Урок геометрии по теме «Теорема Вариньона. Решение задач». 8-й класс
Класс: 8
Презентация к уроку
Цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.
Задачи:
Ход урока
Введение
В 21 век, в век информационных технологий, главным ресурсом является время. Тысячи людей желают посещать тренинги, семинары и лекции по тайм-менеджменту, где бы их научили, как рационально, с минимальными потерями и максимальной пользой использовать свое время. Большую часть времени у ученика занимает обучение в школе и приготовление домашнего задания. Одним из самых сложных предметов в школе является геометрия. В частности, задачи на доказательство требуют значительной траты времени, поэтому у многих отсутствует интерес к решению подобных заданий. В теме «Четырехугольники» эту проблему может решить использование теоремы Вариньона.
Пьер Вариньон – французский математик и механик 18 века, который первым доказал, что середины сторон выпуклого четырехугольника являются вершинами параллелограмма. Эта теорема вызвала интерес у отечественных ученых лишь в 20 веке. Подробно ее применение показал украинский геометр – Г.Б.Филипповский и кандидат физико-математических наук, доцент МГУ В.В. Вавилов. В школе теорема Вариньона не входит в курс программы, но считаю изучение её необходимым.
1. Теоретическая часть
Вариньон Пьер [1] (1654–1722)
Пьер Вариньон родился во Франции в 1654 году. Обучался в иезуитском коллеже и университете в Кане, где стал магистром в 1682 году. Вариньон готовился к религиозной деятельности, но, изучая сочинения Эвклида и Декарта, увлекся математикой и механикой. Труды Вариньона посвящены теоретической механике, анализу бесконечно малых, геометрии, гидромеханике и физике. Вариньон был одним из первых ученых, ознакомивших Францию с анализом бесконечно малых. В конце 17 и начале 18 в. Вариньон руководил «Журналом ученых», в котором помещали свои работы по исчислению бесконечно малых братья Бернулли. В геометрии Вариньон изучал различные специальные кривые, в частности ввел термин «логарифмическая спираль». Главные заслуги Вариньона относятся к теоретической механике, а именно к геометрической статике. В 1687 Вариньон представил в Парижскую АН сочинение «Проект новой механики. », в котором сформулировал закон параллелограмма сил. В 1725 в Париже был издан трактат Вариньона «Новая механика или статика», представляющий собой систематическое изложение учения о сложении и разложении сил, о моментах сил и правилах оперирования ими, почти без изменений сохранившееся в учебниках статики до нашего времени. Написал учебник по элементарной геометрии (издан в 1731).
Теорема Вариньона [2]
Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.
ABCD – выпуклый четырехугольник
AK=KB; BL=LC; CM=MD; AN=ND
1) KLMN – параллелограмм;
Т.е., SKLMN = SABCD/2. Что и требовалось доказать.
Определение. Бимедианы четырехугольниках [3] – это отрезки, соединяющие середины противоположных сторон (диагонали параллелограмма Вариньона)
Следствия из теоремы Вариньона
Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны 2) бимедианы перпендикулярны.
Доказать: KLMN – ромб
Так как AC=BD (диагонали исходного четырехугольника равны по условию), то стороны параллелограмма Вариньона будут равны KL=LM=MN=NK (используя свойство средних линий треугольников, образованных при пересечении диагоналей исходного четырехугольника). Параллелограмм c равными сторонами является ромбом.
KLMN – параллелограмм Вариньона;
KM и LN перпендикулярны
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали перпендикулярны, то этот параллелограмм является ромбом (по признаку ромба).
Что и требовалось доказать.
Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: 1) диагонали перпендикулярны; 2) бимедианы равны
KLMN – параллелограмм Вариньона;
диагонали AC и BD – перпендикулярны
Так как диагонали AC и BD – перпендикулярны, то стороны параллелограмма Вариньона будут перпендикулярны. Следовательно, параллелограмм Вариньона является прямоугольником.
KLMN – параллелограмм Вариньона;
бимедианы KM и LN – равны
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником (по признаку прямоугольника).
Что и требовалось доказать.
Параллелограмм Вариньона является квадратом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны и перпендикулярны; 2) бимедианы равны и перпендикулярны
KLMN – параллелограмм Вариньона;
диагонали AC и BD – перпендикулярны; AC=BD
Так как диагонали исходного четырехугольника AC и BD равны и перпендикулярны, то стороны параллелограмма Вариньона будут равны и перпендикулярны. Следовательно, параллелограмм Вариньона является квадратом.
KLMN – параллелограмм Вариньона;
бимедианы KM и LN – перпендикулярны; KM=LN
Доказать: KLMN – квадрат
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом (по признаку квадрата).
Что и требовалось доказать.
2. Практическая часть. Решение задач.
Докажите, что а) середины сторон прямоугольника являются вершинами ромба. И наоборот, б) середины сторон ромба являются вершинами прямоугольника.
а) Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (см. следствие 1);
Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба (см. следствие 1).
б) диагонали ромба перпендикулярны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2);
Стороны ромба равны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2).
У четырехугольника диагонали равны aи b. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.
Периметр параллелограмма Вариньона равен a+b.
Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.
См. теорему Вариньона.
Докажите, что средние линии четырехугольника делятся точкой пересечения пополам.
Т.к. средние линии четырехугольника являются диагоналями параллелограмма Вариньона, то точка пересечения делит их пополам.
Олимпиадные задачи
1. Докажите, что если диагонали четырехугольника равны, то его площадь равна произведению средних линий [5].
Доказать: SABCD= KM*LN
Так как диагонали AC = BD, параллелограмм Вариньона является ромбом, площадь ромба равна половине произведения его диагоналей.
Что и требовалось доказать.
2. Докажите, что суммы площадей накрест лежащих четырехугольников, образованных пересечением бимедиан LN и KM выпуклого четырехугольника ABCD равны [6].
Воспользуемся теоремой о средней линии треугольника.
Что и требовалось доказать.
Заключение
«Нет ничего нового под солнцем, но есть кое-что старое, чего мы не знаем», – сказал американский литератор Лоренс Питер.
Пьер Вариньон жил в 18 веке, но теорема Вариньона как нельзя актуальна именно в наши дни, когда чтобы всё успеть, необходимо гораздо больше, чем 24 часа в сутки.
Поэтому была поставлена цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.
Для этого был разобран весь теоретический материал, решены задачи базового уровня, а также повышенной сложности (олимпиадные). Было подсчитано, что на решение задачи традиционным способом затрачивается 15-20 минут, а зная теорему Вариньона и следствия из нее, доказательство сводится к одному-двум предложениям и занимает 1-2 минуты. При этом экономия времени на доказательство в среднем составляет 15 минут. Таким образом, уже даже решение трех задач добавит дополнительные сорок пять минут (т.е. целый урок) на доказательство других, более сложных.
От этого повышается не только интерес к изучению данного предмета, но и сам процесс работы приносит удовлетворение. Цель работы считаю достигнутой.
В данной публикации мы рассмотрим определение и основные свойства средних линий выпуклого четырехугольника касательно точки их пересечения, соотношения с диагоналями и т.д.
Примечание: далее мы будем рассматривать только выпуклую фигуру.
Определение средней линии четырехугольника
Отрезок, соединяющий середины противоположных сторон четырехугольника (т.е. не пересекающий их), называется его средней линией.
Свойства средней линии четырехугольника
Свойство 1
Средние линии четырехугольника пересекаются и в точке пересечения делятся пополам.
Примечание: Точка O является центроидом (или барицентром) четырехугольника.
Свойство 2
Точка пересечения средних линий четырехугольника является серединой отрезка, соединяющего середины его диагоналей.
Свойство 3
Середины сторон четырехугольника являются вершинами параллелограмма, который называется параллелограммом Вариньона.
Центром образованного таким образом параллелограмма и точкой пересечения его диагоналей является середина средних линий исходного четырехугольника, т.е. точка их пересечения – O.
Примечание: Площадь параллелограмма равняется половине площади четырехугольника.
Свойство 4
Если углы между диагоналями четырехугольника и его средней линией равны, значит диагонали имеют одинаковую длину.
Свойство 5
Средняя линия четырехугольника меньше или равна полусумме непересекающих ее сторон (при условии, что данные стороны параллельны).
EF – средняя линия, не пересекающаяся со сторонами AD и BC.
Иначе говоря, средняя линия четырехугольника равняется половине суммы не пересекающих ее сторон тогда и только тогда, когда данный четырехугольник является трапецией. В этом случае рассматриваемые стороны являются основаниями фигуры.
Свойство 6
Для вектора средней линии произвольного четырехугольника выполняется следующее равенство:
Диагонали четырехугольника равны докажите что его средние линии перпендикулярны
Дана трапеция ABCD с основаниями АD и BС. Окружности, построенные на боковых сторонах этой трапеции, как на диаметрах, пересекаются в точках Р и К.
а) Докажите, что прямые РК и ВС перпендикулярны.
б) Найдите длину отрезка РК, если известно, что АD = 20, BC = 6, AB = 16, DC = 14.
а) Отрезок — общая хорда окружностей, поэтому она перпендикулярна их линии центров, то есть средней линии трапеции. Значит, она перпендикулярна и основаниям трапеции.
б) Радиусы окружностей равны и а расстояние между центрами равно Длина общей хорды в два раза больше высоты треугольника со сторонами проведенной к большей стороне. Значит,
Ответ: б)
Диагонали АС и СЕ правильного шестиугольника ABCDEF разделены точками M и N так, что АМ : АС = СN : СЕ и точки В, М и N лежат на одной прямой.
а) Докажите, что точки В, О, N и D лежат на одной окружности (точка О — центр шестиугольника).
б) Найдите отношение АМ : АС.
а) Определим точку как точку пересечения и
Докажем, что если то условие задачи выполняется. Очевидно при увеличении будет уменьшаться и наоборот, поэтому ситуация равных отношений возможна лишь один раз.
Итак, пусть тогда Значит, тогда по теореме синусов откуда и Значит,
б) Центр описанной окружности треугольника — точка и радиус ее равен стороне шестиугольника.
Ответ: б)
В параллелограмме ABCD точка Е — середина стороны АD. Отрезок ВЕ пересекает диагональ АС в точке Р, АB = PD.
а) Докажите, что отрезок ВЕ перпендикулярен диагонали АС.
б) Найдите площадь параллелограмма, если АВ = 2 см, ВС = 3 см.
а) Пусть — точка пересечения диагоналей параллелограмма. Тогда в треугольнике отрезки и — медианы. Продлим отрезок до пересечения с в точке Это будет третья медиана. Тогда ? следоваельно в треугольнике медиана равна половине стороны поэтому
б) (поскольку треугольник равнобедренный), окончательный ответ
Ответ: б)
В остроугольном треугольнике АВС проведены высоты АК, ВМ и СN. На стороне АВ выбрана точка Р так, что окружность описанная около треугольника РКМ касается стороны АВ.
а) Докажите, что угол КАМ равен углу МВС.
б) Найдите РN, если РА = 30, РВ = 10.
а) Пусть в и — прямоугольные с общим острым углом
б) По свойству секущей и касательной и откуда
Треугольники KMC и АВС подобны: действительно, угол C у них общий, далее, а тогда наконец, углы MEF и MKC равны как вписанные, опирающиеся на дугу MF. Тогда а это соответственные углы при прямых EF и AB, которые пересекает секущая AC. Тем самым, данные прямые параллельны, и Подставляя полученное соотношение в равенство (1), находим:
Далее, и — прямоугольные, Полагая PN = x, получаем:
Наконец, и также прямоугольные, Отсюда находим, что
Разделив (3) на (4) получим Подставляя (2), получим уравнение Его единственным решением является