для чего строится доверительный интервал

Доверительные интервалы

Общий обзор

Взяв выборку из популяции, мы получим точечную оценку интересующего нас параметра и вычислим стандартную ошибку для того, чтобы указать точность оценки.

Однако, для большинства случаев стандартная ошибка как такова не приемлема. Гораздо полезнее объединить эту меру точности с интервальной оценкой для параметра популяции.

Это можно сделать, используя знания о теоретическом распределении вероятности выборочной статистики (параметра) для того, чтобы вычислить доверительный интервал (CI – Confidence Interval, ДИ – Доверительный интервал) для параметра.

Вообще, доверительный интервал расширяет оценки в обе стороны некоторой величиной, кратной стандартной ошибке (данного параметра); два значения (доверительные границы), определяющие интервал, обычно отделяют запятой и заключают в скобки.

Доверительный интервал для среднего

Использование нормального распределения

Выборочное среднее для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервалимеет нормальное распределение, если объем выборки большой, поэтому можно применить знания о нормальном распределении при рассмотрении выборочного среднего.

В частности, 95% распределения выборочных средних находится в пределах 1,96 стандартных отклонений (SD) среднего популяции.

Когда у нас есть только одна выборка, мы называем это стандартной ошибкой среднего (SEM) и вычисляем 95% доверительного интервала для среднего следующим образом:

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Если повторить этот эксперимент несколько раз, то интервал будет содержать истинное среднее популяции в 95% случаев.

Обычно это доверительный интервал как, например, интервал значений, в пределах которого с доверительной вероятностью 95% находится истинное среднее популяции (генеральное среднее).

Хотя это не вполне строго (среднее в популяции есть фиксированное значение и поэтому не может иметь вероятность, отнесённую к нему) таким образом интерпретировать доверительный интервал, но концептуально это удобнее для понимания.

Использование t-распределения

Можно использовать нормальное распределение, если знать значение дисперсии в популяции. Кроме того, когда объем выборки небольшой, выборочное среднее отвечает нормальному распределению, если данные, лежащие в основе популяции, распределены нормально.

Если данные, лежащие в основе популяции, распределены ненормально и/или неизвестна генеральная дисперсия (дисперсия в популяции), выборочное среднее подчиняется t-распределению Стьюдента.

Вычисляем 95% доверительный интервал для генерального среднего в популяции следующим образом:

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

где для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал— процентная точка (процентиль) t-распределения Стьюдента с (n-1) степенями свободы, которая даёт двухстороннюю вероятность 0,05.

Вообще, она обеспечивает более широкий интервал, чем при использовании нормального распределения, поскольку учитывает дополнительную неопределенность, которую вводят, оценивая стандартное отклонение популяции и/или из-за небольшого объёма выборки.

Когда объём выборки большой (порядка 100 и более), разница между двумя распределениями (t-Стьюдента и нормальным) незначительна. Тем не менее всегда используют t-распределение при вычислении доверительных интервалов, даже если объем выборки большой.

Обычно указывают 95% ДИ. Можно вычислить другие доверительные интервалы, например 99% ДИ для среднего.

Вместо произведения стандартной ошибки и табличного значения t-распределения, которое соответствует двусторонней вероятности 0,05, умножают её (стандартную ошибку) на значение, которое соответствует двусторонней вероятности 0,01. Это более широкий доверительный интервал, чем в случае 95%, поскольку он отражает увеличенное доверие к тому, что интервал действительно включает среднее популяции.

Доверительный интервал для пропорции

Выборочное распределение пропорций имеет биномиальное распределение. Однако если объём выборки n разумно большой, тогда выборочное распределение пропорции приблизительно нормально со средним для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал.

Оцениваем для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервалвыборочным отношением p=r/n (где r– количество индивидуумов в выборке с интересующими нас характерными особенностями), и стандартная ошибка оценивается:

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

95% доверительный интервал для пропорции оценивается:

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Если объём выборки небольшой (обычно когда np или n(1-p) меньше 5), тогда необходимо использовать биномиальное распределение для того, чтобы вычислить точные доверительные интервалы.

Заметьте, что если p выражается в процентах, то (1-p) заменяют на (100-p).

Интерпретация доверительных интервалов

При интерпретации доверительного интервала нас интересуют следующие вопросы:

Насколько широк доверительный интервал?

Широкий доверительный интервал указывает на то, что оценка неточна; узкий указывает на точную оценку.

Ширина доверительного интервала зависит от размера стандартной ошибки, которая, в свою очередь, зависит от объёма выборки и при рассмотрении числовой переменной от изменчивости данных дают более широкие доверительные интервалы, чем исследования многочисленного набора данных немногих переменных.

Включает ли ДИ какие-либо значения, представляющие особенный интерес?

Можно проверить, ложится ли вероятное значение для параметра популяции в пределы доверительного интервала. Если да, то результаты согласуются с этим вероятным значением. Если нет, тогда маловероятно (для 95% доверительного интервала шанс почти 5%), что параметр имеет это значение.

Источник

Доверительный интервал за 15 минут

Добрый день, уважаемые читатели!

Меня зовут Кирилл Мильчаков. Сегодня мы продолжаем наш разговор о биостатистике. Тема сегодняшней нашей беседы будет «Доверительный интервал». Что такое доверительный интервал? Вы наверняка встречались с ним в научной литературе. Доверительный интервал 95 %, либо сочетание символов ДИ и CI (confidence interval) 95 %. Что же означают эти 95 %? Какие он еще может принимать значения? И как его рассчитывать самостоятельно? Об этом обо всем сегодня мы и поговорим в этой статье.

Видео-версия статьи о доверительном интервале

Генеральная совокупность и выборочная совокупность

Прежде чем углубляться в тайны доверительного интервала, хотел бы вспомнить с вами 2 основных понятия статистической совокупности, с которыми чаще всего работают – это генеральная совокупность или выборочная совокупность или выборка.

Генеральная совокупность – это тот массив данных, о которых вы хотите сделать выводы.

Выборка является частью генеральной совокупности, которая участвует непосредственно в вашем эксперименте. Есть такое понятие как репрезентативность, сегодня мы не будем его касаться, главное запомнить, что выборка должна быть репрезентативной.

Если привести небольшой пример относительно генеральной совокупности и выборки, то можно вспомнить о простом случае из вашей жизни. Когда вы хотите узнать, достаточно ли посолен суп, вы берете ложку супа и пробуете его. Вам необязательно есть весь суп, чтобы понять, насколько он посолен. Ложка в данном случае является выборкой, по которой вы делаете вывод обо всей кастрюле супа. В данном случае кастрюля супа является генеральной совокупностью, а ложка супа является выборкой.

Итак, мы вспомнили с вами о 2 ключевых статистических совокупностях – о генеральной совокупности и выборочной совокупности. Теперь нужно вспомнить, что типы исследования, которые проводятся над генеральной совокупностью и выборочной совокупностью, называют по-разному. Над генеральной совокупностью проводятся так называемые сплошные исследования, над выборочной совокупностью – выборочные.

Теперь вспомним небольшие отличия между параметрами этих 2 совокупностей. Сегодня для того, чтобы понять, что такое доверительный интервал, нам понадобятся следующие вещи: во-первых, отличие средней арифметической в генеральной совокупности и в выборочной совокупности. В генеральной совокупности она имеет значок µ (мю), в выборочной – это x̅ (х с чертой) — это средние арифметические по каждому виду совокупности.
для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Далее нужно знать, что стандартное отклонение имеет значок выборочной – либо S, либо SD (standard deviation), а в случае генеральной совокупности оно носит название среднеквадратичного отклонения и обозначается буквой σ (сигма).

Приведем пример расчета доврительного интервала

Представьте чисто гипотетическую ситуацию, когда перед нами стоит задача исследований среднего роста марсианина. Для того, чтобы его узнать, было отправлено 3 экспедиции. Первой из них повезло больше всего: они смогли поймать каждого из 200 марсианин и померить его рост.

Как мы помним, по закону нормального распределения по оси Х находится величина изучаемого признака, либо варианта (в данном случае это рост в сантиметрах), а по оси Y – частота встречаемости какого-то признака (мы его обозначаем буквой П.

Итак, оказалось, что у всех 200 марсиан средний рост составил 40 сантиметров. Таким образом, первая экспедиция смогла провести так называемое сплошное исследование, так как поработала со всеми единицами наблюдения генеральной совокупности. Поэтому мы имеем право назвать этот параметр µ.

Однако, второй и третьей экспедиции повезло гораздо меньше. Они попали в самые плохо населенные участки Марса и смогли отобрать только 10 марсиан. В данном случае оказалось, что средний рост по их выборке составил всего 38 сантиметров в первом случае и 41 сантиметр во втором случае.

Что же делать? Да, у нас есть данные из самого полного исследования, которое относится к первой экспедиции. Но представьте, что ни одна бы из них не смогла бы поработать со всей совокупностью полностью, и у нас были бы данные только от второй и третьей экспедиции. Что же в этой ситуации делать? Видно, что никто 40 сантиметров в действительности не достиг: во второй экспедиции Б она равна 38 сантиметрам, а в экспедиции В – 41 сантиметр. То есть в реальности никто не достиг 40 сантиметров. Что же делать в данном случае?

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

И вот здесь на помощь к нам приходит доверительный интервал, точнее оценка параметра. Доверительный интервал является вторым этапом оценки параметра. Прежде чем строить доверительный интервал, нам нужно понять, насколько в принципе этот параметр наша средняя (x̅б, x̅в) может отличаться, ошибаться от реального параметра в генеральной совокупности. Насколько?

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Итак, предположим, мы нашли нашу ошибку репрезентативности mr. В данном случае она составила 2,7 сантиметра. Но что же это нам дает? А дает нам это уже достаточно много. Теперь мы, зная, насколько в принципе наша выборка может ошибаться относительно генеральной совокупности, можем составить определенное предположение о том, где же находится реальный параметр – реальные 40 сантиметров генеральной совокупности на основании данных лишь нашей выборки.

Для того, чтобы не залезать в критерий Стьюдента сегодня, я скажу лишь, что:

для доверительного интервала 95 % используется t=2,

для доверительного интервала 99 % используется t=3

и для доверительного интервала 68 % используется t=1.

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Итак, после того, как мы нашли нашу предельную ошибку, мы можем построить доверительный интервал. Но для этого нам нужно самим задать тот доверительный интервал, который для нас подходит больше всего. Чаще всего в медицине используется вероятность ошибки 5 %, то есть доверительный интервал 95 % или вероятность ошибки 5 % (р=0,05, р=5 %).

Что же значат эти 95 %? А значат они следующее, что с 95%-ной вероятностью в нашем интервале лежит реальное значение, и лишь в 5 % случаев мы ошибаемся. То есть в нашем конкретном случае наша ошибка репрезентативности составила 2,7 сантиметра. Предельная ошибка отсюда будет равна чему? Именно 5,4 сантиметра, то есть доверительный интервал, так как здесь и плюс, и минус, то есть нам нужно ошибку умножить на 2, составил 10,8 сантиметров. А именно наши 38 см±5,4 см. Ширина всего доверительного интервала составляет 10,8 см. Напомню, что он складывается из положительной и отрицательной предельных ошибок вокруг нашей выборочной средней.

Итак, говоря о доверительном интервале, нужно сделать ряд важных выводов.

Если это видео оказалось Вам полезным, оно хотя бы немного раскрыло тайны доверительного интервала, ставьте лайки, подписывайтесь на наши рассылки и в комментариях пишите, какие темы по биостатистике вам бы были интересны для следующих выпусков. На этом я с вами прощаюсь. Меня зовут Кирилл. Пока!

Источник

Доверительные интервалы

Определение

Доверительные интервалы (англ. Confidence Intervals) одним из типов интервальных оценок используемых в статистике, которые рассчитываются для заданного уровня значимости. Они позволяют сделать утверждение, что истинное значение неизвестного статистического параметра генеральной совокупности находится в полученном диапазоне значений с вероятностью, которая задана выбранным уровнем статистической значимости.

Нормальное распределение

Когда известна вариация (σ 2 ) генеральной совокупности данных, для расчета доверительных пределов (граничных точек доверительного интервала) может быть использована z-оценка. По сравнению с применением t-распределения, использование z-оценки позволит построить не только более узкий доверительный интервал, но и получить более надежные оценки математического ожидания и среднеквадратического (стандартного) отклонения (σ), поскольку Z-оценка основывается на нормальном распределении.

Формула

Для определения граничных точек доверительного интервала, при условии что известно среднеквадратическое отклонение генеральной совокупности данных, используется следующая формула

где X – математическое ожидание выборки, α – уровень статистической значимости, Zα/2 – Z-оценка для уровня статистической значимости α/2, σ – среднеквадратическое отклонение генеральной совокупности, n – количество наблюдений в выборке. При этом, σ/√ n является стандартной ошибкой.

Таким образом, доверительный интервал для уровня статистической значимости α можно записать в виде

Пример

Предположим, что размер выборки насчитывает 25 наблюдений, математическое ожидание выборки равняется 15, а среднеквадратическое отклонение генеральной совокупности составляет 8. Для уровня значимости α=5% Z-оценка равна Zα/2=1,96. В этом случае нижняя и верхняя граница доверительного интервала составят

А сам доверительный интервал может быть записан в виде

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности попадет в диапазон от 11,864 до 18,136.

Методы сужения доверительного интервала

Допустим, что диапазон [11,864; 18,136] является слишком широким для целей нашего исследования. Уменьшить диапазон доверительного интервала можно двумя способами.

Снизив уровень статистической значимости до α=10%, мы получим Z-оценку равную Zα/2=1,64. В этом случае нижняя и верхняя граница интервала составят

А сам доверительный интервал может быть записан в виде

В этом случае, мы можем сделать предположение, что с вероятностью 90% математическое ожидание генеральной совокупности попадет в диапазон [12,376; 17,624].

Если мы хотим не снижать уровень статистической значимости α, то единственной альтернативой остается увеличение объема выборки. Увеличив ее до 144 наблюдений, получим следующие значения доверительных пределов

Сам доверительный интервал станет иметь следующий вид

Таким образом, сужение доверительного интервала без снижения уровня статистической значимости возможно только лишь за счет увеличения объема выборки. Если увеличение объема выборки не представляется возможным, то сужение доверительного интервала может достигаться исключительно за счет снижения уровня статистической значимости.

Построение доверительного интервала при распределении отличном от нормального

В случае если среднеквадратичное отклонение генеральной совокупности не известно или распределение отлично от нормального, для построения доверительного интервала используется t-распределение. Это методика является более консервативной, что выражается в более широких доверительных интервалах, по сравнению с методикой, базирующейся на Z-оценке.

Формула

Для расчета нижнего и верхнего предела доверительного интервала на основании t-распределения применяются следующие формулы

где X – математическое ожидание выборки, α – уровень статистической значимости, tα – t-критерий Стьюдента для уровня статистической значимости α и количества степеней свободы (n-1), σ – среднеквадратическое отклонение выборки, n – количество наблюдений в выборке.

Сам доверительный интервал может быть записан в следующем виде

Распределение Стьюдента или t-распределение зависит только от одного параметра – количества степеней свободы, которое равно количеству индивидуальных значений признака (количество наблюдений в выборке). Значение t-критерия Стьюдента для заданного количества степеней свободы (n) и уровня статистической значимости α можно узнать из справочных таблиц.

Пример

Предположим, что размер выборки составляет 25 индивидуальных значений, математическое ожидание выборки равно 50, а среднеквадратическое отклонение выборки равно 28. Необходимо построить доверительный интервал для уровня статистической значимости α=5%.

В нашем случае количество степеней свободы равно 24 (25-1), следовательно соответствующее табличное значение t-критерия Стьюдента для уровня статистической значимости α=5% составляет 2,064. Следовательно, нижняя и верхняя граница доверительного интервала составят

А сам интервал может быть записан в виде

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [38,442; 61,558].

Использование t-распределения позволяет сузить доверительный интервал либо за счет снижения статистической значимости, либо за счет увеличения размера выборки.

Снизив статистическую значимость с 95% до 90% в условиях нашего примера мы получим соответствующее табличное значение t-критерия Стьюдента 1,711.

В этом случае мы можем утверждать, что с вероятностью 90% математическое ожидание генеральной совокупности окажется в диапазоне [40,418; 59,582].

Если мы не хотим снижать статистическую значимость, то единственной альтернативой будет увеличение объема выборки. Допустим, что он составляет 64 индивидуальных наблюдения, а не 25 как в первоначальном условии примера. Табличное значение t-критерия Стьюдента для 63 степеней свободы (64-1) и уровня статистической значимости α=5% составляет 1,998.

Это дает нам возможность утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [43,007; 56,993].

Выборки большого объема

К выборкам большого объема относятся выборки из генеральной совокупности данных, количество индивидуальных наблюдений в которых превышает 100. Статистические исследования показали, что выборки большего объема имеют тенденцию быть нормально распределенными, даже если распределение генеральной совокупности отличается от нормального. Кроме того, для таких выборок применение z-оценки и t-распределения дают примерно одинаковые результаты при построении доверительных интервалов. Таким образом, для выборок большого объема допускается применение z-оценки для нормального распределения вместо t-распределения.

Подведем итоги

В таблице собраны рекомендации по выбору методики построения доверительных интервалов для различных ситуаций.

Источник

Доверительный интервал

Опубликовано 15.06.2021 · Обновлено 16.06.2021

Что такое Доверительный интервал?

Ключевые моменты

Понимание доверительного интервала

Статистики используют доверительные интервалы для измерения неопределенности переменной выборки. Например, исследователь случайным образом выбирает разные образцы из одной и той же совокупности и вычисляет доверительный интервал для каждой выборки, чтобы увидеть, как она может представлять истинное значение переменной совокупности. Все полученные наборы данных разные; некоторые интервалы включают параметр истинной популяции, а другие нет.

Краткая справка

Доверительный интервал и доверительный уровень взаимосвязаны, но не одно и то же.

Расчет доверительного интервала

Предположим, группа исследователей изучает рост баскетболистов средней школы. Исследователи выбирают случайную выборку из населения и устанавливают средний рост в 74 дюйма.

Среднее значение в 74 дюйма – это точечная оценка среднего значения для населения. Точечная оценка сама по себе имеет ограниченную полезность, потому что она не выявляет неопределенности, связанной с оценкой; у вас нет четкого представления о том, насколько далеко это среднее значение выборки в 74 дюйма может быть от среднего значения генеральной совокупности. Чего не хватает, так это степени неопределенности в этом единственном образце.

Доверительные интервалы предоставляют больше информации, чем точечные оценки. Установив 95% доверительный интервал с использованием среднего и стандартного отклонения по выборке и предположив нормальное распределение, представленное колоколообразной кривой, исследователи пришли к верхней и нижней границе, которая содержит истинное среднее значение в 95% случаев.

Предположим, что интервал составляет от 72 до 76 дюймов. Если исследователи возьмут 100 случайных выборок из популяции баскетболистов средней школы в целом, среднее значение должно быть от 72 до 76 дюймов в 95 из этих выборок.

Примеры доверительного интервала

Если исследователи хотят еще большей уверенности, они могут расширить интервал до 99% уверенности. Это неизменно приводит к более широкому диапазону, поскольку освобождает место для большего числа выборочных средних. Если они установят 99% доверительный интервал как от 70 до 78 дюймов, они могут ожидать, что 99 из 100 оцененных образцов будут содержать среднее значение между этими числами.

С другой стороны, уровень достоверности 90% означает, что мы ожидаем, что 90% интервальных оценок будут включать параметр генеральной совокупности и т. Д.

Особые соображения

Самое большое заблуждение относительно доверительных интервалов заключается в том, что они представляют собой процент данных из данной выборки, который попадает между верхней и нижней границами.

Источник

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Общая схема построения

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

По сути, метод основан на модели классической математической статистики, подразумевающей бесконечно возможные выборки в генеральной совокупности. Пусть имеется главная выборка эпсилон с функцией распределения известной до некого параметра тау (Fe (x, τ)). Из этой генеральной совокупности получена выборка объёмом эн, включающая диапазон от x1 до xn. Этот параметр можно считать одномерным и принадлежащим диапазону от τ до R. Математически такое положение описывают как τ є T c R.

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Таким образом, определить доверительную вероятность попадания тэта в интервал от S- до S+ можно от значения обратной функции в точках, равняющихся квантили статистики игрек порядка j/2 и 1 — j/2. При этом когда рассматриваемая функция монотонно убывает, знаки в неравенстве меняются на противоположные.

Пользуясь общим подходом расчёта доверительных интервалов, можно посчитать вероятность для нормальной генеральной совокупности, опираясь на ряд утверждений. Пусть известна выборка X|n,| взятая из совокупности E

N (j, ς 2 ), то есть имеющей нормальный закон распределения с математическим ожиданием j и дисперсией сигма в квадрате. Для такого состояния справедливо следующее:

для чего строится доверительный интервал. Смотреть фото для чего строится доверительный интервал. Смотреть картинку для чего строится доверительный интервал. Картинка про для чего строится доверительный интервал. Фото для чего строится доверительный интервал

Точный интервал

Существует ряд правил, позволяющих построить точные интервалы для математического ожидания и дисперсии нормально распределённой случайной величины. Есть два случая — при одном дисперсия может быть известной, а при другом нет. Следует обратить внимание, что точная доверительная вероятность строится с помощью общей схемы. Используют следующие правила для предоставления точных прогнозов:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *