допускаемое напряжение в чем измеряется
Предельные и допустимые напряжения
Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).
Для пластичных материалов предельным напряжением считают предел текучести, т.к. возникающие пластические деформации не исчезают после снятия нагрузки:
Для хрупких материалов, где пластические деформации отсутствуют, а разрушение возникает по хрупкому типу (шейки не образуется), за предельное напряжение принимают предел прочности:
Для пластично-хрупких материалов предельным напряжением считают напряжение, соответствующее максимальной деформации 0,2% (сто,2):
Допускаемое напряжение — максимальное напряжение, при котором материал должен нормально работать.
Допускаемые напряжения получают по предельным с учетом запаса прочности:
где [σ] — допускаемое напряжение; s — коэффициент запаса прочности; [s] — допускаемый коэффициент запаса прочности.
Примечание. В квадратных скобках принято обозначать допускаемое значение величины.
Допускаемый коэффициент запаса прочности зависит от качества материала, условий работы детали, назначения детали, точности обработки и расчета и т. д.
Он может колебаться от 1,25 для простых деталей до 12,5 для сложных деталей, работающих при переменных нагрузках в условиях ударов и вибраций.
Особенности поведения материалов при испытаниях на сжатие:
1. Пластичные материалы практически одинаково работают при растяжении и сжатии. Механические характеристики при растяжении и сжатии одинаковы.
2. Хрупкие материалы обычно обладают большей прочностью при сжатии, чем при растяжении: σвр
Расчеты на прочность при растяжении и сжатии
Расчеты на прочность ведутся по условиям прочности — неравенствам, выполнение которых гарантирует прочность детали при данных условиях.
Для обеспечения прочности расчетное напряжение не должно превышать допускаемого напряжения:
Расчетное напряжение а зависит от нагрузки и размеров поперечного сечения, допускаемое только от материала детали и условий работы.
Существуют три вида расчета на прочность.
1. Проектировочный расчет — задана расчетная схема и нагрузки; материал или размеры детали подбираются:
— определение размеров поперечного сечения:
по величине σпред можно подобрать марку материала.
2. Проверочный расчет — известны нагрузки, материал, размеры детали; необходимо проверить, обеспечена ли прочность.
3. Определение нагрузочной способности (максимальной нагрузки):
Примеры решения задач
Прямой брус растянут силой 150 кН (рис. 22.6), материал — сталь σт = 570 МПа, σв = 720 МПа, запас прочности [s] = 1,5. Определить размеры поперечного сечения бруса.
Решение
1. Условие прочности:
2. Потребная площадь поперечного сечения определяется соотношением
3. Допускаемое напряжение для материала рассчитывается из заданных механических характеристик. Наличие предела текучести означает, что материал — пластичный.
4. Определяем величину потребной площади поперечного сечения бруса и подбираем размеры для двух случаев.
Сечение — круг, определяем диаметр.
Сечение — равнополочный уголок № 5 по ГОСТ 8509-86.
Ближайшая площадь поперечного сечения уголка — А = 4,29 см 2 (d = 5 мм). 4,91 > 4,29 (Приложение 1).
Контрольные вопросы и задания
1. Какое явление называют текучестью?
2. Что такое «шейка», в какой точке диаграммы растяжения она образуется?
3. Почему полученные при испытаниях механические характеристики носят условный характер?
4. Перечислите характеристики прочности.
5. Перечислите характеристики пластичности.
6. В чем разница между диаграммой растяжения, вычерченной автоматически, и приведенной диаграммой растяжения?
7. Какая из механических характеристик выбирается в качестве предельного напряжения для пластичных и хрупких материалов?
8. В чем различие между предельным и допускаемым напряжениями?
9. Запишите условие прочности при растяжении и сжатии. Отличаются ли условия прочности при расчете на растяжение и расчете на сжатие?
10.
|
Ответьте на вопросы тестового задания.
ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между.
Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.
Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем.
ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Онлайн калькулятор по определению допускаемых напряжений материалов: сталей и сплавов алюминия, меди и титана.
Калькулятор онлайн определяет расчетные допускаемые напряжения σ в зависимости от расчетной температуры для различных марок материалов следующих типов: углеродистая сталь, хромистая сталь, сталь аустенитного класса, сталь аустенито-ферритного класса, алюминий и его сплавы, медь и ее сплавы, титан и его сплавы согласно ГОСТ-52857.1-2007 [1].
Помощь на развитие проекта premierdevelopment.ru
Send mail и мы будем знать, что движемся в правильном направлении.
Спасибо, что не прошели мимо!
I. Методика расчета:
Допускаемые напряжения были определены согласно ГОСТ-52857.1-2007 [1].
для углеродистых и низколегированных сталей
для жаропрочных, жаростойких и коррозионно-стойких сталей аустенитного класса
Для расчетного срока эксплуатации до 2*10 5 ч допускаемое напряжение, расположенное ниже горизонтальной черты, умножают на коэффициент 0,9 при температуре Re/20 — минимальное значение предела текучести при температуре 20 °C, МПа; Rр0,2/20 — минимальное значение условного предела текучести при остаточном удлинении 0,2% при температуре 20 °С, МПа. допускаемое
напряжение — наибольшие напряжения, которые можно допустить в конструкции при условии его безопасной, надежной и долговечной работы. Значение допускаемого напряжения устанавливается путем деления предела прочности, предела текучести и пр. на величину, большую единицы, называемую коэффициентом запаса. расчетная
температура — температура стенки оборудования или трубопровода, равная максимальному среднеарифметическому значению температур на его наружной и внутренней поверхностях в одном сечении при нормальных условиях эксплуатации (для частей корпусов ядерных реакторов расчетная температура определяется с учетом внутренних тепловыделений как среднеинтегральное значение распределения температур по толщине стенки корпуса (ПНАЭ Г-7-002-86, п.2.2; ПНАЭ Г-7-008-89, прил.1).
Предельные и допустимые напряжения
Предельные и допустимые напряжения
Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная дефомация).
Для пластичных материалов предельным напряжением считают предел текучести, т. к. возникающие пластические деформации не исчезают после снятия нагрузки:
Для хрупких материалов, где пластические деформации отсутствуют, а разрушение возникает по хрупкому типу (шейки не образуется), за предельное напряжение принимают предел прочности:
Для пластично-хрупких материалов предельным напряжением считают напряжение, соответствующее максимальной деформации 0,2% ():
Допускаемое напряжение — максимальное напряжение, при котором материал должен нормально работать.
Допускаемые напряжения получают по предельным с учетом запаса прочности:
где — допускаемое напряжение;
— коэффициент запаса прочности;
— допускаемый коэффициент запаса прочности.
Примечание. В квадратных скобках принято обозначать допускаемое значение величины.
Допускаемый коэффициент запаса прочности зависит от качества материала, условий работы детали, назначения детали, точности обработки и расчета и т. д.
Он может колебаться от 1,25 для простых деталей до 12,5 для сложных деталей, работающих при переменных нагрузках в условиях ударов и вибраций.
Особенности поведения материалов при испытаниях на сжатие
Если допускаемое напряжение при растяжении и сжатии различно, их обозначают (растяжение),
(сжатие).
Эта теория взята со страницы решения задач по предмету «техническая механика»:
Возможно эти страницы вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Допускаемые напряжения
В результате испытаний на растяжение (сжатие) можно получить основные данные о механических свойствах материала. Рассмотрим, как можно полученные результаты применить в практических расчетах инженерных конструкций на прочность.
Детали машин и других конструкций должны удовлетворять условиям прочности и жесткости. Размеры деталей необходимо подбирать такими, чтобы под действием приложенных нагрузок они не разрушались и не получали деформаций, превышающих допускаемые. В большинстве деталей машин остаточные деформации, как правило, не допускаются.
Заметные остаточные деформации появляются в пластичных материалах, когда напряжения достигают предела текучести . Разрушение наступает, когда напряжения достигают величины предела прочности
; при этом деформации хрупкого материала могут быть незначительными.
Итак, для деталей, изготовленных из пластичного материала, опасным напряжением можно считать предел текучести ; для деталей из хрупкого материала – предел прочности
.
Естественно, что эти напряжения не могут быть приняты в качестве допускаемых. Их следует уменьшить настолько, чтобы в эксплуатационных условиях действующие напряжения всегда были меньше предела пропорциональности.
Таким образом, допускаемое напряжение может быть определено по формуле:
где — опасное (предельное) напряжение
— нормативный коэффициент запаса прочности (т.е. предписываемый нормами проектирования и конструирования).
Выбор величины коэффициента запаса прочности зависит от состояния материала (хрупкое или пластичное), характера приложения нагрузки (статическая, динамическая или повторно-переменная) и некоторых общих факторов, имеющих место в той или иной степени во всех случаях.
К этим факторам относятся:
1. Неоднородность материала и, следовательно, различие его механических характеристик в образцах и реальных деталях.
2. Неточность задания величин внешних нагрузок.
3. Приближенность расчетных схем и некоторая приближенность расчетных формул.
4. Учет конкретных условий работы рассчитываемой конструкции.
5. Метод определения напряжений (степень точности этого метода).
6. Долговечность и значимость проектируемого сооружения или машины.
Эти факторы учитывает коэффициент запаса прочности , который иногда называют основным.
Коэффициент определяется опытным путем.
В каждой области техники уже сложились свои традиции, свои требования, свои методы и специфика расчетов, в соответствии с которыми и назначается коэффициент запаса прочности.
Величина запаса прочности зависит от того, какое напряжение считается опасным.
Для пластичных материалов в случае статической нагрузки опасным напряжением, как уже сказано следует считать предел текучести, т.е.
, а
, тогда:
где — коэффициент запаса прочности по отношению к пределу текучести.
На основании данных длительной практики конструирования, расчета и эксплуатации машин и сооружений, величина коэффициента запаса прочности для сталей при статической нагрузке принимается равной
.
Для хрупких материалов при статических нагрузках опасное напряжение – предел прочности, т.е.
, а
, тогда:
где — коэффициент запаса прочности по отношению к пределу прочности.
Величину коэффициента запаса прочности для хрупких материалов обычно принимают равной от . Допускаемые напряжения, получаемые по этой формуле, обычно называют основными допускаемыми напряжениями в связи с тем, что предел прочности определить проще, чем предел текучести.
Поэтому иногда и для пластичных материалов при определении допускаемых напряжений исходят из величины предела прочности, пользуясь формулой:
В этом случае, учитывая, что превышает
на 50-70%, коэффициент запаса прочности
для пластичных материалов принимают равным
.
Расчет на прочность по допускаемым напряжениям предполагает выбор нормативного коэффициента запаса прочности , который выбирается из таблиц, составляемых на основании большого числа экспериментальных исследований.
Однако иногда размеры конструкции или детали уже известны (заданы из эксплуатационных или других требований).
В этом случае расчетным путем определяют фактический коэффициент запаса прочности . Для этого рассчитывают в опасном сечении детали
и, зная для материала детали предельное напряжение или
, определяют фактический коэффициент запаса:
— для хрупких материалов
— для пластичных материалов
Затем расчетный и нормативный коэффициенты сравнивают между собой, и дается заключение о работоспособности конструкции.
Выбор величины допускаемых напряжений очень важен, т.к. от правильного установления их значений зависят прочность и безопасность проектируемых конструкций, а также экономичность расчета.
Ориентировочные величины основных допускаемых напряжений, принятые в настоящее время для наиболее распространенных материалов, приводятся в справочной литературе.
Конечной целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальных затратах материала.
Допускаемые напряжения
и механические свойства материалов
Допускаемые напряжения даны без учета концентрации напряжений и размеров детали, вычислены для стальных гладких полированных образцов диаметром 6-12 мм и для необработанных круглых чугунных отливок диаметром 30 мм. При определении наибольших напряжений в рассчитываемой детали нужно номинальные напряжения σном и τном умножать на коэффициент концентрации kσ или kτ:
1. Допускаемые напряжения*
для углеродистых сталей обыкновенного качества в горячекатаном состоянии
2. Механические свойства и допускаемые напряжения
углеродистых качественных конструкционных сталей
3. Механические свойства и допускаемые напряжения
легированных конструкционных сталей
4. Механические свойства и допускаемые напряжения
для отливок из углеродистых и легированных сталей
5. Механические свойства и допускаемые напряжения
для отливок из серого чугуна
6. Механические свойства и допускаемые напряжения
для отливок из ковкого чугуна
7. Допускаемые напряжения для пластмассовых деталей
Для пластичных (незакаленных) сталей при статических напряжениях (I вид нагрузки) коэффициент концентрации не учитывают. Для однородных сталей (σв > 1300 МПа, а также в случае работы их при низких температурах) коэффициент концентрации, при наличии концентрации напряжения, вводят в расчет и при нагрузках I вида (k > 1). Для пластичных сталей при действии переменных нагрузок и при наличии концентрации напряжений эти напряжения необходимо учитывать.
Приближенные эмпирические зависимости пределов выносливости для случаев нагружения с симметричным циклом: