доказательство что медианы пересекаются в одной точке
Свойство медиан треугольника
Свойство медиан треугольника может быть доказано многими способами. Доказательство, опирающееся на свойства параллелограмма и средней линии треугольника, может быть проведено сразу же после изучения соответствующих тем, что позволяет начать использовать свойство медиан треугольника уже с начала 8 класса.
(Свойство медиан треугольника)
Медианы треугольника пересекаются и в точке пересечения делятся в отношении 2:1, считая от вершины.
Дано : ABC, AA1, BB1, CC1 — медианы
1) Пусть M — середина отрезка AO, N — середина BO
2) Соединим точки M, N, A1 и B1 отрезками.
3) Так как AA1 и BB1 — медианы треугольника ABC, точка A1- середина отрезка BC, B1 — середина AC.
Следовательно, A1B1 — средняя линия треугольника ABC и
Значит, четырёхугольник MNA1B1 — параллелограмм (по признаку).
По свойству диагоналей параллелограмма
из чего следует, что
5) Доказательство того факта, что все медианы треугольника пересекаются в одной точке, будем вести методом от противного.
Предположим, что третья медиана CC1 треугольника ABC пересекает медианы AA1 и BB1 в некоторой точке, отличной от точки O.
Тогда на каждой медиане есть две различные точки, делящие её в отношении 2:1, считая от вершины. Пришли к противоречию.
Таким образом, все три медианы треугольника пересекаются в одной точке и точка пересечения медиан делит каждую из их в отношении 2:1, считая от вершины:
7 Comments
Промогите пожалуйста:
В прямоугольном треугольнике из вершины прямого угла до гипотенузы провели медиану длинной 50см и перпендикуляр 48см. Вычислить периметр.
Медиана, проведённая к гипотенузе, равна её половине. Следовательно, гипотенуза 100 см. Пусть катеты равны x см и y см. По теореме Пифагора x²+y²=100². Площадь треугольника равна половине произведения стороны на высоту, проведённую к этой стороне S=0,5∙100∙48 см², либо половине произведения катетов S=0,5∙x∙y. Отсюда xy=4800.
Решаем систему уравнений: x²+y²=100²; xy=4800. Решения (60;80) (80;60). То есть катеты 60 см и 80 см. Периметр P=60+80+100=240 см.
(Не обязательно доводить решение системы до конца. Достаточно найти x+y. Для этого к 1-му уравнению прибавим удвоенное 2-е, получим
x²+2xy+y²=19600; x+y=140).
Прошу помощи в решении задачи: на стороне ромба построен равносторонний треугольник. Отрезок, соединяющий точку пересечения диагоналей ромба с серединой стороны треугольника, составляет с ней угол 70 градусов. Найти острый угол ромба.
Во-первых, большое спасибо за решение, даже не ожидала ответа, но, по счастью, ошиблась! Но я к этому времени уже решила так:провела ВМ, которая в равностороннем треугольнике является также высотой.
Рассмотрим четырехугольник ОВМС: угол ВОС =углу ВМС=90 градусов (диагонали ромба взаимно перпендикулярны),отсюда, ВМ параллельна ОС, тогда угол МОС=20 градусам. Рассм. треугольник ОМС: угол МСО= 180-20-70=90 градусов, и одновременно= 60+x, т.о., угол х=30 градусам, и искомый острый угол ромба=60 градусам. Мы получили разные ответы, в чем может быть дело (окружности мы еще не проходили).
Наталия углы BOC и BMC не накрест лежащие и не внутренние односторонние, поэтому BM не параллельна OC. Но вариант решения без окружности возможен, добавила второй способ.
Свойства медианы треугольника (ЕГЭ 2022)
Сегодня мы рассмотрим часть треугольника, которая не раз поможет тебе при решении многих задач, — медиану.
Эта приятная, лёгкая и полезная теория!
Медиана треугольника — коротко о главном
Медиана — отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Медиана делит площадь треугольника пополам
Но \( \displaystyle AM=CM\), значит, \( \displaystyle <_<\triangle ABM
Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении \( \displaystyle 2:1\ \), считая от вершины.
Но \( \displaystyle AM=CM\), значит, \( \displaystyle <_<\triangle ABM
Длина медианы: \( \displaystyle <
^<2>>=\frac <1>
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.
Если медиана равна половине стороны, то треугольник прямоугольный и эта медиана проведена к гипотенузе.
Определение медианы треугольника
Это очень просто! Возьми треугольник.
Отметь на какой-нибудь его стороне середину \( \displaystyle M\).
И соедини с противоположной вершиной!
Получившийся отрезок \( \displaystyle BM\) и есть медиана.
Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Медиана в прямоугольном треугольнике
Медиана равна половине гипотенузы прямоугольного треугольника!
Почему. При чём тут прямой угол?
Давай смотреть внимательно. Только не на треугольник, а на … прямоугольник.
Ты заметил, что наш треугольник \( \displaystyle ABC\) – ровно половина этого прямоугольника?
Проведём диагональ \( \displaystyle BD\):
Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам?
Но одна из диагоналей – \( \displaystyle AC\) – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы \( \displaystyle \Delta ABC\).
Она называлась у нас \( \displaystyle M\).
Значит, половина второй диагонали – наша медиана \( \displaystyle BM\). Диагонали равны, их половинки, конечно же, тоже. Вот и получим \( \displaystyle BM=MA=MC\)
Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.
Более того, так бывает только в прямоугольном треугольнике!
Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.
Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника?
Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.
Решение задач на свойства медианы в прямоугольном треугольнике
Давай посмотрим, как это свойство помогает решать задачи.
Задача №1:
В \( \displaystyle \Delta ABC\) стороны \( \displaystyle AC=5\); \( \displaystyle BC=12\). Из вершины \( \displaystyle C\) проведена медиана \( \displaystyle CN\).
Найти \( \displaystyle AB\), если \( \displaystyle AB=2CN\).
Сразу вспоминаем, это если \( \displaystyle CN=\frac
<2>\), то \( \displaystyle \angle ACB=90<>^\circ \)! Ура! Можно применить теорему Пифагора!
Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике, мы никак не могли бы решить эту задачу. А теперь можем!
Применяем теорему Пифагора:
А в следующей задаче пусть у нас будет не одна, а целых три медианы! Как же они себя ведут?
Запомни очень важный факт:
Три медианы в треугольнике (любом!) пересекаются в одной точке и делятся этой точкой в отношении \( 2:1\), считая от вершины.
Сложно? Смотри на рисунок:
Медианы \( \displaystyle AM\), \( \displaystyle BN\) и \( \displaystyle CK\) пересекаются в одной точке.
Задача №2:
Решение:
\( \displaystyle \angle B=90<>^\circ \) – треугольник прямоугольный!
(Применили то, что медиана, проведённая к гипотенузе равна половине гипотенузы).
Найдём \( \displaystyle AC\) по теореме Пифагора:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Теорема о медиане и площади треугольника
Медиана делит площадь треугольника пополам
Почему? А давай вспомним самую простую форму площади треугольника. \( S=\frac<1><2>a
И применим эту формулу аж два раза!
Посмотри, медиана \( \displaystyle BM\) разделила \( \displaystyle \triangle ABC\) на два треугольника: \( \displaystyle \triangle ABM\) и \( \displaystyle \triangle BMC\).
Но! Высота-то у них одна и та же – \( \displaystyle BH\)!
Только в \( \displaystyle \triangle ABM\) эта высота \( \displaystyle BH\) опускается на сторону \( \displaystyle AM\), а в \( \displaystyle \triangle BMC\) – на продолжение стороны \( \displaystyle CM\).
Удивительно, но вот бывает и так: треугольники разные, а высота – одна. И вот, теперь-то и применим два раза формулу
1) B \( \displaystyle \triangle ABM\):
«\( \displaystyle a\)» – это \( \displaystyle AM\)
«\( \displaystyle h\)» – это \( \displaystyle BH\)\( \displaystyle \Rightarrow < _<\triangle ABM>>=\frac <1>2) B \( \displaystyle \triangle BMC\):
«\( \displaystyle a\)» – это \( \displaystyle CM\)
«\( \displaystyle h\)» – это опять \( \displaystyle BH\)\( \displaystyle \Rightarrow < _<\triangle BMC>>=\frac <1>Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Теорема о трех медианах треугольника
Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении \( \displaystyle 2:1\ \), считая от вершины.
Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?
1. Медианы треугольника пересекаются в одной точке.
2. Точкой пересечения медианы делятся в отношении \( \displaystyle 2:1\ \), считая от вершины.
Давай попробуем разгадать секрет этой теоремы, то есть доказать ее.
Доказательство теоремы о трех медианах треугольника
Сначала проведем не все три, а только две медианы. Они-то уж точно пересекутся, правда? Обозначим точку их пресечения буквой \( \displaystyle E\).
Соединим точки \( \displaystyle N\) и \( \displaystyle K\). Что получилось?
Конечно, \( \displaystyle NK\) – средняя линяя \( \displaystyle \triangle ABC\). Ты помнишь, что это значит?
А теперь проведем ещё одну среднюю линию: отметим середину \( \displaystyle AE\) – поставим точку \( \displaystyle F\), отметим середину \( \displaystyle EC\) — поставим точку \( \displaystyle G\).
Теперь \( \displaystyle FG\) – средняя линия \( \displaystyle \triangle AEC\). То есть:
Что из этого следует?
Посмотри теперь на четырехугольник \( \displaystyle NKGF\). У какого четырехугольника противоположные стороны (\( \displaystyle NK\) и \( \displaystyle FG\)) параллельны и равны?
Конечно же, только у параллелограмма!
Значит, \( \displaystyle NKGF\) – параллелограмм. Ну и что?
А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.
Снова смотрим на рисунок.
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Формула длины медианы треугольника
Как же найти длину медианы, если известны стороны? А ты уверен, что тебе это нужно?
Откроем страшную тайну: эта формула не очень полезная. Но всё-таки мы её напишем, а доказывать не будем.
Итак, \( \displaystyle <
^<2>>=\frac <1>
Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике по треугольникам
Лучше всего смотреть это видео с ручкой и тетрадкой в руках. То есть ставьте видео на паузу и решайте задачи самостоятельно.
Помните, понимать и уметь решать — это два, совершенно разных навыка. Очень часто вы понимаете как решить задачу, но не можете это сделать. Или допускаете ошибки, или просто теряетесь и не можете найти ход решения.
Как с этим справиться?
Нужно решать много задач. Другого способа нет. Вы должны совершить свои ошибки, чтобы научиться их не допускать.
ЕГЭ №6 Равнобедренный треугольник, произвольный треугольник
В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Очень часто все «проблемы» с решением задач на равнобедренный треугольник решаются построением высоты. Также мы научимся решать и «обычные» треугольники.
ЕГЭ №6 Прямоугольный треугольник, теорема Пифагора, тригонометрия
Большинство задач в планиметрии решается через прямоугольные треугольники. Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.
Но на уроках этой темы мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше.
И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.
В этом видео мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.
ЕГЭ №16. Подобие треугольников. Задачи н доказательство
Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников!
Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства. Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.
В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.
Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.
Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.
Свойство пересечения медиан треугольника. Центроид или центр тяжести треугольника
Пересечение медиан треугольника
Центроид треугольника (центр тяжести треугольника) – точка пересечения медиан
Теорема о пересечении медиан
В любом треугольнике медианы пересекаются в одной точке.
Точкой пересечения медианы делятся в отношении 2:1, считая от вершины:
Точка О – центр тяжести треугольника АВС
Доказательство теоремы о центре тяжести треугольника
Шаг 1
Рассмотрим треугольник АВС. Проведем в нем медианы АЕ и ВМ. Точку пересечения медиан обозначим буквой О.
Точка пересечения медиан треугольника. Доказательство теоремы. Шаг 1
Шаг 2
Разделим отрезки АО и ВО пополам точками Р и Т.
Точка пересечения медиан треугольника. Доказательство теоремы. Шаг 2
Шаг 3
Соединим точки Р, М, Е и Т.
Точка пересечения медиан треугольника. Доказательство теоремы. Шаг 3
Шаг 4
Рассмотрим треугольник АОВ. Так как по построению АР=РО и ВТ = ТО, то РТ – средняя линия этого треугольника:
Точка пересечения медиан треугольника. Доказательство теоремы. Шаг 4
Шаг 5
Рассмотрим треугольник АВС. Так как ВМ и АЕ – медианы по условию, то МЕ – средняя линия треугольника АВС:
Точка пересечения медиан треугольника. Доказательство теоремы. Шаг 5
Шаг 6
Рассмотрим четырехугольник РТЕМ.
То по признаку параллелограмма РТЕМ – параллелограмм.
Точка пересечения медиан треугольника. Доказательство теоремы. Шаг 6
Шаг 7
По свойству диагоналей параллелограмма: диагонали в точке пересечения делятся пополам. Следовательно:
Точка пересечения медиан треугольника. Доказательство теоремы. Шаг 7
Шаг 8
По построению АР=РО и ВТ = ТО.
Центр тяжести треугольника. Доказательство теоремы. Шаг 8
Шаг 9
Докажем, что три медианы треугольника пересекаются в одной точке, т.е. медиана СК будет проходить через точку О.
Предположим, что медианы АЕ и ВМ пересекаются в точке О, а медианы АЕ СК в точке О1.
Так как медианы точкой пересечения делятся в отношении 2:1, считая от вершины, то:
Так как правые части равенств равны, то будут равны и левые части:
Центр тяжести треугольника. Доказательство теоремы. Шаг 9
Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
Медиана треугольника — это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.
Свойства медиан треугольника
1. Медиана разбивает треугольник на два треугольника одинаковой площади.
2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника (центроидом).
3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.
Длина медианы проведенной к стороне:
(док-во достроением до параллелограмма и использованием равенства в параллелограмме удвоенной суммы квадратов сторон и суммы квадратов диагоналей
)
Т1. Три медианы треугольника пересекаются в одной точке М, которая делит каждую из них в отношении 2:1, считая от вершин треугольника. Дано: ∆ABC, СС1, АА1, ВВ1 — медианы
∆ABC. Доказать:и
. Д-во: Пусть М — точка пересечения медиан СС1, АА1 треугольника ABC. Отметим A2 — середину отрезка AM и С2 — середину отрезка СМ. Тогда A2C2 — средняя линия треугольника АМС. Значит,А2 С2 || АС
На медиане АА1 такой точкой является точка М, следовательно, точка М и есть точка пересечения медиан АА1 иBB1.
Таким образом,
n
Доказать:SAMB =SBMC =SAMC. Доказательство.
и высота, проведенная из вершины В, у них общая.
т.к. равны их основания
и высота, проведенная из вершины М, у них общая. Тогда
Биссектриса треугольника.Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.
Биссектриса угла есть геометрическое место точек внутри угла, равноудалённых от сторон угла.
1. Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
2. Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
3. Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса).
Вычисление длины биссектрисы
lc — длина биссектрисы, проведённой к стороне c,
a,b,c — стороны треугольника против вершин A,B,C соответственно,
p — полупериметр треугольника,
al,bl — длины отрезков, на которые биссектриса lc делит сторону c,
α,β,γ — внутренние углы треугольника при вершинах A,B,C соответственно,
hc — высота треугольника, опущенная на сторону c.
Метод площадей.
Характеристика метода. Из названия следует, что главным объектом данного метода является площадь. Для ряда фигур, например для треугольника, площадь довольно просто выражается через разнообразные комбинации элементов фигуры (треугольника). Поэтому весьма эффективным оказывается прием, когда сравниваются различные выражения для площади данной фигуры. В этом случае возникает уравнение, содержащее известные и искомые элементы фигуры, разрешая которое мы определяем неизвестное. Здесь и проявляется основная особенность метода площадей – из геометрической задачи он «делает» алгебраическую, сводя все к решению уравнения (а иногда системы уравнений).
Можно выделить 2 направления этого метода:
1) Метод сравнения: связан с большим кол-вом формул S одних и тех же фигур
2) Метод отношения S: основан на след опорных задачах:
Теорема Чевы
Доказательство.
Обозначим через точку
пересечения отрезков
и
. Опустим из точек С и А перпендикуляры на прямую ВВ1 до пересечения с ней в точках Kи L соответственно (см. рисунок).
Поскольку треугольники
и
имеют общую сторону
, то их площади относятся как высоты, проведенные на эту сторону, т.е. AL иCK :
Последнее равенство справедливо, так как прямоугольные треугольники
и
подобны по острому углу.
Аналогично получаем
и
Перемножим эти три равенства:
что и требовалось доказать.
Замечание. Отрезок (или продолжение отрезка), соединяющий вершину треугольника с точкой, лежащей на противоположной стороне или ее продолжении, называется чевианой.
Теорема (обратная теорема Чевы). Пусть точки A’,B’,C’ лежат на сторонах BC,CA и AB треугольника ABC соответственно. Пусть выполняется соотношение
Тогда отрезки AA’,BB’,CC’ и пересекаются в одной точке.
Теорема Менелая
Теорема Менелая. Пусть прямая пересекает треугольник ABC, причем C1 – точка ее пересечения со стороной AB, A1 – точка ее пересечения со стороной BC, и B1 – точка ее пересечения с продолжением стороны AC. Тогда
Доказательство. Проведем через точку C прямую, параллельную AB. Обозначим через K ее точку пересечения с прямой B1C1.
ТреугольникиAC1B1иCKB1подобны (∟C1AB1= ∟KCB1, ∟AC1B1= ∟CKB1). Следовательно,
Из каждого равенства выразим CK:
Откуда
что и требовалось доказать.
Теорема (обратная теорема Менелая). Пусть дан треугольник ABC. Пусть точка C1 лежит на стороне AB, точка A1 – на стороне BC, а точка B1 – на продолжении стороны AC, причем выполняется соотношение
Тогда точки A1,B1 и C1 лежат на одной прямой.
Дата добавления: 2018-05-13 ; просмотров: 6950 ; Мы поможем в написании вашей работы!
- доказательство что любой треугольник равнобедренный
- доказательство что мистика существует