Энергия что это в физике
Что такое энергия?
Ученым трудно объяснить, что такое энергия. Это не является веществом или объектом, к которому можно прикоснуться или удерживать. Но вещества и объекты обладают энергией.
Полезное определение заключается в том, что энергия — это то, что необходимо для того, чтобы все произошло. Она может заставить вещи двигаться или меняться и делает что-то!
Различные формы
Существует и различаются основные виды энергии. Некоторые виды включают в себя создание материи, в то время как другие сохраняются.
Многие объекты имеют энергию, хранящуюся в них из-за их положения (автомобиль на вершине холма) или из-за их природы (взрывчатые вещества).
Потенциальная энергия представляет накопленную, она готова и ждет, чтобы все произошло.
Связанную с чем-то движущимся или изменяющимся каким-то образом, можно назвать активной энергией (светом, связанным с взрывающимися фейерверками).
Потенциальные формы энергии:
Энергия в повседневной жизни
Все вокруг нас зависит от энергии. Автомобили зависят от хранившейся в используемом ими топливе. Используется в домах, офисах и индустрии для того чтобы заставить работать все виды машин. Она используется для освещения и нагревания наших домов, для того чтобы варить и хранить нашу еду.
Очевидно, трудно сказать, что такое энергия, но она важна для нас. Легче сказать, на что способна.
Энергия — это способность выполнять работу.
Все, что работает, должно иметь запас энергии. Мотоцикл не будет продолжать работать, если он не снабжен бензином. Бензин обеспечивает ресурсами, которые двигатель использует для работы.
Когда человек нажимает педали велосипеда, сила приходит от мышц в вашем теле. Ваши мышцы получают энергию от пищи, которую вы едите. Если необходимо больше чем есть у человека, то экстренная энергия хранится в теле как жир. С другой стороны, неадекватная энергетическая диета приведет к худому и действительно нездоровому организму!
Все, что мы делаем, требует энергии даже для сна! В таблице ниже показано количество необходимое для различных видов деятельности.
Энергия, вовлеченная в повседневную деятельность:
Деятельность: | кДж в час: |
Человек спит | 200 |
Сидит на совещании | 300 |
Легкая работа | 550 |
Ходьба | 700 |
Активная работа | 850 |
Идет в гору | 1000 |
Велоспорт | 1150 |
Бег | 1700 |
Электрическая энергия, используемая средним домом всей семьей, в день | 80 000 кДж |
Сохранение энергии
Хотя энергия может изменить свою форму, она не может просто исчезнуть. Если проследить источник то обнаружится, что она просто не появляется из ниоткуда.
Эти открытия привели ученых к утверждению закона об энергии.
Первая часть гласит, что энергия должна откуда-то поступать. Она никогда не создается из ничего, но может изменяться из одной формы в другую, но общее количество остается неизменным. Энергетические цепи обычно начинаются с некоторой формы потенциальной энергии. Если проследить множество энергетических цепочек, то можно обнаружить, что она исходит от ядерных реакций внутри Солнца, которые преобразуют энергию, хранящуюся в атомных ядрах в тепловую и лучистую.
Конструкторы обеспокоены тем, чтобы сделать приборы, которые производят максимальный коэффициент полезного действия.
Человеческий организм не очень эффективен в преобразовании энергии. Спортсмен использует до 40000 джоулей химической (пищевой) при спринте на 100 м. Только 8000 из этого преобразуется в кинетическую энергию бега. Остальное тратится как тепло!
Количество энергии, преобразуемой машиной каждую секунду, называется мощностью машины. Мощность измеряется в ваттах (1 ватт равен 1 джоулю энергии, преобразуемой в каждую секунду).
Преобразование энергии
Энергия может передаваться от одного объекта к другому. Если вы касаетесь горячего объекта, тепло передается на ваши пальцы. Передача не влечет за собой изменения в типе энергии.
Преобразования или изменения происходят вокруг нас все время. При преобразовании энергия изменяется от одного типа к другому или на несколько различных типов. Электрическая лампочка преобразует электрическую в световую и инфракрасную.
Происходит преобразование энергии:
В трансформации важно определить затраты и выход. Иногда передачи и преобразования энергии происходят один за другим. Это называется энергетической цепью.
Например, преобразование энергии в фонарике:
Уравнения преобразования энергии
Во время преобразования энергия обычно преобразуется в более чем одну форму. Слово уравнение может быть использовано, чтобы показать изменения энергии, которые происходят.
Например, преобразование энергии в тостере:
Уравнение преобразования энергии тостера:
Устройство, преобразующее энергию из одной формы в другую, называется машиной или преобразователем энергии.
Измерение энергии
Научной единицей энергии является джоуль. Это названо в честь британского ученого по имени Джеймс Джоуль. Один джоуль — это очень небольшое количество, поэтому ученые используют килоджоули (кДж).
Если поднять объект на 1 метр весом 1 кг, то объект получит 1 джоуль гравитационной энергии.
Если нагреть 1 мл воды на 1 градус С, то вода получит 4,2 джоулей тепловой энергии.
Энергия в пище
Все, что вы делаете каждый день, даже сон, требует энергии. Различные виды деятельности требуют разного количества.
Сколько энергии нужно вашему организму каждый день:
Мужчина или женщина, молодые или старые, активные или нет, люди получают ресурсы, в которых они нуждаются каждый день от еды, которую они едят. Эта пища является формой химической потенциальной энергии. Когда еда расходуется в клетках тела во время дыхания, химическая потенциальная энергия выпускается. Различные продукты выделяют разное количество ресурсов.
Ежедневные энергетические потребности женщин и мужчин в(килоджоулей)
Возраст | Женщины (килоджоулей) | Мужчины (килоджоулей) |
5 лет | 7000 | 7000 |
10 лет | 9000 | 10000 |
15 лет | 9500 | 13000 |
20 лет | 9500 | 12500 |
25-летние | 9000 | 11500 |
Держать себя здоровым без избыточного веса — — — — > сбалансировать потребление с расходом
Некоторые виды пищи обеспечивают больше энергии, чем другие. Жиры дают вдвое больше, чем углеводы. В виду того что жир дает больше чем другие типы еды, можно подумать что еда всегда хороша для нас. ЭТО НЕ ТАК! Организм не может использовать так много еды одновременно. Все что необходимо он использует, а лишнее хранит как жир. Это может привести к ожирению и другим проблемам со здоровьем.
Когда вы активны, организм сжигает много энергии. Когда вы смотрите телевизор или играете на компьютере, организм сжигает гораздо меньше.
Большее количество энергии, которую наши тела получают от пищи, преобразуется в тепловую в результате дыхания. Это использовано для того чтобы держать наши тела на определенной температуре постоянно (37 градусах C). Это важно, если химические реакции, которые происходят в клетках должны работать эффективно.
Чтобы узнать, сколько энергии хранится в пище, вы можете превратить ее в тепло и измерить, что может сделать это тепло.
Альтернативные источники
Солнечная энергия поступает на Землю от Солнца в виде света. Когда большинство людей думают о свете, они думают о солнечной энергии. Но солнечная — не единственная форма, которая исходит от Солнца. Ветер также является формой, которую солнце помогает сделать. Миллионы лет назад Энергия Солнца помогала производить ископаемые виды топлива, такие как уголь, нефть и природный газ. Теперь эти ископаемые виды топлива обеспечивают работающие автомобили, отопление домов и питание компьютеров.
Большая часть энергии в мире используется в виде ископаемого топлива. Эти виды топлива, такие как уголь, нефть и природный газ, поступают от Солнца. Солнечная энергия хранится в растениях и животных, которые вымерли миллионы лет назад.
Сжигание ископаемых видов топлива является единственным способом высвобождения накопленных в них ресурсов. Проблема с ископаемыми видами топлива заключается в том, что они загрязняют окружающую среду, и они занимают очень много времени. Это невозобновляемые источники энергии. После того, как ископаемые виды топлива были использованы, они ушли навсегда.
Возобновляемые источники энергии заканчиваются. Люди во всем мире ищут альтернативные источники, которые являются экологически чистыми, безопасными и возобновляемыми. Некоторые были использованы в течение многих лет. Некоторые все еще находятся на экспериментальной стадии. Большинство из них используются для производства электрической энергии, но некоторые используются в их первоначальном виде.
Альтернативные (возобновляемые) источники энергии включают:
Солнечная
Солнечная энергия поступает от солнца в виде электромагнитных волн. Количество Земли получает в год более чем достаточно, чтобы обеспечить все мировые потребности на этот год.
Ветра
Движение воздуха (ветер) является результатом неравномерного нагрева земной поверхности солнцем. Ветряные турбины превращаются в ветер и вырабатывают электричество.
Гидроэлектрическая
Когда вода, накопленная высоко за плотиной, стекает по трубам в электростанцию, ее гравитационная потенциальная энергия преобразуется в кинетическую, которая превращает турбины, генерирующие электричество.
Биомасса
Это органический материал, который преобразуется в том числе и жидкое биотопливо. Древесина — это форма биомассы. Сжигание древесной щепы производит газ, который сжигается, чтобы высвободить ресурсы, которые могут быть использованы для обеспечения отопления или использоваться для производства электроэнергии.
Приливная
Приливы вызваны притяжением Луны. Плотина через лиман может удерживать воду, а затем использовать ее для выработки электроэнергии.
Биогаз
Волновая
Волны вызваны ветром, дующим через море. Большие поплавки которые двигают вверх и вниз с волнами теперь используются для генерации электричества.
Водород
Водород используется в топливных элементах. Его можно совместить с кислородом для того чтобы произвести электрический ток. Он горит легко выпуская большое количество тепловой энергии.
Энергия
Из Википедии — свободной энциклопедии
Эне́ргия (др.-греч. ἐνέργεια — действие, деятельность, сила, мощь) — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.
С фундаментальной точки зрения энергия представляет собой один из трёх (наравне с импульсом и моментом импульса) аддитивных интегралов движения (то есть сохраняющихся во времени величин), связанный, согласно теореме Нётер, с однородностью времени, то есть независимостью законов, описывающих движение, от времени.
Слово «энергия» введено Аристотелем в трактате «Физика», однако там оно обозначало деятельность человека.
Энергия
Энергия | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Размерность |
---|
Описание | Формула | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Силе, умноженной на длину | E F·l | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Давлению, умноженному на объём | E P·V | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Импульсу, умноженному на скорость | E p·v | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Массе, умноженной на квадрат скорости | E m·v² | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Заряду, умноженному на напряжение | E q·U | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Мощности, умноженной на время | E В системе величин LMT энергия имеет размерность
Виды энергии
Механика различает потенциальную энергию (или, в более общем случае, энергию взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной механической энергией. Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть разделена на энергию слабого и сильного взаимодействий). В химии рассматриваются такие величины, как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества. См. также: химический потенциал. КинетическаяКинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. ПотенциальнаяПотенциальная энергия Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является Джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии. ЭлектромагнитнаяГравитационнаяГравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением. Гравитационно-связанная система — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационную энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными. ЯдернаяЯдерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях. Энергия связи — энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента. ВнутренняяВнутренняя энергия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутреннюю энергию тела нельзя измерить напрямую. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между её значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход. Химический потенциалХимический потенциал Энергия взрываВзрыв — физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов. При химическом взрыве, кроме газов, могут образовываться и твёрдые высокодисперсные частицы, взвесь которых называют продуктами взрыва. Энергию взрыва иногда измеряют в тротиловом эквиваленте — мере энерговыделения высокоэнергетических событий, выраженной в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии. Проблемы энергопотребленияСуществует довольно много форм энергии, большинство [3] из которых так или иначе используются в энергетике и различных современных технологиях. Темпы энергопотребления растут во всем мире, поэтому на современном этапе развития цивилизации наиболее актуальна проблема энергосбережения. Условно источники энергии можно поделить на два типа: невозобновляемые и постоянные. К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, неэкологична, и многие из них истощаются. К постоянным источникам можно отнести энергию солнца, энергию, получаемую на ГЭС и т. д. История терминаТермин «энергия» происходит от слова energeia, которое впервые появилось в работах Аристотеля. В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила. [4] Гаспар-Гюстав Кориолис впервые использовал термин «кинетическая энергия» в 1829 году, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия». Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной. Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль), математики (Эмиль Клапейрон и Герман Гельмгольц [уточнить] ) — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии». [4] Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия». [4] В 1881 году Уильям Томсон заявил перед слушателями: [5] Само слово энергия, хотя и было впервые употреблено в современном смысле доктором Томасом Юнгом приблизительно в начале этого века, только сейчас входит в употребление практически после того, как теория, которая дала определение энергии, … развилась от просто формулы математической динамики до принципа, пронизывающего всю природу и направляющего исследователя в области науки. The very name energy, though first used in its present sense by Dr Thomas Young about the beginning of this century, has only come into use practically after the doctrine which defines it had … been raised from mere formula of mathematical dynamics to the position it now holds of a principle pervading all nature and guiding the investigator in the field of science. В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла» (англ. dynamical theory of heat ) и «энергетика» (англ. energetics ). В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии. Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics ). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе. В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства). В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии: [6] Существует факт, или, если угодно, закон, управляющей всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определённая величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечено. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним. There is a fact, or if you wish, a law, governing natural phenomena that are known to date. There is no known exception to this law—it is exact so far we know. The law is called conservation of energy; it states that there is a certain quantity, which we call energy that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity, which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number, and when we finish watching nature go through her tricks and calculate the number again, it is the same.
|