для чего нужен молекс на блоке питания
Что такое разъем Molex: как выглядит и для чего нужен?
Всем привет! Сегодня обсудим разъемы Molex: что это такое, как выглядит, для чего нужен, для подключения чего используется. О том, что такое слот SPDIF на материнской плате и для чего он нужен, можно почитать здесь.
Коннекторы Молекс
Molex PC peripheral power connector — электрический соединитель, разработанный и выпускаемый фирмой «Молекс». Разъемы активно продвигаются производителем с 50-х годов прошлого века и нашли себе место в первых компьютерах.
Соединители такого типа отвечают принятому стандарту при построении электрических цепей: вилка имеет наружную оболочку, розетка вставляется внутрь соединителя. Впервые разъем Molex был задействован для подачи энергии на дисковод флоппи-накопителей производства Shugart.
Количество контактов может быть от 2 до 24. Также установлено 3 диаметра контактов: 1,57 мм передает ток до 5 А, 2,36 мм не более 8,5 А, 2,13 до 8 А. Корпус коннектора обычно имеет плоскую форму и изготовлен из нейлона.
Molex 8981
Распространенный соединитель такого типа, применяемы в компьютерах АТ и АТХ — четырех контактный Molex 8981 4 pin для винчестеров PATA и оптических приводов, корпусных вентиляторов и прочих периферических девайсов(изображен на картинке выше).
Здесь используется 4-контактная вилка и провод с трехцветной изоляцией. Распиновка:
Разъём имеет ширину 21 мм. У него есть четкие грани на верхней кромке, образовывающие своеобразный ключ. Вставить неправильно вилку невозможно физически.
Дополнительных защелок нет — вилка в розетке фиксируется благодаря силе трения сопряженных деталей. Из-за этого, новый разъём может тяжело подключаться.
Со течением времени из-за вибраций составные части могут разболтаться, поэтому потребуется уплотнительная прокладка(такое встречалось раньше, сейчас вряд ли вы с этим столкнетесь).
Molex Mini-fit Jr
Еще один популярный разъем, который используется для подачи энергии на материнские платы с шиной PCI Express, которые потребляют 75 ватт. Существуют модификации на 20 и 24 пинов.
Прочие коннекторы Молекс, которые используются в ПК:
Также советую посчитать статью «Кнопка MemOK – для чего нужна на материнской плате и как использовать?». Буду признателен всем, кто расшарит эту публикацию в социальных сетях. До скорой встречи!
Подключение компьютерных вентиляторов охлаждения: все о разъемах
Содержание
Содержание
Корпусные вентиляторы делятся по размерам, типу подшипников, количеству оборотов и даже по способу применения. Одни заточены для создания статического давления, а другие рассчитаны на хороший воздушный поток в корпусе. И самое интересное в том, что один и тот же вентилятор можно подключить с помощью разных коннекторов. Некоторые из них умеют регулировать скорость, а другие работают на полном ходу. Это влияет на комфорт при использовании компьютера. Чтобы подобрать правильный вентилятор, стоит хотя бы поверхностно изучить особенности и нюансы подключения.
Почему коннекторов так много
Немного истории
Когда компьютер только появился и назывался ЭВМ, транзисторы были размером со спичечный коробок, а сама вычислительная машина достигала размеров комнаты и даже квартиры. Если и было нужно охладить такую махину, то для этого использовались огромные промышленные вытяжки, поэтому никто даже не заикался о шуме и комфорте. То ли дело, когда глобальное и грозное «ЭВМ» обтесали, причесали и подкрасили, чтобы получился «компьютер».
Чуть позже серьезное изобретение совсем огламурили и стали ласково звать персональным компьютером. Спасибо Apple: им пришлось сделать многое, чтобы громоздкое чудовище превратилось в привлекательное для покупателей устройство. Другие компании, та же IBM, к примеру, тоже кое-чего добились на этом фронте.
Эти наработки в гонке за персональностью унифицировали и стандартизировали, чтобы мы получили компьютеры такими, какими они стали сейчас.
За уменьшением деталей последовало сокращение размеров корпуса. Спичечные коробки превратились в спички, а позже и вовсе в их десятую часть по размеру. Это, а также повышение мощностных характеристик, стало первым, что потребовало хорошего охлаждения.
Но одно дело охлаждать ЭВМ в шумных рабочих зданиях, другое — остудить мощный компактный компьютер на столе школьника.
Раньше ставили на первый план стабильность и надежность. Ну а жужжит оно — да и пусть. Даже не самые древние модели компьютеров не могут похвастать хорошей системой охлаждения.
Стандартный кулер на процессоре, гудящий блок питания с восьмидесятым вентилятором и парочка ноунейм вертушек в корпусе, подключенных то ли к материнской плате, то ли напрямую к линии 12 В. Лишь бы работало. И никакой регулировки оборотов. Включил, привык к шуму пылесоса — и работаешь. Да что там, под этот шум даже Quake и Unreal заходили на ура. Но, как мы знаем, желания растут, требования тоже.
Требования к комфорту и шуму стали двигать прогресс в будущее, туда, где мы находимся сейчас. Чтобы сочетать тишину, прохладу и мощность, пользователи начали заниматься доработками и улучшениями.
За неимением автоматической регулировки оборотов, в провода впаивали резисторы, чтобы хоть как-то приструнить завывающую вертушку. Энтузиасты придумали более изощренные способы регулировки и дошли до реобасов.
Тогда такие штуки не продавались, поэтому тихие системы были только у тех, кто уверенно пользовался паяльником. Позже эту идею подхватили производители железа и стали выпускать регуляторы в заводском исполнении. А потом реобасы встроили в материнские платы и научили регулировать шум через BIOS.
Чтобы все работало, как надо, вентилятору приделали «третью ногу». То есть, провод, по которому техника ориентируется в оборотах. Так работает трехпиновая регулировка по DC. Так сказать, аналоговый способ.
Он реализован очень просто. Любой компьютерный вентилятор крутится от 12 В. На таком вольтаже будут максимальные обороты. Чтобы их снизить, уменьшают напряжение до семи или даже пяти вольт. DC — это регулировка постоянным током. Постоянными 12 вольтами или 7, 5 и далее.
За снижением вольтажа стоит специальный контроллер на материнке, от которого вентилятору достается готовое питание. На рисунке постоянный ток изображен на верхнем графике, а для контраста внизу есть переменный ток:
Простая ламповая физика — меньше напряжение, меньше света. Однако даже такую технологию поддерживали не все материнки. То есть, поддерживали, но только для мониторинга оборотов. А вот регулировать могли уже не все.
Инженеры подумали и решили, что цифровой технике нужны цифровые технологии. И внедрили технологию PWM. Это уже другая история — про вентиляторы с четырымя проводами и новые материнские платы. Между прочим, массовое использование данной технологии началось почти одновременно с выходом процессоров на платформе LGA 775. Материнские платы научились поставлять комфорт «из коробки», и с тех пор рынок вентиляторов поделился на DC и PWM. Или ШИМ, если говорить по-русски.
Широтно-импульсная модуляция — совершенно новая технология, которая требует от вентилятора наличия еще одной «ноги». Первый провод — для массы, второй — для питания, третий — для мониторинга оборотов, а четвертый — для PWM (информационный канал).
Регулировка оборотов работает еще проще: на вентилятор подается постоянное напряжение 12 В и некая информация для контроллера. В этой информации содержатся команды по открытию и закрытию транзисторов в цепи питания вентилятора. То есть, задаются прерывания. На графике это можно представить так:
Вершинка — транзистор открыт, вентилятор получает все 12 вольт. Далее следует спад — закрытие транзистора и прекращение подачи вольтажа. Так как техника цифровая, то и работа заключается в цифрах, а точнее, в долях секунд. Чем больше наносекунд транзистор находится в открытом состоянии, тем дольше подается вольтаж. Все это продолжается в пределах одного промежутка времени и с очень высокой частотой. То есть, мы можем повторить весь этот процесс с обычным DC-вентилятором вручную, если будем включать и выключать его примерно 23 тысячи раз в секунду. Это соответствует частоте 20 кГц и больше. Таким образом, для достижения максимальной скорости транзистор должен все время быть открыт и скармливать вертушке его родные 12 вольт. Если нужны тишина и комфорт, то вольтаж подается прерывисто — определенное количество раз за период.
В теории переход от DC к PWM меняет не только электрические способности вентиляторов:
На практике же эти плюсы полностью зависят от качества элементной базы и исполнения самого вентилятора.
Надо сказать, что ШИМ применяется не только в вентиляторах. Даже сейчас мы наблюдаем ШИМ. Потому что в любом мониторе с диодной подсветкой применяется PWM для регулировки яркости. Вот наглядный пример и объяснение, как работает технология:
Зачем вентиляторам нужен Molex
Вообще, можно найти вентилятор с таким коннектором, что и подключить будет не к чему. Да и обычный можно положить на полочку, если коннекторы на нем и на материнке не совпадают. Такая путаница на рынке есть и будет, как была проблема с кучей зарядок для каждого телефона, пока microUSB не навел порядок.
Та же участь касается и разнообразия коннекторов. Это сейчас все регулируется, настраивается и вращается. А до некоторых пор производители оснащали четырьмя контактами только разъемы для процессорных кулеров. Остальные довольствовались тремя. Так прижился тандем DC/PWM до наших времен. И даже современные платы работают с обоими вариантами. Но бывает и такое, что разъемов просто не хватает для подключения достаточного количества вентиляторов. На помощь приходит молекс.
Molex выходит напрямую из БП и имеет четырехконтактный разъем с 12 и 5 вольтами, а также две «массы». К нему можно спокойно подцепить хоть десяток вентиляторов. Это решает проблему нехватки разъемов на материнке, чем страдают многие бюджетные модели, особенно в Micro-ATX и Mini-ITX. Но у такого подключения отсутствуют регулировка оборотов и мониторинг.
Чтобы не испортить комфорт, к которому шли десятилетиями, производители выпускают специальные модели, которые могут работать на пониженных оборотах. Это удобно для создания постоянного воздушного потока в корпусе. В таких случаях регулировка оборотов не требуется — минимальных оборотов на вдув и выдув достаточно для охлаждения системы в средней нагрузке. Зато остаются свободные пины на материнке для подключения оборотистых моделей, плюс снимается лишняя нагрузка с шины питания материнки. Тут уже каждый сам себе режиссер и придумывает сценарии использования разных разъемов сам.
Вертушки-самоцветы
Мы разобрали всего три типа коннекторов. Но бывают и другие. Например, шестиконтактные коннекторы. Это особенность самых технологичных вентиляторов. Нет, они не отличаются по характеристикам и не дуют морозом в жаркий день. Это обычные вентиляторы, но с подсветкой. Пожалуй, появление таких вентиляторов начинает новую эпоху компьютерных сборок. Как когда-то персональный компьютер превращали в комфортный, теперь комфортный ПК становится красивым.
Повальное распространение RGB в игровых сборках заставляет производителей добавлять подсветку везде. И, если наушники, мышь или клавиатура — это самостоятельные устройства и могут программироваться как угодно, то вентилятор — штука простая и не имеет встроенного контроллера для управления подсветкой. Поэтому настройкой и синхронизацией подсветки в пределах системного блока занимается материнская плата. Чтобы было красиво и по феншую, производители ввели еще несколько пинов, которые отвечают за управление подсветкой.
Причем возникла новая путаница. Каждый завел свою технологию и продвигает только ее. Это мешает собрать универсальную систему подсветки, поэтому выбор каждой детали в компьютере теперь обусловлен еще и поддержкой фирменных технологий. У Asus это Aura Sync, у Gigabyte — RGB Fusion, а MSI продвигает Mystic Light. Это только софтовая сторона вопроса.
В техническом же плане управление подсветкой различается еще и рабочим вольтажом, а также количеством пинов. Для управления подсветкой часто используют разъемы 12V-G-R-B, 5V-G-R-B или 5V-D-G. Они сильно отличаются и не имеют обратной совместимости. И вот почему.
Светодиоды бывают трех типов: одноцветные, RGB и ARGB. В первом и втором варианте это обычные диоды с одни или тремя катодами, которые управляются аналогово: 12 вольт для питания и по проводу на каждый цвет. ARGB или лента с адресным управлением работает на диодах со встроенными контроллерами.
В каждую лампочку встроен контроллер, который управляет ее яркостью и цветом по цифровому каналу. Обычно, это тип подключения 5V-D-G. Где 5V — 5 вольт, G — масса, а D — Digital Input. Тот самый DI, который передает информацию каждому контроллеру и диоду отдельно, адресно. Что умеют такие ленты:
Каждая лампочка управляется самостоятельно, поэтому может показать любой из миллиона цветов независимо, а также с разной яркостью.
Обычная RGB-лента тоже принимает различные оттенки, но делает это полностью:
Это ограничивает возможности кастомизации и уже перестает пользоваться спросом как в компьютерном сегменте, так и в промышленном, где основное применение ARGB-диоды находят в бегущих строках и мультимедийных баннерах.
В материнских платах управление подсветкой работает через один разъем. Чтобы подключить к нему несколько вентиляторов, используют внешние контроллеры или разветвители.
Контроллеры, к слову, тоже питаются от разъемов блока питания SATA или Molex.
Что предлагает современный вентилятор
Самое главное — компьютер стал персональным, комфортным и теперь уже красивым. Этот процесс превращения из чудовища в красавчика можно назвать эволюцией. Ей подверглись и технические особенности, и визуальные. Вентиляторы тоже подтянулись, чтобы существовать в одном стиле с платформой.
Что касается коннекторов для подключения, то основная часть вентиляторов до сих пор доступна со всеми вариантами подключения. А вот что сильно изменилось, так это ответная часть — управление на материнской плате.
Если раньше некоторые функции получали лишь топовые бренды и модели, а иногда и вовсе, только серверный сегмент, то постепенно эволюция дошла и до самых бюджетных систем. Материнские платы адаптировали под требования пользователей, поэтому большинство из них умеет теперь не только управлять скоростью и мониторить обороты, но и создавать невероятные эффекты с помощью подсветки. Это тоже можно записать в достижения эволюции: превращение вентилятора в современное умное устройство. Интересно представить, что же будет с повелителями воздуха дальше.
Разъемы дополнительного питания, краткий курс для майнеров
Добрый день! В этой публикации мы рассмотрим различные типы коннекторов, которые служат для питания майнинг-фермы. К этому вопросу нужно отнестись максимально внимательно, поскольку ошибки могут закончиться в лучшем случае коротким замыканием, а в худшем – пожаром и утратой оборудования.
В процессе написания статьи я обращался к различным источникам, начиная от «Википедии», и заканчивая англоязычными спецификациям на каждый тип разъёма питания. Это позволило мне составить таблицу с указанием ограничений по мощности, которая позволит вам избежать применения опасных переходников и разветвителей. В статье не будет лишней «воды», только то, что нужно знать каждому майнеру.
Максимально допустимая мощность
Для начала давайте вспомним уроки физики из школьной программы. Была там такая формула:
Мощность обозначается буквой P, измеряется в Ваттах (Вт). Сила тока обозначается буквой I, измеряется в Амперах (А). Напряжение обозначается буквой U, измеряется в Вольтах (В). Эту формулу я буду использовать для всех расчётов в данном материале.
Когда в статье я буду говорить о максимально допустимой мощности – следует понимать это как ограничение, заложенное разработчиками разъёма питания. На тематических форумах часто можно встретить сообщения из серии «Я подключил через один PCI-E кучу видеокарт и всё у меня хорошо». При качественных материалах, действительно, такая конфигурация может проработать некоторое время, если автор сообщения любитель острых ощущений. При некачественных материалах проблемы могут наступить ещё до того, как через переходник потечёт максимальный ток, допустимый стандартами.
Также стоит сразу определиться с терминами. Подключение питания – это соединение парного устройства, то есть состоящего из двух частей. Эти части в документации и в разговорной речи могут носить разное название. Розеточная часть, как правило, располагается на устройстве (если речь не идёт о переходниках, удлинителях и т.д.). Она может называться: розетка, female, «мама», разъём, гнездо. Вилочная часть, как правило, располагается на конце кабеля и называется: вилка, male, «папа», штекер, коннектор. Все эти названия широко распространены и имеют право на жизнь. В данной статье я буду использовать названия «коннектор» и «разъём».
Кто-то может посчитать это неправильным, но я буду оперировать привычными мне терминами, чтобы не ошибиться самому и не запутать вас.
Теперь поговорим о коннекторах, которые можно обнаружить на современном блоке питания.
Коннектор питания материнской платы (ATX-разъём)
Существуют 20-контактный и 24-контактный коннекторы питания материнской платы. В фермах применяются 24-контактные, но для совместимости с более старыми материнками четыре крайних контакта часто делают отстёгивающимися. Тип разъёма питания на материнской плате должен соответствовать типу коннектора блока питания.
Применительно к майнингу про данный разъём можно отметить, что четыре дополнительных контакта как раз служат для питания устройств PCI-Express, они обеспечивают мощность до 75 Ватт.
Коннектор питания центрального процессора
Существуют 4-контактный и 8-контактный коннекторы. Из схемы ниже нетрудно заметить, что 8-контактный – это два 4-контактных, расположенных рядом. Часто 8-контактный делают составным, по аналогии с коннектором питания материнской платы.
На блоках питания коннектор питания процессора располагается на отдельной линии. Иногда на этой линии одновременно находится и 8-контактный (неразделимый) и 4-контактный. К материнской плате подключается один из них.
Коннектор PCI-E
Именно этот коннектор предназначен для питания видеокарт, часто производители блоков питания делают их красного (а некоторые синего) цвета, бывают 6-контактные и 8-контактные. В современных блоках питания 8-контактный может быть составным, точно так же, как коннекторы, описанные ранее.
Коннектор PCI-E является наиболее востребованным в майнинге. Его назначение – дополнительное питание устройств (видеокарт, в нашем случае), подключенных к шине PCI-Express материнской платы. Согласно спецификациям, 6-контактный обеспечивает 75 Ватт дополнительного питания, а 8-контактный – 150 Ватт. При этом ещё 75 Ватт видеокарта получает от материнской платы (или от райзера).
Курс по видеокартам для майнинга:
На видеокарте может находиться несколько разъемов для дополнительного питания. Для примера можно взять видеокарту NVIDIA GeForce GTX 980 Ti, её предельная потребляемая мощность, если верить производителям, 250 Ватт. Из них 75 Ватт устройство получает от материнской платы, и требуются ещё коннекторы не менее чем на 175 Ватт. Одного 6-контактого мало (до 75 Ватт), одного 8-контактного или двух 6-контактных (до 150 Ватт) – тоже. Требуется один 6-контактный и один 8-контактный (суммарно до 225 Ватт). Смотрим картинку ниже – так и есть, всё правильно.
Коннектор Molex
Изначально данный коннектор был разработан для питания жёстких дисков и дисководов, однако в настоящее время для современных устройств эту функцию выполняют коннекторы SATA (про них ниже), а Molex служат для питания различного дополнительного оборудования.
Преимуществом Molex является наличие одновременно линий на 5 и на 12 Вольт, причём по каждой линии может протекать ток до 11 Ампер, то есть мощность 12-вольтовой линии 132 Ватта, а 5-вольтовой – 55 Ватта. Часто в Интернете можно встретить информацию, что Molex обеспечивает мощность 187 Ватт. Это верно, но разъём дополнительного питания видеокарт имеет только линии на 12 Вольт, а линия 5 Вольт не задействуется. В майнинг-фермах Molex-коннекторы используются для подключения райзеров, вентиляторов охлаждения, дополнительного питания материнской платы и как замена недостающих PCI-E коннекторов.
С использованием Molex придумано множество переходников. И некоторые из них несут реальную угрозу возгорания!
Топ самых пожароопасных переходников возглавляет переходник MOLEX->8-контактный PCI-E. Потребляемая мощность видеокарты по 8-контактному разъёму, как я уже отмечал выше, до 150 Ватт. Molex рассчитан на 132 Ватт.
С осторожностью следует использовать переходники Molex->6-контактный PCI-E и 2хMolex->8-контактный PCI-E. По мощности тут превышения нет, но не стоит расслабляться. Производители переходников часто используют некачественные материалы – тонкие провода, дешёвый пластик, ненадёжные металлические части. Это может также привести к возгоранию. После установки таких коннекторов регулярно следите за их состоянием.
Наиболее безопасный вариант – это переходники 2хMOLEX->6-контактный PCI-E. Хороший запас по мощности позволяет избежать возгорания вследствие перегрева, но всё ещё остаётся опасность возникновения проблем из-за плохого контакта, в результате чего этот переходник фактически превратится в 1хMolex->6-контактный PCI-E, а это уже первый шаг к большим проблемам.
Желательно избегать использования Molex-переходников для подключения видеокарт. Тем не менее, можно относительно безопасно применять коннекторы Molex для питания райзеров (напомню, их потребление не более 75 Ватт), в том числе и помощью переходников.
Коннектор SATA
Как и MOLEX, данный коннектор предназначен для подключения жёстких дисков и дисководов.
Из схемы видно, что коннектор имеет по три контакта на 3,3 В, 5 В, 12 В. По спецификации каждый коннектор рассчитан на максимальный ток 1,5 А. Таким образом суммарная мощность линий 3,3 В составляет без малого 15 Ватт, линий 5 В – 22,5 Ватт, а линий 12 В – 54 Ватт. Таким образом максимальная мощность линии 12 В у данного коннектора в три раза меньше, чем у Molex. А линии 5 В – в два раза меньше.
То есть НЕЛЬЗЯ использовать коннекторы SATA->Molex для питания устройств, которые потребляют больше 50 Ватт.
Коннектор для floppy-дисковода
Имеет линии 5 В и 12 В, по каждой из которых максимальный ток 2 А, то есть предельно допустимая мощность 10 Ватт и 24 Ватт соответственно. Этого хватит разве что только для какого-нибудь вентилятора охлаждения.
Итоговые цифры
Чтобы было нагляднее, представим значения максимально допустимой потребляемой мощности по линиям с различным напряжением в виде таблицы.
Следующая таблица – максимальная потребляемая мощность разъёмов на различных устройствах, которые могу входить в состав фермы для майнинга.
Полученные таблицы позволят вам определить, какие переходники и для каких целей являются безопасными, а какие – нет. Например:
Эти примеры я привел. Но не забывайте, что в этом деле очень многое зависит от качества материалов, из которых они сделаны. По возможности старайтесь избегать их использования.
Хотите зарабатывать на крипте? Подписывайтесь на наши Telegram каналы!