для чего трансформируется электроэнергия

Понятие энергии применяется во всех науках. При этом известно, что обладающие энергией тела могут производить работу. Закон сохранения энергии гласит, что энергия не исчезает и не может быть создана из ничего, а выступает в различных своих формах (например, в форме тепловой, механической, световой, электрической энергии и т. д.).

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Одна форма энергии может переходить в другую, и при этом соблюдаются точные количественные соотношения различных видов энергии. Вообще говоря, переход одной формы энергии в другую никогда не происходит полностью, так как всегда возникают еще и другие (чаще всего нежелательные) виды энергии. Например, в электродвигателе не вся электрическая энергия переходит в механическую, а часть ее переходит в тепловую (нагрев про­водников токами, разогрев в результате действия сил трения).

Факт неполного перехода одного вида энергии в другой характеризует коэффициент полезного действия (КПД). Этот коэффициент определяется как отношение полезной энергии к ее общему количеству или же как отношение полезной мощности к общей.

Электрическая энергия имеет то преимущество, что ее можно сравнительно легко и с малыми потерями передавать на большие расстояния, и, кроме того, она имеет чрезвычайно широкий круг применений. Распределением электрической энергии относительно легко управлять, и в известных количествах ее можно аккумулировать и хранить.

В течение одного рабочего дня человек в среднем затрачивает энергию, равную 1000 кДж, или 0,3 кВт. Человеку нужно приблизительно 8000 кДж в виде пищи и 8000 кДж на отопление жилищ, производственных помещений, на приготовление пищи и т. д. Если добавить к этому энергетические затраты в промышленности и на транспорте, то на одного человека ежедневно приходятся энергетические затраты приблизительно в размере 200 000 ккал, или 60 кВт- ч.

Электрическая и механическая энергия

Электрическая энергия преобразуется в механическую в электродвигателях и в меньшей степени в электромагнитах. В обоих случаях используются эффекты, связанные с электромагнитным полем. Потери энергии, т. е. та часть энергии, которая не переходит в желаемую форму, складываются в основном из энергетических затрат на нагрев током проводников и потерь, связанных с трением.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Электрическая и тепловая энергия

Если по проводнику протекает электрический ток, то электроны при своем движении сталкиваются с атомами материала проводника и побуждают их к более интенсивному тепловому движению. При этом электроны теряют часть своей энергии. Возникшая таким образом тепловая энергия, с одной стороны, приводит, например, к повышению температуры деталей и проводов обмоток в электрических машинах, и с другой — к повышению температуры окружающей среды. Следует различать полезную тепловую энергию и тепловую энергию потерь.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

В электронагревательных приборах (электрокипятильники, утюги, нагревательные печи и т. д.) желательно стремиться к тому, чтобы электрическая энергия как можно полнее перешла в энергию тепловую. Иначе дело обстоит, например, в случае линий электропередачи или же электродвигателей, где возникающая тепловая энергия представляет собой нежелательное побочное явление, ввиду чего часто должны приниматься меры по ее отводу.

Вследствие возникшего повышения температуры тела тепловая энергия передается окружающей среде. Процесс передачи тепловой энергии реализуется в форме теплопроводности, конвекции и теплового излучения. В большинстве случаев весьма затруднительно дать точную количественную оценку общего количества выделяемой тепловой энергии.

Если какое-либо тело нужно разогреть, то значение его конечной температуры должно быть значительно выше требуемой температуры разогрева. Это необходимо для того, чтобы как можно меньше тепловой энергии передавалось окружающей среде.

Если же, напротив, разогрев температуры тела является нежелательным, то значение конечной температуры системы должно быть малым. Для этой цели создаются условия, способствующие отводу от тела тепловой энергии (большая поверхность контакта тела с окружающей средой, принудительная вентиляция).

Возникающая в электрических проводах тепловая энергия ограничивает значение тока, который допустим в этих проводах. Предельная допускаемая температура провода определяется термической стойкостью его изоляции. Для чего чтобы обеспечить передачу некоторой определенной электрической мощности, следует выбирать как можно меньшее значение тока и соответственно большое значение напряжения. При этих условиях снизятся затраты на материал проводов. Таким образом, электрическую энергию при большой мощности экономически целесообразно передавать при высоких напряжениях.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Переход тепловой энергии в электрическую

Тепловая энергия непосредственно превращается в электрическую в так называемых термоэлектрических преобразователях. Термопара термоэлектрического преобразователя состоит из двух металлических проводников, изготовленных из разных материалов (например, из меди и константана) и спаянных вместе одними своими концами.

При некоторой разности температур между точкой спая и двумя другими концами обоих проводников возникает ЭДС, которая в первом приближении прямо пропорциональна этой разнице температур. Эта термо-ЭДС, равная нескольким милливольтам, может быть зарегистрирована при помощи высокочувствительных вольтметров. Если вольтметр проградуировать в градусах Цельсия, то вместе с термоэлектрическим преобразователем полученное устройство можно применить для непосредственного измерения температуры.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Мощность преобразования невелика, поэтому такие преобразователи практически не применяются как источники электрической энергии. В зависимости от того, какие материалы применены для изготовления термопары, она работает в различных диапазонах температур. Для сравнения можно привести некоторые характеристики различных термопар: термопара медь — константан применима до 600 °С, ЭДС приблизительно 4 мВ на 100 °С; термопара железо — константан применима до 800 °С, ЭДС приблизительно 5 мВ на 100 °С.

Электрическая и световая энергия

Получить световое излучение при помощи электрической энергии можно в результате теплового излучения и путем газового разряда. Тепловое (температурное) излучение возникает в результате разогрева твердых или жидких тел, которые вследствие разогрева испускают электромагнитные волны с различными длинами волн. Распределение интенсивности теплового излучения зависит от температуры.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

При повышении температуры максимум интенсивности излучения смещается в сторону электромагнитных колебаний с более короткой длиной волны. При температуре приблизительно 6500 К максимум интенсивности излучения приходится на длину волны 0,55 мкм, т. е. на ту длину волны, которой соответствует максимальная чувствительность человеческого глаза. Однако для нужд освещения никакое твердое тело до такой температуры нагрето, разумеется, быть не может.

Самую большую температуру разогрева выдерживает вольфрам. В вакуумных стеклянных баллонах его можно разогревать до температуры 2100 °С, а при более высоких температурах начинается его испарение. Процесс испарения может быть замедлен путем добавления некоторых газов (азота, криптона), благодаря чему представляется возможным поднять температуру накала до 3000 °С.

Для снижения потерь в лампах накаливания в результате возникающей конвекции нить накаливания выполняется в виде одинарной или двойной спирали. Однако несмотря на эти меры, показатель светоотдачи для ламп накаливания составляет 20 лм/Вт, что еще весьма турах далеко от теоретически достижимого оптимума. Источники теплового излучения имеют весьма малый КПД, так как в них большая часть электрической энергии переходит в энергию тепловую, а не в световую.

Переход световой энергии в электрическую

Световая энергия может переходить в электрическую, причем этот переход возможен двумя различными с физической точки зрения путями. Такое преобразование энергии может быть результатом фотоэлектрического эффекта (фотоэффекта). Для реализации фотоэффекта применяются фототранзисторы, фотодиоды и фоторезисторы.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

На границе раздела между некоторыми полупроводниками (германием, кремнием и др.) и металлами образуется граничная зона, в которой атомы обоих контактирующих материалов обмениваются электронами. При падении света на граничную зону электрическое равновесие в ней нарушается, в результате чего возникает ЭДС, под действием которой во внешней замкнутой цепи возникает электрический ток. ЭДС и, следовательно, значение тока зависят от падающего светового потока и длины волны излучения.

В качестве фоторезисторов используются некоторые полупроводниковые материалы. В результате воздействия света на фоторезистор в нем увеличивается число свободных носителей электрических зарядов, что вызывает изменение его электрического сопротивления. Если включить фоторезистор в электрическую цепь, то ток в этой цепи будет зависеть от энергий света, падающего на фоторезистор.

Химическая и электрическая энергия

Водные растворы кислот, оснований и солей (электролиты) проводят в той или иной степени электрический ток, что обусловлено явлением электрической диссоциации веществ. Некоторая часть молекул растворенного вещества (размер этой части определяет степень диссоциации) присутствует в растворе в виде ионов.

Если в растворе находятся два электрода, к которым приложена разность потенциалов, то ионы придут в движение, причем положительно заряженные ионы (катионы) будут двигаться по направлению к катоду, а отрицательно заряженные ионы (анионы) — к аноду.

Достигнув соответствующего электрода, ионы приобретают недостающие им электроны или же, наоборот, отдают лишние и в результате становятся электрически нейтральными. Масса материала, откладывающегося на электродах, прямо пропорциональна перенесенному заряду (закон Фарадея).

В граничной зоне между электродом и электролитом упругость растворения металлов и осмотическое давление противодействуют друг другу. (Осмотическое давление обусловливает осаждение ионов металлов из электролитов на электродах. Этот химический процесс сам является причиной возникновения разницы потенциалов).

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Переход электрической энергии в химическую энергию

Для того чтобы в результате движения ионов добиться осаждения вещества на электродах, необходимо затратить электрическую энергию. Этот процесс называется электролизом. Такой переход электрической энергии в химическую находит применение в электрометаллургий для получения металлов (меди, алюминия, цинка и др.) в химически чистом виде.

В гальваностегии активно окисляющиеся металлы покрываются пассивными металлами (золочение, хромирование, никелирование и т. д.). В гальванопластике изготавливают объемные отпечатки (клише) различных тел, причем если такое тело сделано из непроводящего материала, то оно перед изготовлением отпечатка должно быть покрыто проводящим электрический ток слоем.

Переход химической энергии в электрическую

Если опустить в электролит два электрода, изготовленных из различных металлов, то между ними возникнет разность потенциалов, обусловленная различием в упругости растворения этих металлов. Если менаду электродами вне электролита включить приемник электрической энергии, например резистор, то в образовавшейся электрической цепи пойдет ток. Так устроены гальванические элементы (первичные элементы).

Первый медно-цинковый гальванический элемент был изобретен Вольта. В этих элементах происходит преобразование энергии химической в энергию электрическую. Работе гальванических элементов может помешать явление поляризации, возникающее в результате осаждения вещества на электродах.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Все гальванические элементы имеют тот недостаток, что в них химическая энергия преобразуется в электрическую необратимо, т. е. гальванические элементы нельзя заряжать вновь. Этого недостатка лишены аккумуляторы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Как передается электроэнергия от электростанций к потребителям

Генераторные установки преобразуют энергию рек, ветра, сгорания топлива и даже атомных связей в электричество. Они распределены по всей стране, объединены в единую систему трансформаторными подстанциями. Передача электроэнергии на расстояние между ними производится линиями электропередач. Их протяженность может составлять от двух-трех до сотен километров.

Транспортные магистрали электрической энергии

Электроэнергия больших мощностей может передаваться по силовым кабелям, закопанным в землю или заглубленным в водоемы. Но наиболее распространен метод транспортировки по воздушным линиям, закрепленным на специальных инженерных сооружениях — опорах.

Так они выглядят для ВЛ-330 кВ (для увеличения нажмите на фотографию):

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

А вот фотография отдельной линии 110 кВ.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Электрические подстанции

Воздушные и кабельные ЛЭП соединяют между собой трансформаторные подстанции с распределительными устройствами одинакового напряжения для передачи энергии от одного силового трансформатора к другому.

Например, автотрансформатор 330/110/10 кВ принимает по высокой стороне 330 мощности от нескольких линий. Передача электроэнергии потребителям происходит по средней 110 и низкой 10 кВ части.

Однако автотрансформатор может питаться со стороны среднего или низкого напряжения. Это зависит от состояния схемы и динамики процессов, происходящих в ней.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Вид трансформатора 110/10 удаленной подстанции, который получает электроэнергию по стороне 110, распределяя ее по линиям 10 кВ.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Он же, но с противоположной стороны.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Для подключения линий к трансформаторам используются огороженные участки местности, на которых монтируются силовые элементы схемы.

Вид небольшого фрагмента открытого распределительного устройства подстанции 330 кВ.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Часть территории ОРУ-110кВ.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Вариант передачи электрической энергии от ввода 110 АТ-330 к трансформатору 110/10 кВ

Пример фрагмента первичной силовой схемы (одной секции) распределения электроэнергии на открытой местности для 7 воздушных ЛЭП (для увеличения нажмите на картинку):

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Здесь реализована возможность перевода питания от вводов 110 АТ №1 или АТ №2. В схеме выполнено подключение каждого ввода АТ к своей системе шин выключателями №10 и №15 с разделением шин на секции через выключатели №8 и №9 при использовании обходной системы шин, коммутируемой выключателем №13. Шины 1СШ и 2 СШ могут объединяться выключателем №18.

Воздушные ЛЭП питаются от выключателей №11, 12, 14, 16, 17, 19, 20. В схеме предусмотрен вывод из работы каждого из них для питания ВЛ через обходную систему шин.

Элегазовый выключатель 110 кВ в этой схеме представлен на фото.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

От него мощности передаются на воздушную ЛЭП к отдаленной подстанции 110/10. На фото ниже показаны ее основные силовые элементы начиная от конечной вводной опоры ЛЭП (для увеличения нажмите на рисунок):

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Электроэнергия поступает к силовому трансформатору через разъединитель, отделитель, измерительные трансформаторы тока и напряжения.

Каждый из них выполняет определенные задачи:

Измерительные ТТ и ТН оценивают вектора токов и напряжений в фазах первичной схемы с определенными метрологическими погрешностями, передают их во вторичные устройства защит, автоматики, измерений для последующей обработки;

Разъединитель служит для ручного размыкания/включения силовой цепи при отсутствии нагрузки на силовых проводах схемы;

Отделитель в автоматическом режиме отключает силовой трансформатор подстанции от линии в бестоковую паузу, которая создается при аварийных режимах в трансформаторе.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Для сравнения картины передаваемых мощностей и сложности конструкций посмотрите вид разъединителя на ОРУ-330 кВ. Его приводят в действие мощные трехфазные электродвигатели, управляемые автоматикой с цепями сигнализации.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

В сети 380/220 вольт такое устройство — обыкновенный рубильник. Но вернемся к схеме подстанции 110/10 кВ.

Обратите внимание! Высоковольтного выключателя для устранения аварий на ней нет.

Однако это не значит, что вопросами безопасной эксплуатации пренебрегли. В силовом трансформаторе постоянно происходят сложные электромагнитные преобразования с выделением тепловой энергии и передачей больших электрических мощностей. Все это контролируется измерительными органами защит.

Они расположены на отдельных панелях.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

При возникновении критических ситуаций электроэнергия с оборудования снимается со всех сторон: 110 и 10 кВ. Питающее напряжение отключается в этой схеме элегазовым выключателем, расположенным на подстанции 330/110 кВ.

Чтобы он сработал, используется короткозамыкатель (для увеличения нажмите на фотографию):

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

В схеме возникает замыкание на землю. Ток от него чувствуют защиты элегазового выключателя на удаленной питающей подстанции. Их автоматика отключает выключатель на определенный интервал времени в несколько секунд.

За это время на всех подстанциях, подключенных к этой ЛЭП, создается бестоковая пауза. В течение ее защиты и автоматика рассматриваемого трансформатора выдают команду на привод отделителя, который автоматически разводит свои ножи, разрывая схему подачи напряжения к силовому трансформатору, чем окончательно «гасит подстанцию».

Все эти операции занимают порядка 4 секунд. По их истечению автоматика удаленного выключателя производит его включение с подачей напряжения на линию. Но на поврежденный силовой трансформатор оно не дойдет из-за разрыва, созданного отделителем. А все другие потребители продолжат получать электроэнергию.

Обратные коммутации короткозамыкателем и отделителем выполняются вручную оперативным персоналом после анализа работы автоматики по результатам действий цепей сигнализации.

Таким способом повышается надежность оборудования, снижаются потери при передаче электроэнергии в электрических сетях.

Вспомогательная система питания постоянного тока

Вспомогательная система питания постоянного тока, состоящая из зарядного устройства, аккумуляторной батареи, системы распределения постоянного тока и системы мониторинга, является важной частью электрической подстанции.

Вспомогательный источник питания постоянного тока необходим на подстанции для обеспечения непрерывной работы критически важного оборудования даже при отключении основного источника переменного тока.

Когда автоматический выключатель размыкается и прерывает подачу питания в фидере, это приводит к прерыванию подачи питания на сам выключатель. Таким образом, выключатель больше не может включаться электрически, если не имеется вспомогательного источника питания, который гарантирует, что выключатель может продолжать работать при отключении основного источника питания.

Для этого аккумуляторная батарея накапливает энергию с помощью подходящего зарядного устройства и снабжает нагрузки постоянного тока непрерывно или во время сбоя питания через систему распределения постоянного тока при надлежащем мониторинге и управлении в соответствии с требованиями.

Схема 10 кВ

Из силового трансформатора преобразованная энергия 10 кВ поступает на ввод в КРУН — комплектное распределительное устройство наружного исполнения и распределяется через систему шин и выключатели с защитами и автоматикой по воздушным или кабельным магистралям.

Отходящие от КРУН воздушные ЛЭП-10 кВ видны на фото.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Воздушная ЛЭП 10 кВ на местности вдоль автомобильной дороги.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

К таким линиям подключаются подстанции 10/0,4 кВ.

Трансформатор 10/0,4 кВ

Устройство и размеры силовых трансформаторов, преобразующих электроэнергию с напряжением 10 кВ в 380 вольт, зависят от выполняемых ими задач и передаваемых мощностей. Их внешние габариты можно оценить по нескольким фото.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Конструкция в отдельном закрытом сооружении для многоэтажных зданий в поселке.

Металлические закрытые шкафы 10/0,4 кВ в сельской местности.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Трансформатор 10/0,4 кВ в гаражном кооперативе (для увеличения нажмите на фотографию):

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Как работают такие трансформаторы, происходит передача энергии потребителям, возникают потери при передаче электроэнергии в электрических сетях и осуществляется их компенсация, будет рассказано в следующей статье.

Источник

Справочник электрика

вторник, 30 апреля 2013 г.

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Рассмотрим кратко систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии. Глава расширит кругозор тех, кто хочет научиться грамотно использовать домашнюю электросеть.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. 1.4 представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

От электростанции электроэнергия напряжением 110—750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6—35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В, и по воздушным или кабельным линиям электроэнергия поступает непосредственно к потребителю в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.
Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на рис. 1.5. Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Потери зависят от величины проходящего тока и диаметра проводника, а не приложенного напряжения.

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Например:
Допустим, что с электростанции в город, находящийся от нее на расстоянии 100 км, нужно передавать по одной линии 30 МВт. Из-за того, что провода линии имеют электрическое сопротивление, ток их нагревает. Эта теплота рассеивается и не может быть использована. Энергия, затрачиваемая на нагревание, представляет собой потери.

Свести потери к нулю невозможно. Но ограничить их необходимо. Поэтому допустимые потери нормируют, т. е. при расчете проводов линии и выборе ее напряжения исходят из того, чтобы потери не превышали, например, 10% полезной мощности, передаваемой по линии. В нашем примере это 0,1-30 МВт = 3 МВт.

Например:
Если не применять трансформацию, т. е. передавать электроэнергию при напряжении 220 В, то для снижения потерь до заданного значения сечение проводов пришлось бы увеличить примерно до 10 м2. Диаметр такого «провода» превышает 3 м, а масса в пролете составляет сотни тонн.
Применяя трансформацию, т. е. повышая напряжение в линии, а затем, снижая его вблизи расположения потребителей, пользуются другим способом снижения потерь: уменьшают ток в линии. Этот способ весьма эффективен, так как потери пропорциональны квадрату силы тока. Действительно, при повышении напряжения вдвое ток снижается вдвое, а потери уменьшаются в 4 раза. Если напряжение повысить в 100 раз, то потери снизятся в 100 во второй степени, т. е. в 10000 раз.

Например:
В качестве иллюстрации эффективности повышения напряжения укажу, что по линии электропередачи трехфазного переменного тока напряжением 500 кВ передают 1000 МВт на 1000 км.

Электрические сети предназначены для передачи и распределения электроэнергии. Они состоят из совокупности подстанций и линий различных напряжений. При электростанциях строят повышающие трансформаторные подстанции, и по линиям электропередачи высокого напряжения передают электроэнергию на большие расстояния. В местах потребления сооружают понижающие трансформаторные подстанции.

Основу электрической сети составляют обычно подземные или воздушные линии электропередачи высокого напряжения. Линии, идущие от трансформаторной подстанции до вводно-распределительных устройств и от них до силовых распределительных пунктов и до групповых щитков, называют питающей сетью. Питающую сеть, как правило, составляют подземные кабельные линии низкого напряжения.

По принципу построения сети разделяются на разомкнутые и замкнутые. В разомкнутую сеть входят линии, идущие к электроприемникам или их группам и получающие питание с одной стороны. Разомкнутая сеть обладает некоторыми недостатками, заключающимися в том, что при аварии в любой точке сети питание всех потребителей за аварийным участком прекращается.

Замкнутая сеть может иметь один, два и более источников питания. Несмотря на ряд преимуществ, замкнутые сети пока не получили большого распространения. По месту прокладки сети бывают наружные и внутренние.

Способы выполнения линий электропередач

Каждому напряжению соответствуют определенные способы выполнения электропроводки. Это объясняется тем, что чем напряжение выше, тем труднее изолировать провода. Например, в квартирах, где напряжение 220 В, проводку выполняют проводами в резиновой или в пластмассовой изоляции. Эти провода просты по устройству и дешевы.

Несравненно сложнее устроен подземный кабель, рассчитанный на несколько киловольт и проложенный под землей между трансформаторами. Кроме повышенных требований к изоляции, он еще должен иметь повышенную механическую прочность и стойкость к коррозии.

Для непосредственного электроснабжения потребителей используются:

♦ воздушные или кабельные ЛЭП напряжением 6 (10) кВ для питания подстанций и высоковольтных потребителей;
♦ кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электроприемников. Для передачи на расстояние напряжения в десятки и сотни киловольт создаются воздушные линии электропередач. Провода высоко поднимаются над землей, в качестве изоляции используется воздух. Расстояния между проводами рассчитываются в зависимости от напряжения, которое планируется передавать. На рис. 1.6 изображены в одном масштабе опоры для воздушных линий электропередач напряжениями 500, 220, 110, 35 и 10 кВ. Заметьте, как увеличиваются размеры и усложняются конструкции с ростом рабочего напряжения!

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

Например:
Опора линии напряжением 500 кВ имеет высоту семиэтажного дома. Высота подвеса проводов 27 м, расстояние между проводами 10,5 м, длина гирлянды изоляторов более 5 м. Высота опор для переходов через реки достигает 70 м. Рассмотрим варианты выполнения ЛЭП подробнее.

Воздушные ЛЭП
Определение.
Воздушной линией электропередачи называют устройство для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикрепленным при помощи траверс (кронштейнов), изоляторов и арматуры к опорам или инженерным сооружениям.

В соответствии с «Правилами устройства электроустановок» по напряжению воздушные линии делятся на две группы: напряжением до 1000 В и напряжением свыше 1000 В. Для каждой группы линий установлены технические требования их устройства.

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабельными линиями, меньшей плотностью застройки и т. д.

Для проводки воздушных линий и сетей используют различные провода и тросы. Основное требование, предъявляемое к материалу проводов воздушных линий электропередачи, — малое электрическое сопротивление. Кроме того, материал, применяемый для изготовления проводов, должен обладать достаточной механической прочностью, быть устойчивым к действию влаги и находящихся в воздухе химических веществ.

В настоящее время чаще всего используют провода из алюминия и стали, что позволяет экономить дефицитные цветные металлы (медь) и снижать стоимость проводов. Медные провода применяют на специальных линиях. Алюминий обладает малой механической прочностью, что приводит к увеличению стрелы провеса и, соответственно, к увеличению высоты опор или уменьшению длины пролета. При передаче небольших мощностей электроэнергии на короткие расстояния применение находят стальные провода.

Для изоляции проводов и крепления их к опорам линий электропередач служат линейные изоляторы, которые наряду с электрической должны также обладать и достаточной механической прочностью. В зависимости от способа крепления на опоре различают изоляторы штыревые (их крепят на крюках или штырях) и подвесные (их собирают в гирлянду и крепят к опоре специальной арматурой).

Штыревые изоляторы применяют на линиях электропередач напряжением до 35 кВ. Маркируют их буквами, обозначающими конструкцию и назначение изолятора, и числами, указывающими рабочее напряжение. На воздушных линиях 400 В используют штыревые изоляторы ТФ, ШС, ШФ. Буквы в условных обозначениях изоляторов обозначают следующее: Т — телеграфный; Ф — фарфоровый; С — стеклянный; ШС — штыревой стеклянный; ШФ — штыревой фарфоровый.

Штыревые изоляторы применяют для подвешивания сравнительно легких проводов, при этом в зависимости от условий трассы используются различные типы крепления проводов. Провод на промежуточных опорах укрепляют обычно на головке штыревых изоляторов, а на угловых и анкерных опорах— на шейке изоляторов. На угловых опорах провод располагают с наружной стороны изолятора по отношению к углу поворота линии.

Подвесные изоляторы применяют на воздушных линиях 35 кВ и выше. Они состоят из фарфоровой или стеклянной тарелки (изолирующая деталь), шапки из ковкого чугуна и стержня. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при комплектовании гирлянд. Гирлянды собирают и подвешивают к опорам и тем самым обеспечивают необходимую изоляцию проводов. Количество изоляторов в гирлянде зависит от напряжения линии и типа изоляторов.

Материалом для вязки алюминиевого провода к изолятору служит алюминиевая проволока, а для стальных проводов— мягкая стальная. При вязке проводов выполняют обычно одинарное крепление, двойное же крепление применяют в населенной местности и при повышенных нагрузках. Перед вязкой заготовляют проволоку нужной длины (не менее 300 мм).

Головную вязку выполняют двумя вязальными проволоками разной длины. Эти проволоки закрепляют на шейке изолятора, скручивая между собой. Концами более короткой проволоки обвивают провод и плотно притягивают четыре-пять раз вокруг провода. Концы другой проволоки, более длинные, накладывают на головку изолятора накрест через провод четыре-пять раз.

Для выполнения боковой вязки берут одну проволоку, кладут ее на шейку изолятора и оборачивают вокруг шейки и провода так, чтобы один ее конец прошел над проводом и загнулся сверху вниз, а второй — снизу вверх. Оба конца проволоки выводят вперед и снова оборачивают их вокруг шейки изолятора с проводом, поменяв местами относительно провода.

После этого провод плотно притягивают к шейке изолятора и обматывают концы вязальной проволоки вокруг провода с противоположных сторон изолятора шесть-восемь раз. Во избежание повреждения алюминиевых проводов место вязки иногда обматывают алюминиевой лентой. Изгибать провод на изоляторе сильным натяжением вязальной проволоки не разрешается.

Вязку проводов выполняют вручную, используя монтерские пассатижи. Особое внимание обращают при этом на плотность прилегания вязальной проволоки к проводу и на положение концов вязальной проволоки (они не должны торчать). Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки ввертывают непосредственно в деревянные опоры, а штыри устанавливают на металлических, железобетонных или деревянных траверсах. Для крепления изоляторов на крюках и штырях используют переходные полиэтиленовые колпачки. Разогретый колпачок плотно надвигают на штырь до упора, после этого на него навинчивают изолятор.

Провода подвешиваются на железобетонных или деревянных опорах при помощи подвесных или штыревых изоляторов. Для воздушных ЛЭП используются неизолированные провода. Исключением являются вводы в здания — изолированные провода, протягиваемые от опоры ЛЭП к изоляторам, укрепленным на крюках непосредственно на здании.

Внимание!
Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет: в ЛЭП напряжением до 1000 В для промежуточных опор от 7 м, для переходных опор — 8,5 м; в ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор — 8,35 м.

Наименьшие допустимые сечения проводов воздушных ЛЭП напряжением более 1000 В, выбираемые по условиям механической прочности с учетом возможной толщины их обледенения, приведены в табл. 1.1.

Минимально допустимые значения проводов возжушныхЛЭП напряжением более 1000 В
Таблица 1.1

для чего трансформируется электроэнергия. Смотреть фото для чего трансформируется электроэнергия. Смотреть картинку для чего трансформируется электроэнергия. Картинка про для чего трансформируется электроэнергия. Фото для чего трансформируется электроэнергия

На воздушных ЛЭП напряжением до 1000 В устанавливают заземляющие устройства. Расстояние между ними определяется числом грозовых часов в году:

♦ до 40 часов — не более 200 м;
♦ более 40 часов — не более 100 м.

Сопротивление заземляющего устройства должно быть не более 30 Ом.

Допустимые расстояния от нижних проводов воздушных ЛЭП напряжением до 1000 В и до 10 кВ и их опор до объектов представлены в табл. 1.2.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *