для чего нужен тормозной резистор в частотнике
Тормозной резистор и тормозной прерыватель
Преобразователь частоты может осуществлять остановку или торможение двигателя. Существует
несколько вариантов остановки двигателя:
В случае, когда требуется время остановки меньше, чем время остановки приводимого двигателем механизма по инерции, двигателю требуется создать тормозной момент. Преобразователь частоты может создать тормозной момент порядка 20% от номинального момента двигателя, этого как правило достаточно для остановки неинерционных нагрузок или когда нет ограничения по времени остановки.
В случае с нагрузками, обладающими высокой инерцией (кинетической энергией) или слишком коротким временем торможения, двигатель может перейти в генераторные режим работы, в результате которого возникает рекуперация энергии нагрузки. Рекуперация энергии приводит к перенапряжению в звене постоянного тока преобразователя частоты.
Для предотвращения перенапряжений в звене постоянного тока преобразователя частоты и рассеивания энергии рекуперации необходимо использовать тормозные резисторы, которые рассеивают избыточную электрическую энергию в виде тепла.
Для коммутации тормозного резистора к звену постоянного тока преобразователя частоты применяют тормозной прерыватель (тормозной модуль), он включается, когда уровень напряжения в звене постоянного тока ПЧ превысит заданный уровень. Как правило, преобразователи частоты небольшой мощности имеют встроенный тормозной прерыватель, в этом случае тормозной резистор подключается напрямую к преобразователю частоты (см. Рис.1)
Рис.1 Подключение тормозного резистора к преобразователю частоты с встроенным тормозным прерывателем Для подключения тормозного резистора к преобразователям частоты большой мощности, потребуется внешний тормозной прерыватель. Тормозной прерыватель подключается к преобразователю частоты на клеммы звена постоянного тока, а тормозной резистор непосредственно к тормозному прерывателю (см. Рис.2).
Рис.2 Подключение внешнего тормозного прерывателя и тормозного резистора к преобразователю частоты.
Параметры тормозного резистора (сопротивление и мощность) зависят от максимальной энергии выделяемой приводом в момент торможения, а так же от допустимого тока тормозного прерывателя.
Тормозной резистор. Принцип действия
В момент торможения асинхронного двигателя происходит передача энергии обратно в частотный преобразователь, который работает в режиме генератора. В результате чего, в цепях постоянного тока наблюдаются завышенные показатели. Частотный преобразователь (ЧП) старается вернуть его в нормальное состояние (снизить), увеличивая частоту на выходе, вследствие чего происходит уменьшение скольжения двигателя.
Если двигатель испытывает невысокие неинерционные нагрузки, торможение происходит за счет потерь самого двигателя, работающего с мощностью, приближенной к 20% от номинальной. Это подходит лишь в том случае, когда работают с небольшой кинетической энергией и время торможения не имеет особого значения (не критично).
Для экстренного (быстрого) торможения принято использовать тормозной резистор – специальное устройство:
· обеспечивающее постоянное потребление энергии торможения, которая исходит от двигателя;
· рассеивающее энергию торможения, которая преобразуется в тепловую энергию.
Данный режим наблюдается тогда, когда снижается частота вращения вала, для которого характерна инерционная нагрузка. Подобным образом работает вентиляционное, конвейерное и крановое оборудование.
Если же уменьшение общей частоты вращения двигателя происходит намного медленнее, чем снижение частоты на преобразователе, то устройство постепенно переходит в так называемый генераторный режим. Для него характерно энергия вращения двигателя (механическая) преобразовывается в электрическую энергию. Полученная электроэнергия, попадая в одно из звеньев постоянного тока ЧП, начинает накапливаться в специальных конденсаторах, напряжение которых постепенно растет. Важно понимать, что подобное увеличение напряжения в определенный момент может спровоцировать как пробой конденсатора, так и его полное разрушение.
Решить возникшую проблему поможет установка специального элемента (выпрямителя) в конструкцию частотного преобразователя. При этом наблюдается процесс рекуперации, при котором вся энергия передается в питающую сеть. Но, стоимость такого оборудования существенно увеличивается (примерно на порядок).
Бывают такие частотные преобразователи, в которых предусмотрено использование единой (общей) шины постоянного тока, что позволяет передавать энергию другим приводам, работа которых основывается на двигательном режиме. Хотя очень сложно, а иногда и невозможно, добиться нормальной работы приводов (двигателя), один из которых работает в двигательном режиме, а другой – в режиме торможения.
Именно поэтому предпочтительней оказывается использование специальных тормозных резисторов, если в процессе эксплуатации предполагается накопление энергии торможения (возникает тормозной режим).
Определение минимального значения сопротивления такого резистора (тормозного) зависит от значения тока тормозного ключа (допустимого), который входит в схему преобразователя частоты. Максимальное же значение сопротивления и мощность тормозного резистора напрямую зависят от максимально возможного количества энергии, которая выделяется в процессе торможения привода.
Тормозной резистор — принцип действия
В статье рассказано какие существуют типы тормозных резисторов. Указаны их основные характеристики. Описан принцип действия, этапы расчета, а также даны советы по подключению.
Назначение тормозного резистора для преобразователя частоты, расчет
Принцип работы тормозного резистора
Устройство
Тормозной резистор – это элемент электрического аппарата механизма с большой инерционной массой. При динамическом торможении он поглощает излишне выделяемую электрическую энергию и конвертирует в тепловую.
При снижении или увеличении скорости, кинетическая энергия двигателя превращается в электрическую и оказывает воздействие на клеммы преобразователя частоты (ЧП). Такой эффект может вызвать перегрузку с последующим отключением частотника. Чтобы погасить избыток энергии и преобразовать мощность в тепло, в машинах и механизмах, используют тормозной резистор для частотного преобразователя.
Для чего используется
Тормозной резистор (ТР) используется если:
Типы тормозных резисторов
Существует два вида тормозных резисторов, отличающихся материалом корпуса:
По сравнению с керамическими, алюминиевые резисторы больше используются в погрузочно-разгрузочных машинах и агрегатах (ленточный конвейер, башенный кран). Они удобные, аккуратные, «упакованные» в оболочку. Их можно прикрепить на теплопроводное основание. Для увеличения теплосъема можно помещать в теплоотводящую жидкость. Но в цене они дороже керамических.
Также резисторы различают по типу заявленной мощности. При выборе нужно ориентироваться на два основных показателя: сопротивление R и рассеиваемую мощность P.
Для лучшего сочетания некоторые резисторы собирают блоками из нескольких штук. При этом номиналы у всех в комплекте должны быть одинаковыми. Если прибор с подходящей мощностью отсутствует, то создают последовательное или параллельное соединение и подключают таким образом.
Резисторные блоки подключают напрямую при помощи тормозного модуля. Все зависит от того, какой преобразователь используется. Если процесс торможения занимает больше времени чем требуется, рекомендуется выполнить проверку ТР на наличие больших токов. Поэтому рекомендуется выбирать ТР с увеличенной номинальной мощностью, нежели указано в инструкции.
Механизмы, работа которых напрямую связана с электродвигателем, достаточно будет стандартного сопротивления тормозного резистора. Для более крупных машин сопротивление подбирается исходя из длительности и особенностей тормозного процесса.
Справка! Напряжение звена постоянного тока при замыкании тормозного ключа составляет 760 вольт.
Основные характеристики тормозных резисторов
Характеристики резисторов должны отвечать параметрам электропривода, типу частотного преобразователя, режимам пуска и эксплуатации двигателя. Тормозные резисторы выбирают:
Расчет делают на стадии проекта электрического привода или при модернизации.
Циклы торможения
Динамическое торможение – рассеивание энергии двигателя на блоке резисторов, подключенном к шине постоянного тока на преобразователе частот.
Различают три вида торможения:
Циклы торможения различаются на низко инерционные (НИ) – 10% и высоко инерционные (ВИ) – 40%. Резисторы с НИ циклом используются в бытовых электрических приборах (вентиляторы) а с ВИ циклом в подъемно-транспортных механизмах (краны, лифты, подъемники).
Число фаз, номинальное напряжение
По числу фаз ТР делятся на одно и трехфазные. Главное различие в величине напряжения. К первым можно отнести электрические приборы с напряжением 220-240 вольт. Вторые рассчитаны на использование механизмов с напряжением 380-480 вольт. Трехфазные, при соблюдении техники безопасности и правил подключения, могут применяться и в машинах с меньшим напряжением.
Максимальная и номинальная мощность
При выборе тормозного резистора нужно основываться на номинальную мощность. Производитель указал параметр в инструкции, как расчетную величину на протяжении эксплуатации прибора. Максимальная мощность также указана в характеристиках, но постоянная работа в «авральном» режиме приведет к преждевременному износу и поломке изделия. Показатели мощности колеблются в пределах от 0,2 до 50 кВт. Если необходимо обеспечить мощность свыше 50 киловатт, то путем параллельного подключения нескольких ТР, можно достичь показателя в 450-500 кВт.
Важно! Если в выходном транзисторе произошло короткое замыкание, то преобразователь частоты нужно отключить от сети с помощью выключателя. Это предотвратит рассеяние мощности в тормозном резисторе.
Сопротивление
В зависимости от скорости торможения, определяют величину сопротивления. Если сопротивление больше, то время торможения меньше. И наоборот. Показатели от 2 до 180 Ом. Сопротивление присоединяют к клеммам преобразователя частоты и к разъемам «вход» внешнего тормозного прерывателя. В зависимости от мощности частотника, происходит подбор номинального сопротивления. Сопротивление цепи выбранного тормозного резистора не должно превышать рекомендованного значения.
Внимание! Если резистор будет с повышенным омическим сопротивлением, то возникнет вероятность автоматического отключения преобразователя частоты.
Класс защиты
Класс защиты IP — система степеней защиты оболочки электрооборудования от проникновения твёрдых предметов и воды. Маркируется международным знаком IP и двух цифр после него.
Первая цифра – попадание твёрдых предметов
Диаметр — 0 | нет защиты | |
1 | > 50 мм | большие поверхности тела, нет защиты от сознательного контакта |
2 | > 12,5 мм | пальцы и подобные объекты |
3 | > 2,5 мм | инструменты, кабели и т.п. |
4 | > 1 мм | большинство проводов, болты и т.п. |
5 | пылезащищённое | некоторое количество пыли может проникать внутрь, однако это не нарушает работу устройства. Полная защита от контакта |
6 | пыленепроницаемое | пыль не может попасть в устройство. Полная защита от контакта |
Вторая – защита от воды
— | нет защиты | |
1 | вертикальные капли | вертикально капающая вода не должна нарушать работу устройства |
2 | вертикальные капли под углом до 15° | вертикально капающая вода не должна нарушать работу устройства, если его отклонить от рабочего положения на угол до 15° |
3 | падающие брызги | защита от дождя. Вода льётся вертикально или под углом до 60° к вертикали |
4 | брызги | защита от брызг, падающих в любом направлении |
5 | струи | защита от водяных струй с любого направления |
6 | морские волны | защита от морских волн или сильных водяных струй. Попавшая внутрь корпуса вода не должна нарушать работу устройства |
7 | кратковременное погружение на глубину до 1м | при кратковременном погружении вода не попадает в количествах, нарушающих работу устройства. Постоянная работа в погружённом режиме не предполагается |
8 | длительное погружение на глубину более 1м | полная водонепроницаемость. Устройство может работать в погружённом режиме |
Режим работы электродвигателя
У электродвигателей есть два режима работы: двигательный и тормозной.
Двигательный режим – преобразование электрической энергии в механическую. Тормозной – поглощение механической энергии и преобразование ее в электрическую.
Чтобы остановить работающий электродвигатель существует два способа. Когда остановка происходит по инерции – режим выбега. После подачи сигнала отключения на ЧП, ротор электромотора вращается по инерции. Когда идет процесс управляемого замедления – это режим торможения. При таком режиме время замедления пользователь настраивает сам.
Как правильно рассчитать тормозной резистор для частотного преобразователя
Исходные данные: номинальное напряжение, мощность, частота вращения электродвигателя, момент инерции, время остановки и т.д.
Этапы расчета
Расчет делается в несколько этапов:
где n 1 – начальная скорость замедления;
n 2 – конечная скорость замедления;
J – сумма моментов инерции на валу;
t – проектное время замедления.
где М – максимальный момент торможения.
где к – коэффициент уменьшения нагрузки.
где U – напряжение звена постоянного тока;
Р – электрическая мощность торможения.
Справка! Если передаточный механизм не включен в состав электропривода, значение КПД редуктора считается равным единице.
Советы по подключению тормозного резистора
Существует два способа подключения:
На выбор подключения влияют конструктивные особенности конкретного агрегата и мощность преобразователя частоты. Первый способ подходит для ЧП до 30 кВт. Второй предназначен для более мощных.
Несколько советов по подключению:
Перед началом работ измерьте напряжение на клеммах.
Обесточьте силовой модуль.
Соблюдайте правила монтажа, во избежание замыкания.
Обеспечьте сохранность кабеля от механических повреждений.
Используйте кабель с двойной изоляцией.
Прокладывайте в раздельных каналах или трубах.
Применять соединительные кабели длиной не более 100 метров при допустимом сечении вывода – 35 мм².
При выборе резистора следует начать с требований, предъявляемых процессом. Изучить технические характеристики. Рассмотреть специально для конкретного применения. В некоторых случаях решением может быть сочетание последовательного и параллельного соединения.
Расчет и выбор тормозных резисторов для преобразователей частоты
В статье рассматривается методике расчета и выбора тормозного сопротивления (тормозного резистора) для преобразователей частоты (ПЧ, частотника), на примере остановки асинхронного двигателя типа АИР.
Тормозные резисторы являются необходимыми элементами систем с тяжелыми режимами торможения (остановка большой нагрузки за малое время), если в их составе имеются преобразователи частоты с промежуточным звеном постоянного тока (например, серии GA700, GA500, A1000, L1000, J1000).
YASKAWA преобразователи частоты серий GA700 и GA500
Примерами таких систем могут служить:
Примеры применений где требуются тормозные сопротивления
Пример расчета тормозного резистора
Циклограмма работы с участком торможения двигателя
Из циклограмм видно насколько сильно растет значение момента при переходе в отрицательную область во время торможения.
Если не предпринять меры по утилизации энергии, которая поступает на ПЧ во время торможения электродвигателя, то преобразователь отключится по ошибке перенапряжения на звене постоянного тока (код OV у YASKAWA). А в случае большой инерционной нагрузки на валу электродвигателя могут выйти из строя конденсаторы звена постоянного тока (ЗПТ).
Для утилизации возникающей энергии используют или тормозные сопротивления, преобразующие энергию в тепло, или рекуператоры для возврата ее в питающую сеть.
Для выбора тормозного резистора в первую очередь нам нужно определить электрическую мощность торможения:
Находим номинальную скорость двигателя в рад/с:
Рассчитываем максимальный момент для полной остановки по заданному циклу. Если механика имеет в своем составе несколько кинематических узлов (например, редукторы, барабаны и т.д.), то в суммарном моменте инерции эти узлы должны быть приведены к валу двигателя:
Определяем максимальную мощность при торможении:
Определяем электрическую мощность торможения. Так, как отсутствует редуктор, то величину его КПД берем равной 100%:
Здесь k – вспомогательный коэффициент, зависящий от номинальной мощности двигателя:
Pном.дв, кВт | k |
до 1,5 | 0,25 |
от 2,2 до 4,0 | 0,20 |
от 5,5 до 11 | 0,15 |
от 15 до 45 | 0,08 |
выше 45 | 0,05 |
Производим расчет допустимого сопротивления резистора:
будет иметь следующие значения в зависимости от величины напряжения на входе ПЧ:
– для 380 В: Uзпт = 757 В ± 3 %
Определяем продолжительность включения (ПВ) для режима торможения:
Находим номинальную мощность тормозного резистора:
где – коэффициент, зависящий от значения ПВ (соответствие на рис.3)
Зависимость коэффициента fk от ПВ
Согласно расчету, получается резистор 6Ом/18,5кВт. Один резистор этим условиям не удовлетворяет, но можно использовать по два резистора RH-9600W015-10 (9,6 кВт, 15 Ом, ПВ=10%).
Тормозные резисторы разной мощности RFH и БТ
Выбор тормозного модуля
Для сброса энергии со звена постоянного тока при его повышении используется специальный силовой транзистор, называемый тормозным. Он может быть, как встроенным, так и внешним. У преобразователей YASKAWA тормозные модули встроены в сам ПЧ до определенной мощности:
Пример внешнего тормозного модуля YASKAWA CDBR-4045D
Для проверки работоспособности тормозного транзистора в данном режиме, необходимо найти ток, который будет протекать через него во время торможения. В нашем случае это будет:
В данном случае преобразователь GA700 имеет номинальную мощность 90 кВт при тяжелом режиме нагрузки [HD] и требует установки внешних тормозных модулей. По каталогу рекомендуется установка двух модулей CDBR-4045D с максимальным суммарным током 120 А.
Таблица характеристик тормозных модулей YASKAWA CDBR
Выводы
Расчет режимов торможения и выбор тормозных резисторов для преобразователей частоты необходимый этап перед его покупкой, чтобы в последствии избежать простоя оборудования и выхода из строя ПЧ.
ООО «КоСПА» обеспечивает поставку ПЧ YASKAWA со всеми необходимыми опциями и в случае необходимости может помочь в их выборе и проверке ваших расчетов.
Для чего нужен тормозной резистор в частотнике
Рекуперативное торможение на частотно-регулируемом приводе.
Вспомним устройство преобразователя частоты.
Трехфазное переменное напряжение
380В, выпрямляется 6-пульсным выпрямителем и становится 537В постоянного тока. Далее, с помощью инвертора (ШИМ) это напряжение преобразуется обратно в переменное, но уже регулируемое по частоте и амплитуде.
При торможении электропривода с высокоинерционной нагрузкой, двигатель может переходить в генераторный режим. Генерируемая при этом энергия возвращается в частотный преобразователь и выпрямляется на обратных диодах IGBT-транзисторов, следовательно растет напряжение на звене постоянного тока (ЗПТ). Часть этого напряжения (20-30%) может быть рассеяно на силовых элементах, на разрядных резисторах ЗПТ и др. Именно об этом и говорит характеристика преобразователя: «Тормозящий крутящий момент.
Как работает тормозной прерыватель.
При достижении порога срабатывания, тормозной прерыватель открывает цепь импульсами ШИМ периодом Т (
20msec). Мощность рассеивания на резисторе Pрез за время работы прерывателя tраб будет равно площади под Uэф (заштрихованная область).
Pрез = Uэф^2 / Rрез = I^2 * Rрез.
Следовательно, регулируя значение открытия ключа t (
5msec) можно регулировать мощность рассеивания и ток протекающий через тормозной резистор. Значение t регулируется автоматически в зависимости от значения напряжения на звене постоянного тока. Чем выше напряжение на ЗПТ, тем больше время t и больше мощность рассеивания.
В качестве резисторов используют пожаростойкие проволочные резисторы с большой мощностью рассеивания. Сопротивление и мощность резисторов должна рассчитываться в соответствии с каждой решаемой задачей, однако у каждого производителя есть рекомендуемые значения, применяемые в большинстве решаемых задач. Однако для сложных задач, расчеты все-таки рекомендовано провести, например, продолжительное опускание груза краном.
Отличный пример расчета тормозных сопротивлений есть в «Технической коллекции Schneider Electric», называется «Выпуск № 7 Методика по силовому расчету частотнорегулируемых электроприводов крановых механизмов».