мы получили классический цикл Ренкина

Вот с этим уже можно работать, правда есть один существенный нюанс:точка 2r находится в области влажного пара, а это не очень хорошо для турбины. Дело в том, что скорость пара в турбине составляет несколько сотен метров в секунду. Во влажном паре содержатся капельки жидкости, которые на большой скорости повреждаютлопатки турбины. Такая турбина долго не проработает, поэтому нам нужно снизить влажность пара, чтобы он не разбомбил вращающиеся лопатки. Один из способов – это перегрев пара, и разделение турбины на часть с высоким давлением и часть с низким. Максимальное содержание влажной фазы обычно не превышает 15%.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Цикл Ренкина с перегревом после турбины на высоком давлении

Уже лучше. Таким образом мы и среднюю температуру подняли, что положительно скажется на КПД, и тепло лучше использовали. Но из этого цикла можно выжать ещё больше, если часть тепла возвращать в его более низкотемпературные части. Этот приём называется регенерацией теплоты. То есть, из тех участков, где мы уже выжали из рабочего тела максимум, мы можем частично возвращать тепло в цикл. Это позволит меньше греть воду в парогенераторе и повысить эффективность преобразования тепла в работу.

Помимо этого, между частями высокого и низкого давления можно использовать сепаратор, отделяющий влагу от влажного пара, а также сепарировать пар в ступенях турбины между лопатками. Всё это повышает эффективность работы паротурбинной установки, но эффективность ещё очень далека до КПД цикла Карно. Из-за естественных потерь в турбине и насосах КПД на атомных станциях редко превышает 34%.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

На десерт. Тут внесены все упомянутые изменения. Сможете разобраться что к чему?

Внимательный читатель спросит,- А почему бы сразу не перегреть пар до входа в турбину? Дело в том, что на водо-водяных реакторах этот приём не будет эффективным. Нужно будет либо снизить давление на входе в турбину, либо ещё повысить параметры воды в первом контуре (исследования на эту тему ведутся, но по последним новостям зашли в тупик). Параметры на современных АЭС выбраны оптимальными с точки зрения безопасности, тепловой экономичности и конструкционных пределов. В реальности с перегретым паром работают только энергоблоки с жидкометаллическим теплоносителем, которые могут позволить себе перегрев пара до входа в турбину.

Зачем нужны эти ухищрения и высокая эффективность? Почему ради каких-то десятых долей процента создаются целые проектные институты и собираются огромные команды специалистов? Всё дело в том, что каждая малая доля прироста КПД – это прирост в выработке при тех же затратах тепла. Эти цифры кажутся ничтожными, поэтому давайте пересчитаем это в деньги.

Допустим, есть две реакторные установки, у одной КПД 33%, а у другой 33.1%. То есть имея 3200 МВт тепла первая установка даст 1056 МВт электрической мощности, а вторая 1059.2 МВт. Разница составляет 3.2 МВт. Сколько это в рублях?

Цена отпускаемого кВт-ч для АЭС примерно 2 рубля. Считаем сколько это принесёт станции за год. 3200*365*24*2= 56064000 р. То есть с выигрышем всего на 0.1% КПД вторая станция за год заработает больше на 56 миллионов при том же тепловыделении в реакторе!

Предыдущие посты по атомной тематике:

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Демон Максвелла | [Невозможные изобретения]

В древние времена самым простым, а иногда и единственным способом для достижения чего-либо невозможного человек считал обращение к помощи потусторонних сил.

Позже, вместе с бурным развитием наук появилась надежда, что технологический прогресс поможет устранить необходимость привлечения сверхъестественного для решения насущных проблем.

Но ведь потребности человека фактически не удовлетворимы, а границы желаемого расширяются намного быстрее, пределов достижимого.

Поэтому даже ученые иногда прибегают к помощи демонов, особенно когда им необходимо бросить вызов какому-нибудь фундаментальному научному закону. Например, второму началу термодинамики, неумолимая суровость которого, теоретически когда-нибудь приведет к концу своего существования всю нашу Вселенную.

Кстати, Томсон в 1851 году и сформулировал одно из определений второго закона термодинамики, который в его интерпретации звучит следующим образом: невозможен процесс, единственным результатом которого является получение системой теплоты от одного источника (теплового резервуара) и выполнение ею эквивалентного количества работы.

При этом Томсон опирался на исследования Сади Карно, который в 1824 году в своей работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу», посвящённой паровым машинам, первым сформулировал идею, заложившую основу для понимания второго начала термодинамики:

при отсутствии разности температур теплота не может быть преобразована в работу; для постоянного производства работы тепловой машине необходимо иметь по крайней мере два тепловых резервуара с различными температурами — нагреватель и холодильник.

Но и здесь, если говорить о названиях, не все просто и однозначно. На самом деле, исторически первая формулировка закона и его определение «вторым началом термодинамики» принадлежат Рудольфу Клаузиусу.

Более того, понятие энтропии, её обозначение и название тоже были введены Клаузиусом в 1865 году.

Хотя, когда речь заходит об энтропии, большинство в первую очередь вспоминает Людвига Больцмана.

И раз речь, наконец, дошла до энтропии, то самое время вернуться к нашему демону.

Итак, «демон» впервые появился в письме, которое Максвелл написал Питеру Гатри Тейту 11 декабря 1867 года в виде описания мысленного эксперимента, гипотетически позволяющего нарушать второй закон термодинамики. Позже он снова появился в письме Джону Уильяму Стратту в 1871 году, и только потом он был окончательно представлен публике в книге Максвелла 1872 года по термодинамике под названием «Теория тепла».

В своих письмах и книгах Максвелл описывал агента, открывающего дверь между комнатами, как «определенное существо» («finite being»). Как уже упоминалось, Уильям Томсон, он же лорд Кельвин, первым использовавший слово «демон» для концепции Максвелла в журнале Nature в 1874 году, на самом деле имел в виду посредническую, а не злобную коннотацию этого слова.

Согласно описанию Максвелла суть его мысленного эксперимента состоит в следующем:

Но это было бы слишком здорово, практически прямой путь к созданию вечного двигателя.

Все надежды на привлечение «демона Максвелла» к такому нужному делу были развеяны в 1929 году Лео Сцилардом. Сцилард обратил внимание на то, что реальный демон Максвелла должен иметь какие-то средства измерения молекулярной скорости и что получение информации тоже потребует затрат энергии. Поскольку демон и газ взаимодействуют, следует учитывать общую энтропию газа и демона вместе взятых. Расход энергии демоном вызовет увеличение энтропии демона, которое будет больше, чем понижение энтропии газа.

Звучит исчерпывающе! Казалось бы, вопрос закрыт? Снова «невозможное изобретение»!

Поскольку нарушение законов физики, в отличие от прочих законов, не грозит перспективой наказания, а вот на премию типа Нобелевской нарушитель вполне может рассчитывать, то желающих представить миру свою версию демона Максвелла превеликое множество.

Только за последнее десятилетие было предпринято несколько эффектных попыток.

В 2010 году мысленный эксперимент в реальности удалось воплотить физикам из университетов Тюо и Токийского университета.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

Японцы создали два связанных шарика полистирола диаметром 0,3 микрометра каждый. Один был прикреплен на поверхности стекла, а второй шарик-ротор мог вращаться вокруг первого.

Установку при этом заполняла жидкость. Её молекулы хаотично подталкивали шарики, создавая эффект броуновского движения. Поэтому, ротор мог вращаться с равной вероятностью, как по направлению часовой стрелки, так и против.

Авторы добавили слабое электрическое поле, которое создавало крутящий момент. Это был аналог лестницы, по которой шарик мог «взбираться», увеличивая потенциальную энергию. Иногда молекулы толкали ротор против действия поля (на подъём), а иногда в сторону поля (прыжок по ступенькам вниз). Но в целом ротор вращался туда, куда его толкало внешнее поле.

Но вот физики добавили «демона» — высокоскоростную камеру, наблюдающую за шариком, и компьютер, управляющий полем. Каждый раз, когда ротор в броуновском движении делал шаг против поля, компьютер сдвигал последнее так, что шарик мог повернуться, но когда ротор пытался вращаться обратно, поле блокировало его.

Так был создан аналог открываемой и закрываемой демоном Максвелла дверцы: ротор увеличивал свою энергию за счёт теплового движения молекул.

Законов природы, впрочем, установка не нарушает, поскольку для работы «демона» (то есть камеры, системы коррекции напряжения) необходима энергия. Но японцы подчёркивают, что данный опыт впервые на практике доказал реальность так называемого теплового насоса – варианта «демона Максвелла», теоретически обоснованного Лео Сцилардом в 1929 году. Такая машина извлекает энергию из изотермической окружающей среды и преобразует её в работу.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

В 2016 году Физики из Финляндии, России и США создали электронную версию замкнутого (автономного) демона Максвелла. «Система» представляет собой одноэлектронный ящик, подключенный к внешнему потенциалу. Демон следит за зарядом на коробке. (Слева) Если электрон (синий) входит в ящик, демон немедленно захватывает его, прикладывая положительный заряд. (Справа) Если электрон покидает ящик, демон отталкивает его, прикладывая отрицательный заряд. Это электронный эквивалент того, как демон открывает или закрывает дверь для быстрых и медленных частиц в оригинальном мысленном эксперименте Максвелла.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

В 2018 году физики в США упорядочили систему из 50 помещенных в трехмерную оптическую ловушку атомов цезия с помощью реального аналога демона Максвелла, уменьшив при этом энтропию системы почти в 2,5 раза.

В оптической ловушке атомы захватываются с помощью двух поляризованных лазеров, которые создают периодический удерживающий потенциал.

демон максвелла что это. Смотреть фото демон максвелла что это. Смотреть картинку демон максвелла что это. Картинка про демон максвелла что это. Фото демон максвелла что это

6 апреля 2020 года в журнале Physical Review B была опубликовано исследование, описывающее созданную учеными систему из двух квантовых точек с одноэлектронными переходами для оценки термодинамических характеристик демона Максвелла с учетом информации и возвратного действия измерений.

Они продемонстрировали возможность преобразования тепла в работу за счет информации и получили кривые зависимостей тепла и мощности от запирающего напряжения и степени туннелирования.

Это только самые удачные и поэтому самые нашумевшие эксперименты последних лет по созданию демона Максвелла.

Не стоит сомневаться, что попытки обмануть природу при содействии ловкого демона будут продолжаться и дальше до тех пор, пока они либо увенчаются успехом, либо вся Вселенная достигнет термодинамического равновесия…

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *