для водных растворов солей cuso4 и fecl3 верно что

Контрольная работа по химии. 11 класс.

1) Сумма коэф-тов в уравнении электролитичекской диссо-ции сульфата натрия равна
а) 1
б) 2
в) 3
г) 4

2) Ионы с одинаковым числом электронов это
а) K+ и Na+
б) О2- и S2-
в) CL- и K+
г) Na+ и Ca2+

3) Вещества растворы которых проводят электрический ток
а) H2SO3, NaOH, KCL
б) CuCl2, CH3OH, AgNO3
в) Al(OH)3, BaSO4, Cl2
г) NaNO3, AlCl3, C6H12O6

4) Вещ-ва которые можно взять для приготовления расствора, содержащего ионы хлора Cl-
а) NaCl
б) CH2ClCOOH
в) CCl
г) AgCl

5) Вещества взаимод-вие которых друг с другом отображается кратким ионным уравнением Ba2+ + SO4- =BaSO4
а) BaCl2 и Na2SO4
б) BaO и H2SO4
в) Ba(OH)2 и H2SO4
г) Ba и H2SO4

6) Вещества вступающие друг с другом в реакцию ионного обмена
а) CuO и Ca(OH)2
б) FeCl3 и NaOH
в) CaCO3 и MgCl2
г) KOH и Ba(NO3)2

7) Кислотную среду имеет раствор соли формула которой
а) Na2CO3
б) Ba(NO3)2
в) AlCl3
г) K2SO4

8) Для подавления гидролиза хлорида железа (III) в водном расстворе можно
а) добавить кислоту
б) добавить воду
в) добавить щелочь
г) нагреть расствор

9) Карбоновые кислоты можно получать при гидролизе
а) белков
б) крахмала
в) сахарозы
г) жиров

10) Вещество подвергающееся гидролизу
а) глюкоза
б) крахмал
в) пропантриол-1,2,3
г) фруктоза

11) Имеются водные расстворы солей, формулы которых ZnSO4, Na2SO4, KCl. С расствором какой соли будет реагировать цинк? Составить уравнение реакции с комментариями (если можно ) ).

12) Имеются расстворы солей формулы которых FeCl3, K2CO3, NaCl и лакмусовая бумажка. Какую среду покажет лакмусовая бумажка в расстворе каждой соли и почему?

13) Какие химические реакции лежат в основе производства глицерина?

15) Расчитать массу осадка полученного при сливании расстворов содержащих 0.5 моль CuSO4 и 1.5 моль NaOH.

Источник

1.4.7. Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная.

Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.

Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н + ), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН − ).

В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.

Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?

На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:

Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO3)2 кислой.

Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.

Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?

Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

примечание: сернистую (H2SO3) и фосфорную (H3PO4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.

Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону.

Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

То есть, хлорид-ионы, не влияют на pН раствора.

Zn 2+ + H2O ↔ Zn(OH) + + H +

Zn(OH) + + H2O ↔ Zn(OH) + + H +

Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону.

Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:

1) сильным основанием и сильной кислотой,

Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу.

2) сильным основанием и слабой кислотой

В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону

Примеры: NaF, K2CO3, Li2S и т.д.

3) слабым основанием и сильной кислотой

У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону, среда кислая.

4) слабым основанием и слабой кислотой.

С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону. Нередко такие соли подвергаются необратимому гидролизу.

Что же значит то, что они необратимо гидролизуются?

Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:

Наблюдается следующая реакция:

Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:

При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.

Источник

Гидролиз

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

По катиону, по аниону или нет гидролиза?

Если в состав соли входит остаток сильного основания и остаток слабой кислоты, то гидролиз идет по аниону. Примеры: K3PO4, NaNO2, Ca(OCl)2, Ba(CH3COO)2, Li2SiO3.

Если соль образована остатком слабого основания и слабой кислоты, то гидролиз идет и по катиону, и по аниону. Примеры: Mg(NO2)2, Al2S3, Cr2(SO3)3, CH3COONH4.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Среда раствора

Среда раствора может быть нейтральной, кислой или щелочной. Определяется типом гидролиза. Некоторые задания могут быть построены так, что, увидев соль, вы должны будете определить ее тип раствора.

Однако замечу, что в дигидрофосфатах, гидросульфитах и гидросульфатах среда всегда кислая из-за особенностей диссоциации. Примеры: NH4H2PO4, LiHSO4. В гидрофосфатах среда щелочная из-за того, что константа диссоциации по третьей ступени меньше, чем константа гидролиза. Примеры: K2HPO4, Na2HPO4.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Попробуйте определить среду раствора для соединений из самостоятельного задания, которое вы только что решили. Ниже будет располагаться решение.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

С целью запутать в заданиях часто бывают даны синонимы. Так «среду раствора» могут заменить водородным показателем pH.

Запомните, что кислая среда характеризуется pH 7.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Источник

Гидролиз

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Определение гидролиза

Гидролиз — это процесс взаимодействия сложного химического вещества с водой, итогом которого становится разложение молекул этого вещества. Сам термин происходит от двух греческих слов: hydor, что значит «вода», и lysis, то есть «распад».

Гидролизации подвержены как органические, так и неорганические вещества: углеводы, белки, оксиды, карбиды, соли и т. д. Например, гидролиз органических соединений напрямую связан с пищеварением — с его помощью происходит распад и усвоение клетками организма жиров, белков, углеводов. Но сейчас мы займемся неорганической химией и рассмотрим гидролизацию на примере солей.

Гидролиз солей — это реакция взаимодействия ионов соли с Н + и ОН − ионами воды, которая ведет к распаду исходного соединения. В результате такого ионного обмена образуется слабый электролит — кислотный, щелочной или нейтральный.

Условия гидролиза

Далеко не все соединения распадаются, вступая в реакцию с молекулами воды. Сейчас мы на примере солей рассмотрим, какие вещества подвергаются гидролизу, а какие нет, и от чего это зависит.

Начнем с того, что любая соль включает основание — амфотерный гидроксид, и кислотный остаток.

сульфат меди CuSO4состоит из основания Cu(ОН)2и кислоты H2SO4;

хлорид натрия NaCl состоит из основания NaOH и кислоты HCl;

хлорид цинка ZnCl2состоит из основания Zn(ОН)2 и кислоты HCI;

карбонат натрия Na2CO3состоит из основания NaOH и кислоты H2CO3.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

В зависимости от того, какие соли подвергаются гидролизу — со слабым основанием или слабой кислотой, в итоге может получиться кислая, щелочная или нейтральная среда водного раствора.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

А что происходит, если соль состоит из сильного основания и сильного кислотного остатка? Ничего. 🙂 В этом случае ее сильные катионы и анионы не взаимодействуют с ионами воды. Такая соль не распадается, то есть не подвержена гидролизу.

Схема химической реакции гидролиза выглядит так:

XY + HOH ↔ XH + HOY

XH — кислотный остаток;

Индикаторы среды раствора

Для определения среды раствора за считанные секунды используются специальные индикаторы. Самый распространенный из них — лакмусовая бумага, но также популярны фенолфталеин и метиловый оранжевый. В нейтральной среде они не меняют свой цвет, а в кислотной или щелочной — приобретают другую окраску.

Изменение цвета индикатора однозначно говорит о том, что произошла гидролизация. Однако если цвет остался тем же — это не всегда означает отсутствие гидролиза. Среда будет почти нейтральной и в том случае, когда гидролизу подвергается соль со слабым основанием и слабой кислотой. Но об этом поговорим дальше, а пока посмотрите таблицу.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Виды гидролиза

Мы выяснили, что в составе соли может быть слабый ион, который и отвечает за гидролизацию. Он находится в основании, в кислотном остатке или в обоих компонентах, и от этого зависит тип гидролиза.

Соль с сильным основанием и сильной кислотой

Гидролиз отсутствует. Как вы уже знаете, при наличии сильного основания и сильного кислотного остатка соль не распадается при взаимодействии с водой. Так, например, невозможен гидролиз хлорида натрия (NaCl), поскольку в составе этого вещества нет слабых ионов. К таким же не подверженным гидролизации солям относят KClO4, Ba(NO3)2 и т. д.

Среда водного раствора — нейтральная, т. е. pH = 7.

Реакция индикаторов: не меняют свой цвет (лакмус остается фиолетовым, а фенолфталеин — бесцветным).

Соль со слабым основанием и сильной кислотой

Среда водного раствора — кислая, pH меньше 7.

Реакция индикаторов: фенолфталеин остается бесцветным, лакмус и метиловый оранжевый — краснеют.

Соль с сильным основанием и слабой кислотой

Среда водного раствора — щелочная, pH больше 7.

Реакция индикаторов: фенолфталеин становится малиновым, лакмус — синим, а метиловый оранжевый желтеет.

Молекулярное уравнение: KNO2 + H2O ↔ HNO2 + KOH

Ионное уравнение: K + + NO2 − + HOH ↔ HNO2 + K + + OH −

Гидролиз по катиону и аниону. Если у соли оба компонента — слабые, при взаимодействии с водой в реакцию вступает и анион, и катион. При этом катион основания связывает ионы воды OH − а анион кислоты связывает ионы H +

Среда водного раствора: нейтральная, слабокислая или слабощелочная.

Реакция индикаторов: могут не изменить свой цвет.

Цианид аммония NH4CN включает слабое основание NH4OH и слабую кислоту HCN.

Молекулярное уравнение: NH4CN + H2O ↔ NH4OH + HCN

Ионное уравнение: NH4 + + CN − + HOH ↔ NH4OH + HCN

Среда в данном случае будет слабощелочной.

Обобщим все эти сведения в таблице гидролиза солей.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Ступенчатый гидролиз

Любой из видов гидролиза может проходить ступенчато. Так бывает в тех случаях, когда с водой взаимодействует соль с многозарядными катионами и анионами. Сколько ступеней будет включать процесс — зависит от числового заряда иона, отвечающего за гидролиз.

Как определить количество ступеней:

если соль содержит слабую многоосновную кислоту — число ступеней равняется основности этой кислоты;

если соль содержит слабое многокислотное основание — число ступеней определяют по кислотности основания.

Для примера рассмотрим гидролиз карбоната калия K2CO3. У нас есть двухосновная слабая кислота H2CO3, а значит, гидролизация пройдет по аниону в две ступени.

I ступень: K2CO3+HOH ↔ KOH+KHCO3, итогом которой стало получение гидроксида калия (KOH) и кислой соли (KHCO3).

II ступень: K2HCO3+HOH ↔ KOH+H2CO3, в итоге получился тот же гидроксид калия (KOH) и слабая угольная кислота (H2CO3).

Для приблизительных расчетов обычно принимают в учет только результаты первой ступени.

Обратимый и необратимый гидролиз

Химические вещества могут гидролизоваться обратимо или необратимо. В первом случае распадается лишь некоторое количество частиц, а во втором — практически все. Если соль полностью разлагается водой, это необратимый процесс, и его называют полным гидролизом.

Необратимо гидролизуются соли, в составе которых есть слабые нерастворимые основания и слабые и/или летучие кислоты. Такие соединения могут существовать лишь в сухом виде, их не получить путем смешивания водных растворов других солей.

Например, полному гидролизу подвергается сульфид алюминия:

Как видите, в результате гидролизации образуется гидроксид алюминия и сероводород.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Необратимые реакции при взаимодействии с водой имеют место и в органической химии. В качестве примера рассмотрим полный гидролиз органического вещества — карбида кальция, в результате которого образуется ацетилен:

Степень гидролиза

Взаимодействие соли или другого химического соединения с водой может усиливаться или ослабляться в зависимости от нескольких факторов. Если нужно получить количественное выражение гидролиза, говорят о его степени, которая указывается в процентах.

h — степень гидролиза,

nгидр. — количество гидролизованного вещества,

nобщ. — общее количество растворенного в воде вещества.

На степень гидролизации может повлиять:

температура, при которой происходит процесс;

концентрация водного раствора;

состав участвующих в гидролизе веществ.

Можно усилить гидролиз с помощью воды (просто разбавить полученный раствор) или стимулировать процесс повышением температуры. Более сложным способом будет добавление в раствор такого вещества, которое могло бы связать один из продуктов гидролиза. К соли со слабой кислотой и сильным основанием нужно добавить соль со слабым основанием и сильной кислотой.

Для ослабления гидролиза раствор охлаждают и/или делают более концентрированным. Также можно изменить его состав: если гидролизация идет по катиону — добавляют кислоту, а если по аниону — щелочь.

для водных растворов солей cuso4 и fecl3 верно что. Смотреть фото для водных растворов солей cuso4 и fecl3 верно что. Смотреть картинку для водных растворов солей cuso4 и fecl3 верно что. Картинка про для водных растворов солей cuso4 и fecl3 верно что. Фото для водных растворов солей cuso4 и fecl3 верно что

Итак, мы разобрались, что такое гидролиз солей и каким он бывает. Пора проверить свои знания и ответить на вопросы по материалу.

Вопросы для самопроверки:

Назовите необходимое условие для гидролиза.

Какие типы гидролиза вы знаете?

В каком случае в результате гидролиза может образоваться слабощелочная или слабокислая среда?

По какому типу гидролизуется соль с сильным основанием и слабым кислотным остатком?

При гидролизе соли с сильным основанием и слабой кислотой для ослабления процесса нужно добавить в раствор кислоту или щелочь?

Как воздействует на гидролиз разбавление раствора водой?

Как определяется количество ступеней гидролиза?

Какая среда раствора образуется при гидролизации солей NaF, KCl, FeBr2, Na2PO4? Ответов может быть несколько.

Какие из солей гидролизуются по катиону: Csl, FeSO4, RbNO3, CuSO4, Mn(NO3)2? Ответов может быть несколько.

Какая из солей не подвергается гидролизу: K2HPO4, KNO3, KCN, Ni(NO3)2?

Источник

Для водных растворов солей cuso4 и fecl3 верно что

В ходе урока мы изучим тему «Гидролиз. Среда водных растворов. Водородный показатель». Вы узнаете о гидролизе – обменной реакции вещества с водой, приводящей к разложению химического вещества. Кроме того, будет введено определение водородному показателю – так называемому РН.

I. Механизм гидролиза

Гид­ро­лиз – это об­мен­ная ре­ак­ция ве­ще­ства с водой, при­во­дя­щая к его раз­ло­же­нию.

По­про­бу­ем разо­брать­ся в при­чине дан­но­го яв­ле­ния.

Элек­тро­ли­ты де­лят­ся на силь­ные элек­тро­ли­ты и сла­бые. См. Табл. 1.

СИЛЬ­НЫЕ ЭЛЕК­ТРО­ЛИ­ТЫ

СЛА­БЫЕ ЭЛЕК­ТРО­ЛИ­ТЫ

Сте­пень дис­со­ци­а­ции при 180С в рас­тво­рах с кон­цен­тра­ци­ей элек­тро­ли­та 0,1 моль/л близ­ка к 100%. Дис­со­ци­и­ру­ют прак­ти­че­ски необ­ра­ти­мо.

Сте­пень дис­со­ци­а­ции при 180С в рас­тво­рах с кон­цен­тра­ци­ей элек­тро­ли­та 0,1 моль/л зна­чи­тель­но мень­ше 100%. Дис­со­ци­и­а­ция необ­ра­ти­ма.

Вода от­но­сит­ся к сла­бым элек­тро­ли­там и по­это­му дис­со­ци­и­ру­ет на ионы лишь в незна­чи­тель­ной сте­пе­ни

Ионы ве­ществ, по­па­да­ю­щие в рас­твор, гид­ра­ти­ру­ют­ся мо­ле­ку­ла­ми воды. Но при этом может про­ис­хо­дить и дру­гой про­цесс. На­при­мер, ани­о­ны соли, ко­то­рые об­ра­зу­ют­ся при её дис­со­ци­а­ции, могут вза­и­мо­дей­ство­вать с ка­ти­о­на­ми во­до­ро­да, ко­то­рые, пусть и в незна­чи­тель­ной сте­пе­ни, но все-та­ки об­ра­зу­ют­ся при дис­со­ци­а­ции воды. При этом может про­ис­хо­дить сме­ще­ние рав­но­ве­сия дис­со­ци­а­ции воды. Обо­зна­чим анион кис­ло­ты Х-.

Но, по пра­ви­лу Ле Ша­те­лье, при умень­ше­нии кон­цен­тра­ции ионов во­до­ро­да рав­но­ве­сие сме­ща­ет­ся в пер­вой ре­ак­ции в сто­ро­ну их об­ра­зо­ва­ния, т. е. впра­во. Ионы во­до­ро­да будут свя­зы­вать­ся с иона­ми во­до­ро­да воды, а гид­рок­сид ионы – нет, и их ста­нет боль­ше, чем было в воде до при­бав­ле­ния соли. Зна­чит, среда рас­тво­ра будет ще­лоч­ная. Ин­ди­ка­тор фе­нол­фта­ле­ин ста­нет ма­ли­но­вым.

Ана­ло­гич­но можно рас­смот­реть вза­и­мо­дей­ствие ка­ти­о­нов с водой. Не по­вто­ряя всю це­поч­ку рас­суж­де­ний, поды­то­жи­ва­ем, что если ос­но­ва­ние сла­бое, то в рас­тво­ре будут на­кап­ли­вать­ся ионы во­до­ро­да, и среда будет кис­лая.

II. Классификация катионов и анионов

К сильным кислотам относятся:

Ниже приведен список слабых кислот:

III. Отношение к гидролизу солей разных типов

По­сколь­ку и ка­ти­о­ны и ани­о­ны, со­глас­но дан­ной клас­си­фи­ка­ции, бы­ва­ют двух типов, то всего су­ще­ству­ет 4 раз­но­об­раз­ных ком­би­на­ции при об­ра­зо­ва­нии их солей. Рас­смот­рим, как от­но­сит­ся к гид­ро­ли­зу каж­дый из клас­сов этих солей.

1. Гидролиз не возможен (гидролиз соли, образованной сильным основанием и сильной кислотой)

Соль, образованная сильным основанием и сильной кислотой (KBr, NaCl, NaNO3), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется.

рН таких растворов = 7. Реакция среды остается нейтральной.

2. Гидролиз по катиону (в реакцию с водой вступает только катион, т.е. это гидролиз соли, образованной слабым основанием и сильной кислотой)

В соли, образованной слабым основанием и сильной кислотой (FeCl2, NH4Cl, Al2(SO4)3,MgSO4) гидролизу подвергается катион:

В результате гидролиза образуется слабый электролит, ион H + и другие ионы.

рН раствора Подведем итог тому, что вы узнали о гидролизе по катиону:

1) по катиону соли, как правило, гидролизуются обратимо;

2) химическое равновесие реакций сильно смеще­но влево;

3) реакция среды в растворах таких солей кислот­ная (рН Гидролиз по аниону (в реакцию с водой вступает только анион, т.е. это гидролиз соли, образованной сильным основанием и слабой кислотой)

рН таких растворов > 7 (раствор приобретает щелочную реакцию).

Подведем итог тому, что вы узнали о гидролизе по аниону:

1) по аниону соли, как правило, гидролизуются обратимо;

2) химическое равновесие в таких реакциях силь­но смещено влево;

3) реакция среды в растворах подобных солей ще­лочная (рН > 7);

4) при гидролизе солей, образованных слабыми многоосновными кислотами, получаются кис­лые соли.

4. Совместный гидролиз: и по катиону, и по аниону (в реакцию с водой вступает и катион и анион, т.е. это гидролиз соли, образованной слабым основанием и слабой кислотой)

Соль, образованная слабым основанием и слабой кислотой (СН3СООNН4, (NН4)2СО3,Al2S3), гидролизуется и по катиону, и по аниону. В результате образуются малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания. Мерой силы кислоты и основания является константа диссоциации соответствующего реактива.

Реакция среды этих растворов может быть нейтральной, слабокислой или слабощелочной:

Гидролиз протекает необратимо, если в результате реакции образуется нерастворимое основание и (или) летучая кислота

IV. Алгоритм составления уравнений гидролиза солей

Ход рассуждений

Пример

1. Определяем силу электролита – основания и кислоты, которыми образована рассматриваемая соль.

Помните!

Гидролиз всегда протекает по слабому электролиту, сильный электролит находится в растворе в виде ионов, которые не связываются водой.

Кислота

Основания

Слабые – все нерастворимые в воде основания и NH4OH

Na2CO3 – карбонат натрия, соль образованная сильным основанием (NaOH) и слабой кислотой (H2CO3)

2. Записываем диссоциацию соли в водном растворе, определяем ион слабого электролита, входящий в состав соли

Это гидролиз по аниону

3. Записываем полное ионное уравнение гидролиза – ион слабого электролита связывается молекулами воды

4. Записываем молекулярное гидролиза

V. Практическое применение гидролиза

На практике с гидролизом учителю приходится сталкиваться, например при приготовлении растворов гидролизующихся солей (ацетат свинца, например). Обычная “методика”: в колбу наливается вода, засыпается соль, взбалтывается. Остается белый осадок. Добавляем еще воды, взбалтываем, осадок не исчезает. Добавляем из чайника горячей воды – осадка кажется еще больше… А причина в том, что одновременно с растворением идет гидролиз соли, и белый осадок, который мы видим это уже продукты гидролиза – малорастворимые основные соли. Все наши дальнейшие действия, разбавление, нагревание, только усиливают степень гидролиза. Как же подавить гидролиз? Не нагревать, не готовить слишком разбавленных растворов, и поскольку главным образом мешает гидролиз по катиону – добавить кислоты. Лучше соответствующей, то есть уксусной.

В других случаях степень гидролиза желательно увеличить, и чтобы сделать щелочной моющий раствор бельевой соды более активным, мы его нагреваем – степень гидролиза карбоната натрия при этом возрастает.

Важную роль играет гидролиз в процессе обезжелезивания воды методом аэрации. При насыщении воды кислородом, содержащийся в ней гидрокарбонат железа(II) окисляется до соли железа(III), значительно сильнее подвергающегося гидролизу. В результате происходит полный гидролиз и железо отделяется в виде осадка гидроксида железа(III).

На этом же основано применение солей алюминия в качестве коагулянтов в процессах очистки воды. Добавляемые в воду соли алюминия в присутствии гидрокарбонат-ионов полностью гидролизуются и объемистый гидроксид алюминия коагулирует, увлекая с собой в осадок различные примеси.

VI. Задания для закрепления

Задание №2. Составьте уравнения гидролиза солей, определите тип гидролиза и среду раствора:
Сульфита калия, хлорида натрия, бромида железа (III)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *