для чего пьют аминокислоты спортсмены

Для чего нужны аминокислоты в спорте

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Когда речь заходит о спортивном питании, то часто под это определение попадает не только протеин, но и аминокислоты, значение которых для многих, между тем, остается не очень понятным. В нашей сегодняшней статье мы подробно разбираемся в роли аминокислот для спортсменов и их важных функциях.

Аминокислоты для спортсменов – что это такое?

Для того чтобы разобраться в том, нужны ли вообще аминокислоты в спорте, следует понять, что же из себя представляют эти спортивные добавки. Если ограничиться коротким определением, без углубления в химические термины, то аминокислоты – это то, из чего состоят абсолютно любые белки в человеческом теле. Когда в организм попадает белковая пища, то при переваривании она распадается на аминокислоты, которые обеспечивают стабильную работу всех жизненно важных систем и органов.

Впрочем, уникальными этот тип органических соединений делает еще один факт – наличие атомов азота. Присутствие такого компонента наделяет аминокислоты поистине потрясающими функциями – они помогают в строительстве мягких тканей, мышечных волокон, кожного покрова, а также волосяных луковиц и ногтей.

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсменыСкажем больше: от того, в каком количестве в вашем организме присутствуют аминокислоты, будет в целом зависеть ваше психологическое состояние, настроение, состояние иммунной системы и даже то количество жира, что присутствует в теле.

При этом самостоятельно организм синтезирует 20 заменимых кислот и еще порядка 10 получает только вместе с пищей или иных источников.

Зачем нужны аминокислоты спортсменам

Безусловно, одна из важнейших и основных функций аминокислот для спорта, объясняющая для чего эти добавки нужны мужчинам и женщинам, заключается в их потрясающей способности стимулировать процессы мышечного роста, а также помогать в восстановлении после тренировочного процесса и уменьшении мышечной усталости. Но только этим дело не ограничивается. Начало тренировочного процесса сопряжено с тем, что в организме протекают биохимические реакции, сопровождаемые выделением промежуточных веществ, провоцирующих появление усталости. Справиться с этим эффектом помогает, к примеру, такая аминокислота как L-Glutamin (глутамин), выступающая в роли источника подпитки и дополнительной энергии для организма.

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсменыИменно поэтому добавление аминокислот для спорта будет актуальным не только для тех, кто работает над качеством мышечной структуры. Аминокислоты обязательно должны быть в рационе всех людей, придерживающихся активного образа жизни, независимо от того, профессиональный это вид спорта или любительский для поддержания физической формы.

Если вы спросите, для чего нужны аминокислоты в спорте женщинам, которые вроде не особо заинтересованы в наращивании мышечной массы, то ответом станет еще одна важная функция этой добавки. Дело в том, что аминокислоты помогают избавляться от лишней жировой прослойки в организме, а значит, способствуют похудению. Так, одно из исследований продемонстрировало, что та группа, в которой женщины придерживались правильного питания с большим содержанием аминокислот, избавилась от лишних килограммов гораздо быстрее второй.

Какие аминокислоты для спортсменов лучшие?

В одной из наших прошлых статей мы рассказывали о том, как правильно принимать аминокислоты, а также приводили полную классификацию этих добавок, поэтому ограничимся лишь списком аминокислот при занятиях спортом, которые должны быть у каждого:

Что выбрать: аминокислоты или протеин?

Именно такой вопрос довольно часто задают начинающие спортсмены, чтобы выяснить, какой же из этих двух видов спортпита принесет больше пользы. Впрочем, немало и тех, кто желает знать, можно ли совмещать их прием, ведь если аминокислоты – это составные части белка, а протеин и есть белок, то есть ли польза в таком двойном эффекте?

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсменыИтак, выбирать между протеином или аминокислотами неправильно. Эти два продукта должны дополнять друг друга, но сразу оговоримся, положительного эффекта можно достигнуть только при правильном употреблении. Организм спортсмена нуждается в белке, а значит, не обойтись без протеина, но для того, чтобы он усвоился, следует добавлять в рацион аминокислоты.

Такой подход позволит добиться значительно лучших результатов, нежели использование только одной или только другой добавки.

Рекомендации экспертов Prime Kraft

Нужно ли добавлять в свой рацион такое спортивное питание, как аминокислоты? Мы считаем, что это, безусловно, важная добавка, которая значительно улучшает не только силовые показатели спортсмена, но и способствуют более эффективному достижению поставленных целей, особенно, если мы говорим о наращивании мышечной массы.

При этом не стоит забывать об элементарных правилах безопасности и четко следовать инструкциям по приему той или иной добавки, которые дают производители. Также не стоит экономить на качестве и выбирать совсем дешевые варианты. Да, вы сбережете часть денег, но вот для вашего здоровья такая экономия может выйти боком.

Наши спортивные добавки проходят строгий контроль на соответствие всем установленным стандартам, а потому мы совершенно точно уверены, что при грамотном приеме, а также интенсивных занятиях спортом, дополненных правильным питанием, вы точно добьетесь всех поставленных целей.

Источник

Незаменимые аминокислоты: как, сколько и почему

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Незаменимые аминокислоты: как, сколько и почему

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

О незаменимых аминокислотах и их важности для жизни человека говорят много и с удовольствием: это чуть ли не основной предмет спора между вегетарианцами и мясоедами, важный аспект идеологии культуристов, обязательный пункт в лекциях молодым родителям районных педиатров.

Но что же это на самом деле?

Белки и аминокислоты

Белки — вещества для существования организма совершенно необходимые. Они участвуют в обменных процессах, из них состоят гормоны и антитела, клетки крови и мышечные волокна. Однако кусок хорошо прожаренной говядины сам по себе никогда не станет строительным материалом для бицепса бодибилдера Коли. Сначала мясо надо переварить — то есть, при помощи пищеварительных ферментов расщепить содержащийся в мясе белок на составляющие его аминокислоты, а потом собрать из этих «кирпичиков» новые белки — уже в колиной мышце.

Незаменимых у нас. есть!

12 необходимых для жизни аминокислот человеческий организм способен синтезировать самостоятельно. А еще девять обязательно должны поступать в него с белковыми продуктами: триптофан, фенилаланин, лизин, треонин, метионин, лейцин, изолейцин, валин, аргинин.

Если этот набор в организм поступает неполным — нарушается обмен веществ, а если совсем не поступает — организм гибнет.

Кто есть кто

Триптофан используется организмом для производства серотонина — гормона хорошего настроения, участвует в синтезе витамина В3.

Лейцин помогает восстанавливать мышечную и костную ткани, стимулирует производство гормонов роста.

Изолейцин необходим для синтеза гемоглобина, выносливости организма и восстановления мышечной ткани.

Валин важен для обмена веществ в мышцах и их восстановления после травмы.

Треонин регулирует белковый обмен в организме, участвует в обмене жиров в печени и работе иммунной системы.

Лизин помогает усваиваться кальцию и азоту, участвует в производстве, антител, гормонов, ферментов, восстановлении тканей организма после повреждений.

Метионин защищает стенки сосудов от отложения холестерина, участвует в процессе пищеварения.

Фенилаланин — производное вещество для синтеза нейромедиаторов, необходимых для памяти, способности к обучению, настроения.

Аргинин стимулирует иммунную систему организма, улучшает репродуктивные функции у мужчин, способствует выведению вредных веществ из организма.

Сколько их надо?

Институт питания РАМН рекомендует около 1,5 граммов белка на 1 кг веса тела для взрослых с низкой или средней физической нагрузкой. То есть молодого человека весом 75 килограммов количество белка должно составлять от 112 граммов в день.

Правда, ценность белка в разных продуктах отличается: яйца и молоко усваиваются на 95 процентов, мясо и рыба на 70-90 процентов, мучные продукты — на 40-70 процентов, овощи и бобовые на 30-60 процентов.

Необходимое количество незаменимых аминокислот в сутки:

Обратите внимание, что незаменимые аминокислоты в продуктах содержатся не по одной, а в определенном сочетании. В продуктах животного происхождения есть все девять аминокислот. И достаточно около 300 граммов говядины или 500 г кисломолочных продуктов, чтобы получить их дневную норму.

Кстати, единственный белок, который по составу максимально близок к животному, содержится в бобовых — фасоли, сое, чечевице, горохе. Но, к сожалению, в нем практически нет аминокислоты метионина, которой богаты, например, зерновые продукты.

А если их не хватает?

Первыми признаками нехватки незаменимых аминокислот становятся изменение настроения и ухудшение памяти, быстрая утомляемость, снижение иммунитета, анемия, выпадение волос и ухудшение состояния кожи.

Как быть тем, кто не ест мясо и другие животные продукты?

Ежедневно и в достаточном количестве есть продукты из бобовых в сочетании с зерновыми — это гарантирует получение всех незаменимых аминокислот.

Обязательно включить в меню орехи, семечки и цельное зерно.

Включать в меню молочные продукты: их сочетание с зерновыми и бобовыми обеспечивает полным набором незаменимых аминокислот.

Источник

Аминокислоты – для чего нужны спортсменам

Далеко не все спортсмены отчетливо понимают, для чего нужны аминокислоты, а некоторые и вовсе могут запутаться в терминологии. Также до сих пор ходят оживленные споры о том, нужны ли аминокислоты или можно ограничиться лишь протеином? Чтобы не порождать еще больше заблуждений, а также подвести итог, насколько важны аминокислоты в виде добавки, рассмотрим все максимально детально.

Зачем нужны аминокислоты? для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Что же такое аминокислоты? Если описать их роль максимально просто, то это те вещества, из которых состоят все белки, в организме. Любой белок, который поступает в организм с пищей, в процессе переваривания расщепляется на аминокислоты, которые необходимы для работы всех систем организма и обновления тканей, потому вопрос об их актуальности и важности изначально некорректен. Из этого уже можно сделать простой вывод и понять, для чего нужны аминокислоты спортсмену, так как мышечная масса, сила, скорость и прочие характеристики важны почти в любой дисциплине.

Какие преимущества дают аминокислоты? Более мускулистое тело, меньшее количество жира, лучшее самочувствие и крепкое здоровье. Они одинаково важны как для детей, так и для пожилых людей, а уж для тех, кто занимается спортом и подавно.

Для чего нужны аминокислоты спортсменам?

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

При занятии спортом организм тратит куда больше ресурсов, а также требует больше питательных веществ для восстановления, потому потребность в аминокислотах лишь возрастает. Они способствуют:

Более того, аминокислоты нужны банально для того, чтобы мускулатура могла правильно функционировать, даже во время ходьбы.

Что выбрать – аминокислоты или протеин?

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Именно вопрос выбора вызывает больше всего обсуждений и споров, так как многие люди и даже спортсмены до сих пор не до конца понимают разницу между протеином и аминокислотами, считая их разными добавками. Конечно же это не так и между ними очень много общего. По сути, белок – это тот же набор аминокислот, который присутствует в аминокислотном комплексе, но лишь с тем условием, что он усваивается медленнее. Проще говоря, разница между протеином и аминокислотами лишь в скорости их усвоения. Если в бодибилдинге и прочих силовых видах спорта скорость усвоения играет крайне важную роль и аминокислоты все же имеют преимущество, то в других видах спорта это лишь ненужные финансовые траты. Не секрет, что аминокислотные комплексы стоят намного дороже, чем даже самый качественный белок, к тому же большинство производителей предлагают небольшие порции, что наглядно показывает – аминокислоты нужно принимать лишь в самых важных случаях, а именно утром и после/во время тренировки. Еще одним очень сомнительным плюсом аминокислот является то, что в них обычно отсутствует жир, углеводы, а также они очищены от лактозы, хотя этим может «похвастаться» и любой качественный протеин.

Выпив обычный протеиновый коктейль, после расщепления белка на более мелкие соединения (они же аминокислоты), вы получите то же, что дает добавка, но за гораздо меньшую трату. Если же говорить о реально полезных и необходимых аминокислотных комплексах, то BCAA будет безусловным лидером. Эта добавка состоит из трех аминокислот с разветвленной цепью (Лейцин, Изолейцин, Валин), которые принимают непосредственную роль в формировании мышечных тканей. Она позволяет ускорить синтез белка, улучшить набор массы, силы, жиросжигание, а также блокировать катаболические процессы.

Из этого можно сделать простой вывод, что BCAA так же необходимы, как и протеин, причем не только для спортсменов, но и для всех людей. В то же время, одновременный прием протеина и аминокислот будет крайне нелогичен, так как подобная схема будет лишать аминокислоты их главного преимущества – скорости усвоения.

Аминокислоты – достаточно удобная вещь, которую мы рекомендуем включить в свой спортивный набор, хотя бы потому что они позволяют быстро восстанавливаться мышцам после тренировки и защищают их в период «голодания». Покупать ли вместе с ними протеин – это уже ваше решение, но делать это совсем не обязательно, если вы принимаете аминокислотный комплекс и БЦАА.

Источник

10 ошибок, которые совершают люди при приеме витаминов, микроэлементов и БАДов

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Как принимать витамин Д, Омегу-3 и железо, чтобы извлечь из них пользу, а не вред? Почему стоит внимательно изучать состав спортивных БАДов? Что еще кроме гиалуроновой кислоты и коллагена полезно для нашей кожи? Врач высшей категории, эндокринолог Либеранская Наталья Сергеевна делится полезными рекомендациями, которые помогут справиться с сезонным авитаминозом и сохранить здоровье.

Ошибка №1. Не контролировать уровень витамина Д

Витамин Д положительно влияет на инсулинорезистентность и обмен веществ, способность организма противостоять ОРВИ и окислительному стрессу, снижает риск развития онкологических заболеваний и отклонений в развитии плода во время беременности. Более того, «солнечный» витамин Д помогает не хандрить и снижает болевые ощущения во время родов.

В регионах с низким уровнем инсоляции (к ним относится Санкт-Петербург) дефицит витамина Д крайне распространен. Однако принимать его в профилактических целях не стоит, поскольку витамин Д – это все-таки стероидный гормон. Только после специального лабораторного анализа крови на Д-гормон можно узнать его уровень в организме, после чего корректировать дефицит.

Ошибка №2. Принимать кальций без нормализации витамина Д и магния

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Кальций — важный минерал, который поддерживает хорошее состояние костей и зубов, отвечает за свертываемость крови и рост, поддерживает тонус мышц и нервной системы. Достаточное поступление кальция необходимо для профилактики и лечения остеопороза, а также артериальной гипертензии.

Но кальций не усваивается, если в организме есть дефицит витамина Д и магния. Принимать кальций в этом случае просто бессмысленно.

Ошибка №3. Не знать, какой витамин Д принимать

Холекальциферол — неактивная форма витамина Д, именно она нужна для коррекции его дефицита, чтобы все системы организма работали исправно, и вы чувствовали себя хорошо. Препарат холекальциферола безопасен — вероятность передозировки мала. Но есть другая, активная форма витамина Д — кальцитриол. Его можно принимать только под контролем врача и по медицинским показаниям.

Ошибка №4. Принимать витамин D — не всегда значит нормализовать его уровень

Витамин D плохо усваивается в следующих ситуациях:

Ошибка №5. Игнорировать Омега-3

Для чего принимают Омега-3 полиненасыщенную кислоту? Она сохраняет остроту зрения, красоту и защищает эндотелий сосудов от повреждений. головной мозг на 30% состоит именно из Омега-3 жирных кислот. Вещество не синтезируется в организме самостоятельно. К сожалению, даже приверженцы Средиземноморской диеты не всегда получают достаточное количество Омега-3. Жирная кислота содержится в жирной рыбе, льняном, облепиховом и горчичном маслах.

Взрослым ежедневно следует принимать 2 г Омега-3 — и даже больше.
Точная дозировка может быть подобрана после анализа, который называется Омега-3 индекс.

Преимущество Омега-3 в капсулах перед той же красной рыбой заключается в хорошей очистке жирных кислот от вредных примесей, которые мы можем получать вместе с рыбой, пойманной в водоеме.

Ошибка №6. Не различать Омега-3 и Омега-6

Омега-3 и Омега-6 относятся к полезным и важным для организма ненасыщенным жирным кислотам. Однако принимать Омега-6 дополнительно нет необходимости — этот компонент мы в достаточном количестве получаем из пищи из растительных масел, мяса птицы, овсянки и др. Избыток Омега-6 может сыграть на руку воспалительным процессам в организме.

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Ошибка №7. Игнорировать железо (ферритин)

Дефицит железа приводит к анемии, быстрой утомляемости, мышечной слабости, сухости кожи, выпадению волос. Женщины находятся в группе риска по потере железа из-за менструации, не получают нужное количество этого микроэлемента и вегетарианцы.

Ошибка №8. Принимать железо вслепую

В плане усвоения железо — особенно капризный микроэлемент. Принимать его следует особенно осторожно. Дело даже не в том, что препарат в каплях окрашивает зубную эмаль. Избыток железа откладывается во внутренних органах (печень, поджелудочная, щитовидная железа), приводя к серьезным нарушениям: гемохроматозу, циррозу, гепатиту, меланодермии (пыльно-бронзовый цвет кожи).

Железо плохо усваивается с молочными продуктами и кофе.

Напротив, витамин С, В12, фолиевая кислота способствуют благоприятному усвоению железа.

Если железо усваивается плохо, врач назначает специальные комплексы.

Ошибка №9. Спортивные БАДы — доверять и не проверять

Некоторые спортсмены для ускорения роста мышц и «сушки» принимают протеины. Одним из самых популярных сегодня является казеин, который изготавливается из обыкновенного коровьего молока. Протеин казеин — дешевый в производстве, однако подходит он далеко не всем. Чем вреден казеин? Попадая в организм, он превращается в казоморфин, который вызывает привыкание, может провоцировать воспаления слизистой кишечника, аутоиммунные заболевания, отечность и заторможенность.

Протеин казеин не следует принимать тем, у кого есть проблемы с ЖКТ, а также индивидуальная непереносимость лактозы и казеина.

Ошибка №10. Для кожи полезны не только коллаген и гиалуроновая кислота

После 35-40 лет кожа стареет. У многих женщин наблюдается недостаток пептидов коллагена и гиалуроновой кислоты: в этом случае на помощь приходит инъекционная косметология и капсулы — в качестве вспомогательного метода борьбы с признаками возрастных изменений.

Однако для кожи полезны и другие компоненты:

Консультация эндокринолога — вектор вашего внутреннего баланса!

Либеранская Наталья Сергеевна — эндокринолог, врач высшей категории с опытом работы более 10 лет. Наталья Сергеевна принимает пациентов с самыми разными проблемами и вопросами в рамках своей специализации — избыточный вес, сахарный диабет, проблемы с щитовидной железой, повышенная утомляемость и сонливость, беременность, менопауза, нарушение обмена веществ и работы эндокринных желез.

Наталья Сергеевна — автор популярного блога @doctor_liberanskaya, в котором регулярно дает подписчикам советы по поддержанию здоровья и терапии. Все рекомендации основаны на принципах научно-доказательной медицины и собственного профессионального опыта.

С 2017 года доктор Либеранская Наталья Сергеевна принимает пациентов в клинике Пирогова — вы тоже можете пройти консультацию эндокринолога высшей категории.

Пройти обследование быстро, без очередей и в удобное для вас время можно и в нашей клинике. Благодаря новейшему диагностическому оборудованию и команде квалифицированных специалистов лаборатории клиники Пирогова, вы можете быть уверены в объективных и достоверных результатах.

Источник

Для чего пьют аминокислоты спортсмены

Поликлиника №91; Санкт-Петербургская государственная химико-фармацевтическая академия, Санкт-Петербург

ГБОУ ВПО «Санкт-Петербургская химико-фармацевтическая академия» Минздрава России, Санкт-Петербург, 197376

Применение сукцинатов в спорте

Журнал: Вопросы курортологии, физиотерапии и лечебной физической культуры. 2015;92(6): 59-65

Оковитый С. В., Радько С. В. Применение сукцинатов в спорте. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2015;92(6):59-65.
Okovityĭ S V, Rad’ko S V. The application of succine in sports. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury. 2015;92(6):59-65.
https://doi.org/10.17116/kurort2015659-65

Поликлиника №91; Санкт-Петербургская государственная химико-фармацевтическая академия, Санкт-Петербург

для чего пьют аминокислоты спортсмены. Смотреть фото для чего пьют аминокислоты спортсмены. Смотреть картинку для чего пьют аминокислоты спортсмены. Картинка про для чего пьют аминокислоты спортсмены. Фото для чего пьют аминокислоты спортсмены

Важным компонентом снижения физической и умственной работоспособности является развитие в процессе физической нагрузки энергодефицита с последующим формированием неблагоприятных сдвигов в энергетическом обмене. Многообещающим направлением коррекции нарушений умственной и физической работоспособности, возникающих как следствие энергодефицита, является применение фармакологических средств, содержащих интермедиаты цикла трикарбоновых кислот. Одно из наиболее перспективных средств такого типа — янтарная кислота, окисление которой в эндогенных условиях представляет собой физиологический приспособительный механизм, благодаря чему повышается устойчивость организма к недостатку кислорода.

Поликлиника №91; Санкт-Петербургская государственная химико-фармацевтическая академия, Санкт-Петербург

ГБОУ ВПО «Санкт-Петербургская химико-фармацевтическая академия» Минздрава России, Санкт-Петербург, 197376

Среди спортсменов высокой квалификации, занимающихся циклическими видами спорта, нередко встречается синдром эндогенной интоксикации, возникающий как следствие чрезмерных физических нагрузок и сопровождающийся изменением реологических свойств крови, параметров гемостаза, нарушением микроциркуляции, повреждением биологических мембран, снижением функционального состояния жизненно важных органов и систем организма. Формирующийся при нагрузках дефицит субстратов и кислорода приводит к появлению гипоксии с последующим развитием ишемии, что ограничивает энергопродукцию в системе митохондриального окислительного фосфорилирования. Разрушение белков вследствие развивающейся ишемии сопровождается высвобождением мочевины, креатинина и аммиака, что обусловливает сдвиг кислотно-основного состояния в сторону ацидоза, который способствует агрегации тромбоцитов, эритроцитов и нарушению трофики тканей [1—3].

Подобное образование и накопление эндогенных токсических веществ создает порочный круг, в котором эндогенные токсины являются следствием нарушения обмена веществ в клетке и в то же время сами оказывают повреждающее действие на клеточные структуры и метаболические процессы. Поступление разных эндогенных токсических продуктов приводит к активации симпатико-адреналовой системы с последующим выбросом глюкокортикоидов, катехоламинов, цитокинов, серотонина, гистамина и других биологически активных веществ. При значительных и продолжительных физических и психоэмоциональных нагрузках нарушение функций органов естественной детоксикации проводит к развитию иммуносупрессивного состояния, сопровождающегося инфекционно-воспалительными, аллергическими, аутоиммунными и другими заболеваниями.

Становится очевидной необходимость разработки диагностических, корригирующих и профилактических мероприятий, препятствующих формированию митохондриальной дисфункции, двигательной гипоксии, эндогенной интоксикации и сохраняющих работоспособность спортсмена на фоне напряженных тренировочных нагрузок, особенно тех, которые направлены на развитие выносливости. В современном спорте высших достижений это можно считать самой важной задачей спортивной медицины и спортивной науки, так как в настоящее время получение высоких спортивных результатов только за счет увеличения объема и интенсивности физических нагрузок практически невозможно [4—6].

Переход от состояния покоя к интенсивной мышечной деятельности и резкое усиление расходования энергии мышечными клетками сопровождается, как известно, гипоксией, возникающей вследствие несоответствия между возможностями энергопродуцирующих систем энергопотребностям клетки, а также несоразмерности потребности кислорода и возможностями его доставки системами кровоснабжения и внешнего дыхания. При этом дыхательная цепь митохондрий не успевает освобождаться от избытка ионов водорода и электронов, что приводит к увеличению восстановленности дыхательных переносчиков и ограничению окисления субстратов.

На основании анализа открытой системы регуляции кислотно-основного состояния крови и ее связи с системой генерации кислотных эквивалентов в мышцах при интенсивных физических нагрузках была выдвинута гипотеза, что в организме человека имеется резерв неиспользуемой активности митохондриального энергообеспечения, и проблема повышения физической работоспособности при развитии метаболического ацидоза может решаться путем поддержания энергии митохондрий за счет обеспечения субстратом, способным окисляться и обеспечивать аэробный ресинтез аденозинтрифосфата (АТФ) в условиях рабочей гипоксии [7].

Одним из путей покрытия энергодефицита в мышечной ткани в условиях недостатка кислорода является восстановительный синтез янтарной кислоты (ЯК), сопровождающийся образованием АТФ. Полное окисление одной молекулы ЯК в реакциях окислительного фосфорилирования может давать 5 молекул АТФ. Таким образом, энергетическая ценность сукцината более чем в 2 раза превышает энергию, получаемую путем анаэробного гликолиза. И хотя это значительно меньше, чем энергия, получаемая в полном цикле аэробного метаболизма глюкозы, данная способность представляется достаточно важной в условиях сохраняющейся, частично купированной гипоксии или в раннем постгипоксическом периоде [8].

Янтарная (сукциновая) кислота относится к группе двухосновных предельных кислот. Ее концентрация в тканях составляет 500—800 мкмоль/л, в плазме крови в физиологических условиях — 2—20 мкмоль/л [9, 10]. ЯК является субстратом цикла трикарбоновых кислот (ЦТК), участвующим в клеточном дыхании и образовании АТФ. Также она представляет собой один из компонентов антиоксидантной системы, обладает противовоспалительным действием, принимает участие в детоксикации ксенобиотиков и имеет нейротропную активность [11].

ЯК и ее соли (сукцинаты) находят широкое применение в медицине как в виде монотерапии, так и в составе комбинированных препаратов [12]. При приеме внутрь ЯК поступает из желудочно-кишечного тракта в кровь и ткани, где быстро включается в энергетический обмен организма. Имеются данные о том, что она снижает содержание уровня лактата в организме и способствует его более быстрому выведению, что увеличивает работоспособность спортсменов и ускоряет восстановление мышц после физических нагрузок [13]. ЯК — малотоксичное соединение, которое не оказывает мутагенного и тератогенного действия [14, 15].

Помимо своего антигипоксического действия через субстратный механизм, ЯК работает и через активацию специфических рецепторов (SUCNR1). Модуляция активности SUCNR1-рецепторов через изменение концентрации сукцината является одним из способов контроля секреции метаболических гормонов или регуляции метаболической активности определенных клеток [16, 17]. То есть, по сути, действие сукцината можно назвать гормоноподобным (в дополнение к своим функциям энергодающего субстрата) [18, 19].

Влияние на систему крови

Метаболическая активность эритроцитов обеспечивается за счет обмена с внешней средой через плазматическую мембрану. Во время окислительного стресса, который возникает при интенсивных физических нагрузках, в мембранах эритроцитов наблюдается конформация белкового-липидного бислоя с его уплотнением, что приводит к снижению трансмембранной функции и формированию так называемой «жесткости» мембраны [20—22]. Одновременно происходит изменение формы и размера эритроцитов, что связано с накоплением в мембране токсических продуктов обмена [23, 24]. Кроме того, следует учитывать, что зрелые эритроциты не способны синтезировать белок. Они теряют митохондрии, вследствие чего не могут метаболизировать пируват в цикле лимонной кислоты [25].

Изменение реологического состояния крови, ухудшение микроциркуляции и замедление тканевого кровотока приводит к снижению оксигенации мышц и функциональных резервов спортсменов [26].

В экспериментах на животных было установлено, что использование ЯК оказывает стимулирующее влияние на гемопоэз — через 20—30 сут после начала применения препарата количество эритроцитов и гемоглобина возрастало соответственно на 3,96 и 15,8%. Численность лейкоцитов увеличивалась на 6,6% [27]. Этот эффект опосредуется через SUCNR1-рецепторы, которые экспрессируются в гемопоэтических клетках-предшественниках и нескольких типах клеток крови и иммунных клетках. В гемопоэтических клетках-предшественниках активированные введением сукцината SUCNR1-рецепторы индуцируют пролиферацию и предотвращают апоптоз клеток, что приводит к повышению уровня гемоглобина, тромбоцитов и нейтрофилов [28].

Применение ЯК у спортсменов способствует положительным изменениям как клеточного состава крови, так и эритроцитарных индексов. Происходит достоверное повышение количества эритроцитов, которое свидетельствует об ускорении процессов эритропоэза во время физических нагрузок. Эти изменения являются особенно важными для процессов микроциркуляции и обеспечения кислородом работающих мышц [29].

Антигипоксические эффекты

Антигипоксическая активность ЯК давно и хорошо изучена. Однако антигипоксический эффект сукцината может быть связан не только с активацией суцинатдегидрогеназного окисления, но и с восстановлением активности ключевого фермента окислительно-восстановительной цепи митохондрий — цитохромоксидазы [30]. Интересной в терапевтическом плане представляется потенциальная буферная активность натриевых солей Я.К. Именно способность сукцината к внутриклеточному окислению с заменой одной молекулы водорода на натрий с образованием бикарбоната может быть уникальной с точки зрения возможностей купирования внутриклеточного метаболического ацидоза — одного из серьезнейших последствий перенесенной гипоксии практически любой этиологии [31—34].

Большой интерес представляет потенцирующая активность ЯК, добавляемой к различным традиционно применяемым препаратам для увеличения их антигипоксического действия. Так, при исследовании совместного воздействия ЯК и цитохрома С на явления энергодефицита в клетках при недостаточности снабжения кислородом у животных, получавших комбинацию, выявили повышение содержания гликогена и АТФ на 25%, отсутствие изменений активности глюкозо-6-фосфатдегидрогеназы (Г6ФДГ) и лактатдегидрогеназы (ЛДГ), снижение уровня лактата на 17,7% по сравнению с контролем. У группы, не получавшей препарат, было отмечено повышение активности Г6ФДГ и ЛДГ на 146 и 113% соответственно, лактата — на 216% относительно контроля, в то время как содержание АТФ снизилось на 16,8% [35].

Исследование оценки эффективности фенотропила сукцината в условиях информационно-физического стресса (чередование двух видов нагрузок: физической — плавание с грузом 10% от массы тела, время «до предела» и информационной —формирование пищедобывательного поведения в многоальтернативном лабиринте) продемонстрировало способность препарата устранять стрессорные нарушения, что может быть критически важным в некоторых видах спорта, например в биатлоне [36].

Влияние на процессы восстановления

Возникающий во время работы избыток ЯК может играть важную роль в обеспечении процессов восстановления после окончания физической нагрузки. Расход накопившейся ЯК наиболее интенсивен в течение первого получаса отдыха, когда усиливается синтез креатинфосфата и выведение молочной кислоты. Возрастание концентрации ЯК отмечается через 1 час после завершения нагрузки, одновременно с суперкомпенсацией содержания креатинфосфата и гликогена [37].

В исследованиях, проведенных с участием гандболистов высокой квалификации в период учебно-тренировочного сбора, выявили положительные эффекты оксиметилэтилпиридина сукцината на процессы восстановления. Кроме того, наблюдали сохранение функциональной подготовленности у спортсменов старшей возрастной группы вместе с улучшением спортивных результатов в ходе теста субмаксимальной зоны мощности [38].

Интересные факты получили при применении одного из производных ЯК — сукцината аммония, стимулирующего образование глутамата, который в процессе декарбоксилируется до гамма-аминомасляной кислоты и затем переаминируется в гамма-оксибутират. Было установлено, что поступление в организм сукцината аммония может оказывать двоякий эффект. В большинстве случаев (около 70%) он действует активирующе, т. е. способствует бодрости и работоспособности. Но приблизительно 30% пациентов воспринимают сукцинат аммония в качестве успокаивающего средства, которое снимает стрессовое напряжение, иногда вплоть до легкой заторможенности и даже засыпания. В результате проведенных клинических испытаний установили, что прием сукцината аммония содействует ликвидации избыточной тревожности, успокаивает и поднимает активность [39]. Ранее анксиолитический эффект ЯК был продемонстрирован в опытах на животных [40].

Независимо от того, каким был первоначальный эффект сукцината аммония, он в обеих ситуациях вызывает ускорение восстановления после интенсивной нагрузки. При этом принятый внутрь препарат полностью подвергается окислительным превращениям до углекислого газа в 6—8 раз быстрее, чем глюкоза [41]. Начиная с дозы 50 мг/кг, он оказывает дозозависимое противосудорожное действие [42].

Определение скорости протекания нервных процессов в высших отделах центральной нервной системы (ЦНС) у спортсменов, применявших сукцинат натрия, показало улучшение лабильности и функциональной подвижность нервных процессов, согласованности сенсорных и моторных отделов ЦНС, работы сенсорных единиц и регуляции их активности со стороны нервной системы [43].

Адаптогенное действие

ЯК и ее производные являются естественными метаболитами организма, стимулирующими обмен веществ, что объясняется ее модифицирующим воздействием на клеточное дыхание, транспорт микроэлементов, продукцию белков. В результате таких модификаций оптимизируются параметры работы тканей и, по сути, проявляется адаптогенное действие ЯК и сукцинатов — увеличивается сопротивляемость организма неблагоприятным факторам внешней среды.

Серия экспериментов, где искусственным путем вызывали изменения, связанные с уменьшение числа митохондрий, снижением концентрации комплексов дыхательной цепи и энергетических субстратов, показала, что избыточное содержание сукцината оказывает стимулирующее действие на интенсивность клеточного дыхания [44].

В ряде исследований выявили адаптогенные и стресспротективные свойства (2-диметиламино)этилового эфира Я.К. Так, при помещении животных на 6 ч в холодовую камеру (–15/–17 °С), применение сукцинатсодержащего препарата увеличивало их выживаемость. На модели двигательного стресса с использованием методики лишения экспериментальных животных сна, пищи и воды в медленно вращающемся барабане препарат показал выраженное защитное действие в отношении как показателей функциональной активности ЦНС, так и развития целого ряда патофизиологических проявлений стресс-синдрома [45].

Адаптогенное действие малата моно (2-диметиламино) этилового эфира ЯК также было подтверждено на крысах на модели экстремальной ситуации, связанной со статическим мышечным напряжением, и в плавательном тесте [46].

В исследованиях, изучавших влияние на спортсменов комбинированного препарата Цитофлавин (ЯК, 1000 мг + никотинамид, 100 мг + рибофлавина мононуклеотид, 20 мг + инозин, 200 мг) отмечали достоверный рост адаптации к физической нагрузке, тренированности организма и его энергетического обеспечения. Также наблюдали улучшение психоэмоционального состояния спортсменов и интегрального показателя «спортивной формы» [47]. Основное антигипоксическое действие ЯК в Цитофлавине дополняется рибофлавином, который за счет своих коферментных свойств увеличивает активность сукцинатдегидрогеназы и обладает непрямым антиоксидантным действием (за счет восстановления окисленного глутатиона). Предполагается, что входящий в состав препарата никотинамид активирует никотинамидадениндинуклеотид (НАД)-зависимые ферментные системы, однако этот эффект менее выражен, чем у НАД. За счет инозина достигается увеличение содержания общего пула пуриновых нуклеотидов, необходимых не только для ресинтеза макроэргов (АТФ и гуанозинтрифосфат — ГТФ), но и вторичных мессенджеров (циклический аденозинмонофосфат — цАМФ и гунозинмонофосфат — цГМФ), а также нуклеиновых кислот. Определенную роль может играть способность инозина в некоторой степени подавлять активность ксантиноксидазы, уменьшая тем самым продукцию высокоактивных форм и соединений кислорода [48].

Это позволяет сделать вывод, что применение сукцинатсодержащих препаратов способствует сохранению оптимального уровня функционирования организма путем увеличения компенсаторных возможностей организма и повышения адаптационных способностей в условиях стресса.

Антиоксидантное действие

Постоянство обмена субстратов между цитозолем и митохондриальным матриксом необходимо для осуществления корректного метаболизма митохондрий. Транспорт водорастворимых метаболитов осуществляется через потенциалзависимые анионные каналы. Повышение внутриклеточной концентрации сукцината создает условия, напоминающие физиологический процесс анаплероза, и, следовательно, сопровождается открытием потенциалзависимых анионных каналов и восстановлением (или интенсификацией) метаболических процессов, что позволяет отнести ЯК к антиоксидантам направленного митохондриального действия [49, 50].

Действие ЯК на клетку как антиоксиданта заключается в снижении интенсивности протекания перекисного окисления липидов, повышении содержания восстановленного глутатиона, восстановлении тиолдисульфидного статуса клетки, увеличении активности антиоксидантных ферментов (каталазы, глутатионпероксидазы) [51].

Активное окисление ЯК способно поддерживать высокую степень восстановленности коэнзима Q10, предупреждая накопление его семихинонной (полувосстановленной) формы, которая является генератором супероксид-аниона [52, 53]. По антиоксидантной активности сукцинат сопоставим с синтетическим антиоксидантом ионолом. В одном из исследований был проведен скрининг собственной восстановительной силы сукцината и ряда его солей (по способности переводить Fe 3+ в Fe 2+ ), которая отражает возможность веществ отдавать электроны, проявляя антиоксидантные свойства. Анализ антирадикальной активности показал, что ЯК независимо от концентрации проявляет низкую антирадикальную активность. В 2—3 раза большую активность проявляют соли ЯК, особенно активна калиевая соль в концентрации 0,001% [54].

Воздействуя на эндогенный рецептор SUCNR1, сукцинат оказывает активирующее влияние на лимфопоэз, увеличивает фагоцитарную, бактерицидную и лизоцимную активность сыворотки крови, что приводит к повышению сопротивляемости неблагоприятным воздействиям, в том числе и к возбудителям инфекционных заболеваний. Это чрезвычайно важно для спортсменов в циклических видах спорта с преодолением больших дистанций (бег, плавание, велоспорт, гребля, лыжных спорт), так как в результате длительного ацидоза в крови снижаются иммуноглобулины, что приводит к значимому понижению иммунитета. Исследование, проведенное на животных показало, что ЯК — перспективный геропротектор класса антиоксидантов, так как увеличивает максимальную продолжительность жизни и значительно снижает риск развития спонтанных опухолей [55].

В экспериментах на крысах, которым вводили бактериальный липополисахарид, моделируя экспериментальную эндотоксемию, было продемонстрировано, что диметиловый эфир ЯК является мощным стимулятором глюконеогенеза в гепатоцитах, предотвращающим гликогенолиз, который, возможно, защищает клетки печени от метаболических последствий эндотоксемии [56].

Протективное действие на сердечно-сосудистую систему

В исследованиях, проведенных с участием детей 12—18 лет, описан кардиопротекторный эффект этилметилгидроксипиридина сукцината. Поскольку наиболее выраженные и потенциально опасные изменения у спортсменов формируются именно со стороны сердечно-сосудистой системы, этот эффект представляет собой особый интерес. Препарат не только предотвращал развитие неблагоприятных изменений в миокарде, но и позволял корригировать уже имеющиеся клинически манифестные стресс-индуцированные и гипоксически-ишемические повреждения. Это позволило предположить, что использование этилметилгидроксипиридина сукцината будет особенно перспективно у молодых практически здоровых спортсменов для профилактики стресс-индуцированного оксидативного повреждения мышц и сердечно-сосудистой системы, а также для ускорения восстановления организма после интенсивных нагрузок [57].

Заключение

ЯК, представляющая собой универсальный внутриклеточный метаболит, принимает активное участие в обменных реакциях организма, что позволяет широко применять ее для регуляции физиологического состояния спортсменов. Путем улучшения реологических свойств крови, увеличения содержания эритроцитов, ЯК стимулирует процесс поступления кислорода в клетки и кровоснабжения тканей в целом. За счет своих актопротекторных и адаптогенных свойств она облегчает стресс, восстанавливает энергообмен, нормализует процесс образования новых клеток, обладает общеукрепляющими и восстанавливающими свойствами. ЯК может быть использована для профилактики синдрома эндогенной интоксикации, состояния пониженной иммунологической реактивности и формирования статуса повышенной резистентности организма к различным неблагоприятным факторам. Поэтому Я.К. можно рассматривать как перспективный препарат в спортивной практике.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

АминокислотаВ граммахВ животных продуктахВ растительных продуктах
Триптофан1130 г сыра2 кг моркови, 500 г фасоли
Лейцин5250 г говядины1,2 кг гречки, 400 г гороха
Изолейцин3,5120 г курицы1,4 кг ржаного хлеба, 450 г гороха
Валин3,5300 г говядины800 г макаронных изделий, 400 г гороха
Треонин2,5350 трески3 кг картофеля, 400 г фасоли
Лизин4200 г говядины1,5 кг овсяной крупы, 400 гороха
Метионин3300 г курицы1,3 кг риса, 1,8 кг гороха
Фенилаланин3300 г курицы1 кг перловой крупы, 400 г гороха
Аргинин4250 г курицы600 г риса, 250 г гороха