для чего нужен термоядерный реактор
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку — прекрасная идея. «Но проблема в том, что мы не знаем, как создать такую коробку», — говорил нобелевский лауреат Пьер Жиль де Жен в 1991 году. Однако к середине 2018 года мы уже знаем как. И даже строим. Лучшие умы мира трудятся над проектом международного экспериментального термоядерного реактора ITER — самого амбициозного и дорогого эксперимента современной науки.
Такой реактор стоит в пять раз больше, чем Большой адронный коллайдер. Над проектом работают сотни ученых по всему миру. Его финансирование запросто может перевалить за 19 млрд евро, а первую плазму по реактору пустят только в декабре 2025 года. И несмотря на постоянные задержки, технологические трудности, недостаточное финансирование со стороны отдельных стран-участниц, самый большой в мире термоядерный «вечный двигатель» строится. Преимуществ у него куда больше, чем недостатков. Каких? Рассказ о самой грандиозной научной стройке современности начинаем с теории.
Что такое токамак?
Под действием огромных температур и гравитации в глубинах нашего Солнца и других звезд происходит термоядерный синтез. Ядра водорода сталкиваются, образуют более тяжелые атомы гелия, а заодно высвобождают нейтроны и огромное количество энергии.
Современная наука пришла к выводу, что при наименьшей исходной температуре наибольшее количество энергии производит реакция между изотопами водорода — дейтерием и тритием. Но для этого важны три условия: высокая температура (порядка 150 млн градусов по Цельсию), высокая плотность плазмы и высокое время ее удержания.
Дело в том, что создать такую колоссальную плотность, как у Солнца, нам не удастся. Остается только нагревать газ до состояния плазмы посредством сверхвысоких температур. Но ни один материал не способен вынести соприкосновения со столь горячей плазмой. Для этого академик Андрей Сахаров (с подачи Олега Лаврентьева) в 1950-е годы предложил использовать тороидальные (в виде пустотелого бублика) камеры с магнитным полем, которое удерживало бы плазму. Позже и термин придумали — токамак.
Современные электростанции, сжигая ископаемое топливо, конвертируют механическую мощность (кручения турбин, например) в электричество. Токамаки будут использовать энергию синтеза, абсорбируемую в виде тепла стенками устройства, для нагрева и производства пара, который и будет крутить турбины.
Небольшие экспериментальные токамаки строились по всему миру. И они успешно доказали, что человек может создать высокотемпературную плазму и удерживать ее некоторое время в стабильном состоянии. Но до промышленных образцов еще далеко.
Преимущества и недостатки термоядерных реакторов
Типичные ядерные реакторы работают на десятках тонн радиоактивного топлива (которые со временем превращаются в десятки тонн радиоактивных отходов), тогда как термоядерному реактору необходимы лишь сотни грамм трития и дейтерия. Первый можно вырабатывать на самом реакторе: высвобождающиеся во время синтеза нейтроны будут воздействовать на стенки реактора с примесями лития, из которого и появляется тритий. Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет — его в мире производят десятками тысяч тонн в год.
Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 — это безвредный инертный газ.
К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы.
Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек.
И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы.
К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития — 12 лет.
Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи.
Самый амбициозный проект современности
Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.
Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути.
Из чего состоит реактор ITER?
Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. тонн. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития.
На внутренних стенках камеры расположены специальные модули, которые называют бланкетами. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы.
Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению.
Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. д. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. кубометров. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры –269 градусов по Цельсию.
Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее.
Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах (например, под воздействием плазменных пушек, как дивертор), улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент.
Но одно дело собрать. И совсем другое — все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора (весом под 10 тонн), часть — управляться удаленно для устранения аварий, часть — базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС.
Причем это только часть оборудования самого реактора. Добавьте сюда здание криокомбината, где будут вырабатывать жидкий азот и гелий, здание выпрямителей магнитной системы с трансформаторами, трубопроводы системы охлаждения (диаметром по 2 метра), систему сброса тепла с 10 вентиляторными градирнями и многое-многое другое. На все это и идут миллиарды.
Зачем нужен ITER и кто за него платит?
Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. К тому же он сможет поддерживать ее в стабильном состоянии намного дольше ныне существующих установок. Ученые утверждают, что именно для этого и нужен столь масштабный проект.
С помощью такого реактора специалисты собираются преодолеть разрыв между нынешними небольшими экспериментальными установками и термоядерными электростанциями будущего. Например, рекорд по термоядерной мощности был установлен в 1997 году на токамаке в Британии — 16 МВт при затраченных 24 МВт, тогда как ITER конструировали с прицелом на 500 МВт термоядерной мощности от 50 МВт вводимой тепловой энергии.
На токамаке будут испытаны технологии нагрева, контроля, диагностики, криогеники и дистанционного обслуживания, то есть все методики, необходимые для промышленного образца термоядерного реактора.
Объемов мирового производства трития будет недостаточно для электростанций будущего. А потому на ITER отработают также технологию размножающегося бланкета, содержащего литий. Из него под действием термоядерных нейтронов и будут синтезировать тритий.
Однако не стоит забывать, что это пускай и дорогой, но эксперимент. Токамак не будет оборудован турбинами или другими системами конвертации тепла в электричество. То есть коммерческого выхлопа в виде непосредственной генерации энергии не будет. Почему? Потому что это только усложнило бы проект с инженерной точки зрения и сделало бы его еще более дорогим.
Схема финансирования довольно запутанная. На стадии строительства, создания реактора и прочих систем комплекса примерно 45% расходов несут страны Евросоюза, остальные участники — по 9%. Однако бóльшая часть взносов — это «натура». Большинство компонентов поставляются в ITER напрямую от стран-участниц.
Они прибывают во Францию по морю, а из порта к стройплощадке доставляются по дороге, специально переделанной французским правительством. На 104 км «Пути ITER» страна потратила 110 млн евро и 4 года работы. Трасса была расширена и усилена. Дело в том, что до 2021 года по ней пройдут 250 конвоев с огромными грузами. Самые тяжелые детали достигают 900 тонн, самые высокие — 10 метров, самые длинные — 33 метра.
Пока ITER не ввели в эксплуатацию. Однако уже существует проект электростанции DEMO на термоядерном синтезе, задача которой как раз и продемонстрировать привлекательность коммерческого использования технологии. Этот комплекс должен будет непрерывно (а не импульсно, как ITER) генерировать 2 ГВт энергии.
Сроки реализации нового глобального проекта зависят от успехов ITER, но по плану 2012 года первый пуск DEMO произойдет не раньше 2044 года.
Читайте также:
Наш канал в Telegram. Присоединяйтесь!
Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!
Термоядерный реактор и принципы его работы
Такая реакция происходит наСолнце. Синтез элементов обеспечивает планету энергией солнечного тепла. Таким образом, можно сказать, что при строительстве нужно отобразить такойже процесс, который происходит наСолнце, только вуменьшенном виде.
Строительство термоядерного реактора,и зачем оннужен?
Для воспроизведения такой реакции необходимо обеспечить высокое давление ивысокую температуру, гораздо выше, чем наСолнце. Вэтом исостоит сложность постройки реактора стермоядерным синтезом. Новый реактор должен быть более безопасным иболее мощным, чем распространенные сейчас атомные станции.
Завсе время было несколько попыток построить правильный термоядерный реактор.
Строительство первого исследовательского ядерного реактора вТомске началось в1959году. Онпережил пару реконструкций, его модернизировали, внего вкладывали средства.
Главная задача этого экспериментального реактора— обучение итренировка студентов политехнического института, атакже подготовка инженеров ихимиков всфере использования подобной ядерной установки.
Также небезызвестным является компактный термоядерный реактор LockheedMartin, концепция которого представляет осуществление дизайна компактного тороидаи, благодаря проекту, должна существенно сократить сроки сдачи проектов потермоядерному синтезу.
«Итэр»— международный термоядерный экспериментальный реактор
InternationalThermonuclearExperimentalReactor (ITER)— это крупнейший вданное время проект термоядерного реактора, атакже это наиболее объемный научный проект вовсем мире.Над ним годами работает целая коалиция ведущих стран: Япония, Франция, Россия, Индия, Южная Корея, Китай, США, страны Евросоюза. Они обещают достроить реактор к2026году. Официальная цена реактора— 40миллиардов долларов, ITER будет доказательством существования ивозможности применения термоядерной энергетики.
Чтобы показать свои возможности внужном масштабе, ондолжен качественно воспроизвести процессы, происходящие наСолнце, которые высвобождают энергию. Для этого используют устройство токамак. Оно создано для того, чтобы удерживать плазму спомощью магнитного поля. Токамак выглядит как тороидальная вакуумная камера, внем генерируется магнитное поле, которое непозволяет сильному теплу доходить достен реактора. Топливо вбрызгивается вкамеру, греется доочень высокой температуры иформируется плазма. Атомы водорода сливаются воедино, создавая дейтерий итритий. Таким образом высвобождается большое количество энергии.
Запуск намечен на2019год, нопотребуется еще некоторое количество времени, чтобы усовершенствовать ИТЭР. Нужно улучшить камеру, использовать сверхпроводящие магниты иновые вакуумные системы, чтобы термоядерный реактор можно было использовать для коммерческих нужд.
Как создать термоядерный реактор своими руками?
Если выхотите создать собственный самодельный реактор, нужно придерживаться некоторых правил безопасности. При конструировании реактора используется высокое напряжение, поэтому, скорее всего, необходима будет помощь электрика.
Также обязательным является свинцовое экранирование окон, чтобы избежать облучения отрентгеновских лучей. Всамоделке будет использоваться опасный газ— дейтерий, поэтому топливный отсек должен быть идеально герметичным.
Если вывсе-таки решили создать свой собственный домашний реактор, вот список нужных материалов:
Коротко рассмотрим основные этапы того,как делается термоядерный реактор:
Крупнейший вмире термоядерный реактор воФранции
Наюжном побережье Франции, недалеко отцентра Кадараш строят самый большой вмире международный термоядерный экспериментальный реактор (ИТЭР). Когда проект только начинался, были споры насчет страны размещения установки, нопобедила Франция.
Стройка началась вначале 2007года, нопервые эксперименты пришлось отложить на2025 год всвязи снедостатком финансового обеспечения. Как мыуже говорили, это совместный проект нескольких стран.
Токамак— камера, вней расположены магнитные катушки, которые, создавая магнитное поле, удерживают плазму, апосле она нагревается до30млн градусов.
Основа работы—это склеивание атомов дейтерия итрития споследующим образованием гелия. Дейтерий есть вобычной воде, атритий планируют вырабатывать вИТЭР излития. Смысл втом, что малое количество дейтерия способно вырабатывать столькоже энергии, что ив1000 раз большее количество бензина.
Впопулярной игре Minekraft вмоде Mekanism можно увидеть термоядерный реактор, который производит большое количества энергии. Втойже игре вмодификации ГрегТеч прописана реалистичная модель реактора ипрорисованы принципы работы будущей установки.
Как работает термоядерный реактор: принципы работы
Работа термоядерного реактора основана нареакции ядерного синтеза— «склеивании» двух маленьких ядер водно. Кпримеру, если слепить 2атома водорода получится гелий.
Принцип работы ядерного синтеза втом, что из-за разности масс атомов производится большое количество энергии. Нопреодолеть силу отталкивания двух ядер нетак просто, поэтому такая реакция может происходить только при очень высоких температурах. Отнагревания частицы двигаются быстрееи, сталкиваясь, объединяются водно ядро. Высокая температура иесть загвоздка вприменении термоядерной реакции вжизни— нет таких металлов, которые нерасплавилисьбы при воздействии такой температуры. Впопытках производства термоядерного реактора выход нашли— плазму можно удерживать магнитным полем втокамаках.
Схема работы такая: тороидальная камера (токомак) заполняется дейтериево-тритиевой плазмой, которая нагрета довысокой температуры; происходит реакция синтеза, образуются нейтроны, они сталкиваются сатомами лития, образовывая гелий итритий. Количество образовавшегося трития должно обеспечивать имданную установку, иновые установки.
Термоядерный реактор холодного синтеза
ХЯС— возможность произведения такихже ядерных реакций, как вТР при высоких температурах, только без нагрева рабочих веществ.
Термоядерные реакторы холодного ядерного синтеза возможны. Исследователи вКалифорнии еще в2005 году сообщили, что уних получилось запустить такую экспериментальную реакцию благодаря электростатическому полю, источником которого служила вольфрамовая игла. Ееприсоединили ккристаллу танталата лития, его последовательно нагревали иохлаждали, разгоняя атомы дейтерия. Они сталкивались сцелью издейтерия эрбия ипроизводили ядра гелия снейронами.
Также вживой клетке организма человека происходят процессы холодного ядерного синтеза. Умственная имыслительная деятельность человека напрямую связана сядерными процессами, которые происходят учеловека вмозгу. Эти процессы— спусковые механизмы, которые запускают иотвечают завсе процессы ворганизме.
Как укротить термоядерный синтез и зачем он нам нужен?
Мы уже писали о неожиданных и примечательных идеях и разработках в области получения энергии от ядерного распада. А также о том, что приходится делать, когда с ядерными реакторами что-то идёт не так. Свобода, как известно, лучше несвободы, а синтез — лучше распада. Именно так подумали учёные ещё сто лет назад, когда сделали первые шаги по укрощению термоядерного синтеза. В этой статье мы кратко расскажем, что такое термоядерный синтез, на каком этапе находятся научные разработки и когда стоит ждать внедрения нового способа добычи энергии. В конце концов, именно за этим он и нужен человечеству.
Staring at the Sun: история открытия термоядерного синтеза
С развитием науки человечество начало задаваться вопросом о том, как работает Солнце, почему не гаснет и продолжает выделять тепло и свет. Ещё в двадцатых годах прошлого века — почти сто лет назад — британский учёный Артур Стэнли Эддингтон выступал с идеями протон-протонного цикла, то есть совокупности термоядерных реакций, в ходе которых водород в звёздах превращается в гелий. И сопутствует этой реакции выделение колоссальных объёмов энергии, что легко можно ощутить, просто выйдя на улицу в солнечный день.
Чуть позже, уже в тридцатые годы, учёные из Кембриджского университета под руководством австралийца Марка Олифанта в результате ряда экспериментов обнаружили нуклоны (общее название составляющих атомное ядро протонов и нейтронов) гелия-3 и трития, принимающие участие в этих реакциях, а их немецкий коллега, Ханс Бете, получил Нобелевскую премию по физике за вклад в теорию ядерных реакций и, особенно, за открытия, касающиеся источников энергии звёзд. Уже в 1946 году сэр Джордж Паджет Томсон и Моисей Блэкман описали и запатентовали идею Z-pinch, то есть системы удержания плазмы при помощи магнитного поля или «магнитной ловушки», которая легла в основу дальнейших экспериментов по созданию первых устройств управляемого термоядерного синтеза.
Лабораторная магнитная ловушка, фото: Sandpiper / Wikimedia Commons
Бесконечная мощь: преимущества, недостатки и препятствия для реализации
От истории перейдём к общей теории. Управляемый термоядерный синтез — это процесс получения более тяжёлых атомных ядер из более лёгких с целью (в теории) использования выделяемой энергии для добычи электричества. По своей сути он противоположен реакции распада, которая применяется в традиционной ядерной энергетике. В основном для проведения реакции термоядерного синтеза используются дейтерий и тритий (так называемая реакция D-T), хотя также возможны варианты с дейтерием и гелием-3, между ядрами дейтерия (D-D) и другими сочетаниями изотопов.
Сами по себе атомные ядра взаимодействуют не особо охотно из-за «кулоновского барьера», то есть силы электростатического отталкивания между ними. Чтобы преодолеть её и начать реакцию в земных условиях, вещество необходимо нагреть до достаточно высокой температуры, причём речь в данном случае идёт о сотнях миллионов градусов. Именно от этого процесса термоядерный синтез и получил своё название. Сочетание дейтерия и трития в данном случае требует «минимальной» температуры для начала реакции (тех самых 100 млн градусов), поэтому в экспериментальных установках оно используется чаще всего.
Реакция термоядерного синтеза D-T. Источник: Toshiba Energy Systems &Solutions Corporation
Также в ходе реакции появляется большое количество нейтронов, но об их значении поговорим чуть ниже, а сперва постараемся пояснить, почему коммерческое применение этого процесса вообще будоражит умы человечества последние 70 лет. Итак, преимущества управляемого термоядерного синтеза:
Токамак JET, фото: EFDA JET / Wikimedia Commons
Но почему же тогда сам принцип управляемого термоядерного синтеза, разработанный в середине прошлого века, до сих пор не реализован на практике либо реализован только в качестве экспериментальных установок, которые так и не начали производить электроэнергию? Давайте рассмотрим недостатки и ограничения этого процесса.
Сперва вернёмся к нашим нейтронам. В процессе реакции с применением D-T образуется нейтронный поток, который бомбардирует стенки защитной оболочки реактора. В результате мы имеем дело с так называемой «наведённой» радиацией, которая сильно усложняет обслуживание оборудования и, вполне возможно, приведёт к необходимости его периодической замены, так как со временем от бомбардировки нейтронами материалы становятся не только радиоактивными, но и хрупкими. Для решения этой проблемы предлагается использовать малочувствительные к радиации материалы, которые прослужат дольше, но их применение увеличит и без того колоссальные расходы на постройку электростанций термоядерного синтеза. Также рассматривается применение других действующих веществ, чтобы получить «безнейтронные» реакции, но о требованиях к плотности и температуре реакции для них мы уже говорили выше.
Ещё при текущем уровне развития технологий учёные и инженеры не могут добиться того, чтобы расход энергии на нагрев и доведение вещества в реакторе до состояния плазмы, а затем на поддержание его в этом состоянии, несмотря на постоянную потерю тепла (а также на охлаждение системы, работу электромагнитов и других подсистем), упал ниже, чем количество выделяемой в ходе реакции энергии. Например, британский токамак JET достиг соотношения между поступающей и отдаваемой энергией всего в 67%, то есть 0,67 Q. Q — показатель, который выражает отношение количеств затраченной и полученной в такой системе энергии, и для того, чтобы реакция термоядерного синтеза считалась самоподдерживающейся, он должен быть равен хотя бы 5, а для выработки полезных мощностей — намного выше. На сегодняшний день реакторов с таким значением в мире не существует.
Финальным вопросом, конечно, является окупаемость и стоимость. Чтобы добиться точной имитации реакций внутри Солнца, недостаточно просто взять тритий и дейтерий и поднести к ним условную спичку. Реактор термоядерного синтеза — это невероятно сложная, громоздкая и дорогая конструкция, в которой нашлось место массивной системе охлаждения, огромному количеству электромагнитов разных типов и даже собственным электростанциям.
По оценкам, расходы на строительство экспериментального токамака ITER (о нём ниже), которое ещё не завершено, могут превысить 20 млрд долларов. При этом реактор вообще не рассчитан на производство электроэнергии, то есть единственной прибылью от эксплуатации ITER будет опыт совместной работы учёных и экспериментальные данные.
Практическая магия: основные типы конструкции и вехи их развития
Условно установки для управляемого термоядерного синтеза можно разделить на четыре типа: токамаки, стеллараторы, зеркальные ловушки и импульсные системы. На их примере мы предлагаем рассмотреть как развитие идей, которые в дальнейшем могут привести к производству электроэнергии при помощи термоядерного синтеза, так и «тупиковые» ветви, которые по тем или иным причинам в ближайшие годы (или никогда) не выйдут за рамки теории и экспериментов.
Токамак — это сокращение от «тороидальная камера с магнитными катушками», каковая камера — главный элемент реактора, который служит для удержания плазмы. Намотанные вокруг камеры реактора магнитные катушки в данном случае применяются для того, чтобы создать специальное поле, удерживающее плазму от соприкосновения с её стенками, чего современные теплоизолирующие материалы просто не выдержали бы. В то же время через саму плазму также пропускается ток, который служит и для её нагрева, и для создания полоидального магнитного поля. В современных условиях это поле не может существовать дольше нескольких секунд, а без него плазма теряет свою стабильность, поэтому говорить о применении токамаков для постоянного производства электроэнергии ещё рано, хотя поддерживать ток более длительное время можно при помощи микроволнового излучения или введения в плазму нейтральных атомов дейтерия/трития.
Токамак KSTAR, Южная Корея, фото: Michel Maccagnan / Wikimedia Commons
Идеи токамаков впервые описали в Советском Союзе ещё в 50-х годах прошлого века, а первый такой реактор был построен в Курчатовском институте в 1954 году. Долгое время токамаки оставались чисто советской разработкой, но в 1970-х британские учёные подтвердили рекордные результаты разогрева плазмы, достигнутые на советском токамаке Т-3, и технологией заинтересовались по всему миру.
На сегодняшний день токамаки считаются наиболее перспективной разработкой, и в мире их количество превышает количество установок других типов. Среди достижений в этой сфере стоит отметить китайский EAST (Experimental Advanced Superconducting Tokamak, построен при поддержке РФ), который достиг в 2018 году температуры плазмы в 100 млн градусов, европейский JET (Joint European Toru), который находится в Великобритании и считается крупнейшим токамаком в мире, а также уже упомянутый выше ITER, на котором остановимся более подробно.
Схема токамака ITER. Источник: Oak Ridge National Laboratory — ITER Tokamak and Plant Systems (2016) / Wikimedia Commons
Идея постройки ITER (International Thermonuclear Experimental Reactor, международный термоядерный экспериментальный реактор) обсуждалась ещё в 1985 году, на встрече Рональда Рейгана и Михаила Горбачева, но реальное строительство началось только в 2010 году. В работе над реактором принимают участие множество стран, включая Японию, государства ЕС, Россию, США, Южную Корею, Китай и Индию. Итогом совместного проекта станет гигантское сооружение весом в 23 000 тонн, которое сместит JET с пьедестала самого крупного токамака на планете и теоретически будет способно довести показатель Q до 30, хотя создатели ITER не ставят перед собой цель добиться выработки электроэнергии — задача токамака окончательно доказать саму возможность использования термоядерного синтеза в этой сфере и проложить «путь» (именно так переводится с латыни сокращённое название реактора) для DEMO, первого токамака с «положительным» балансом, который запустится не раньше середины XXI века.
На долю Японии в проекте ITER выпали разработка и производство одного из важнейших элементов — сверхпроводящих катушек, необходимых для формирования магнитного поля вокруг камеры реактора. В частности, компания Toshiba занимается разработкой конструкции гигантских 16,5-метровых катушек для тороидального поля, которые весят около 300 тонн. При этом необходимо соблюдать крайне строгие допуски на размеры каждой детали — всего в несколько миллиметров — поэтому большим подспорьем становятся технологии и методы, изобретённые во время работы над японскими экспериментальными токамаками, JT-60 и JT-60SA.
Стеллараторы (от лат. stella — «звезда») получили своё название из-за схожести процессов в реакторе с теми, что происходят внутри звёзд. Первый образец был построен в 1951 году в США под руководством его изобретателя, Лаймана Спитцера. Основное отличие стеллараторов от токамаков заключается в конструкции магнитной ловушки: в стеллараторах для удержания плазмы в камере применяется только внешние катушки, которые создают силовые линии, вращающиеся вокруг камеры. Такая конструкция теоретически позволяет использовать магнитную ловушку в непрерывном режиме. В стеллараторах, как и в токамаках практически всегда применяется смесь дейтерия и трития, которая вводится в вакуумный сосуд камеры. В современных вариантах конструкции отказались от камеры в форме обычного тора в пользу сложных моделей, созданных с применением компьютерного моделирования. Их цель — добиться максимальной эффективности удержания плазмы.
Стелларатор Wendelstein 7-X. Источник: Max-Planck-Institut für Plasmaphysik, Tino Schulz / Wikimedia Commons
Несмотря на возможность непрерывного воздействия на плазму и изменённую конструкцию камеры стеллараторы не получили такого широкого распространения, как токамаки. В первую очередь это связано с большей сложностью конструкции и меньшей их эффективностью в современных условиях. Wendelstein 7-X, построенный в г. Грайфсвальд в Германии в 2015 году стал крупнейшим стелларатором в мире и своеобразной «эпитафией» этой разработке. По расчётам учёных он должен был довести время непрерывного воздействия электромагнитов на плазму до 30 минут, чтобы продемонстрировать возможность использования стеллараторов для долгосрочной генерации электроэнергии. При этом в 2018 году в ходе эксперимента температуру плазмы удалось поднять только до 40 000 градусов Цельсия, а время работы — довести до 100 секунд. Следующие испытания запланированы на 2021 год.
Лазерный ангар NIF/ Источник: Lawrence Livermore National Laboratory, Lawrence Livermore National Security, LLC, and the Department of Energy — National Ignition Facility / Wikimedia Commons
Зеркальные ловушки — первый эксперимент с использованием «открытых» магнитных ловушек был проведен ещё в 1955 году во всё той же Ливерморской национальной лаборатории имени Лоуренса. Идея ловушек заключалась в том, чтобы использовать не закрытый тор, а магнитный сосуд вытянутой формы, открытый с двух противоположных концов. «Новая» плазма в этом случае должна была разогреваться до нужной температуры, отдавать энергию и выходить через боковые отверстия (либо отбиваться магнитным полем обратно, как от зеркал — отсюда и название). Благодаря такой форме и механизму их стоимость оказалась намного ниже, чем у конкурирующих разработок, так что какое-то время зеркальные ловушки казались крайне перспективной разработкой. Но со временем экспериментаторы столкнулись с нестабильностью плазмы, плохо изученной на момент начала разработок, что привело к проблемам и невозможности достичь необходимых для термоядерного синтеза температур. В дальнейшем в конструкцию неоднократно вносились изменения, но амбициозная американская установка MFTF, например, была закрыта ещё до начала пробных запусков, так как токамаки в итоге оказались проще, мощнее и дешевле.
Из интересных разработок этого типа стоит отметить российский ГДЛ (газодинамическая ловушка) из Новосибирска, который создаётся на базе советского проекта 50-х годов, «открытой» ловушки «пробкотрон Будкера». По состоянию на 2018 год учёным Новосибирского Института ядерной физики СО РАН удалось достичь температуры в 10 млн градусов, а в 2020 году они получили грант от Минобрнауки РФ на закупку нового оборудования для продолжения экспериментов.